草业学报 ›› 2022, Vol. 31 ›› Issue (5): 13-25.DOI: 10.11686/cyxb2021391
秦格霞1(), 吴静1(), 李纯斌1, 沈帅杰2, 李怀海1, 杨道涵1, 焦美榕1, 祁琦1
收稿日期:
2021-10-28
修回日期:
2021-11-23
出版日期:
2022-05-20
发布日期:
2022-03-30
通讯作者:
吴静
作者简介:
Corresponding author. E-mail: wujing@gsau.edu.cn基金资助:
Ge-xia QIN1(), Jing WU1(), Chun-bin LI1, Shuai-jie SHEN2, Huai-hai LI1, Dao-han YANG1, Mei-rong JIAO1, Qi QI1
Received:
2021-10-28
Revised:
2021-11-23
Online:
2022-05-20
Published:
2022-03-30
Contact:
Jing WU
摘要:
以C为驱动的WOFOST作物生长模型是基于作物生理生态过程,综合考虑了CO2、土壤、气候等因素对产量的胁迫作用,因此,对WOFOST模型参数进行本地化和优化便可实现时间连续且高精度的草地生物量监测。为探讨WOFOST参数敏感性分析结果在不同草地类型覆盖区表现出的不确定性问题,在天祝藏族自治县不同草地覆盖区选择了4个站点,利用气象数据、草地实测数据及土壤数据,基于扩展傅里叶幅度敏感性检验法(EFAST)研究潜在水平(指保证营养元素和水分为最佳供应,草地地上生物量仅由辐射、温度和作物特性决定)和水分限制水平(假设营养元素的供给仍然是最佳的, 但需考虑土壤有效水分对蒸发和草地生物量的影响)下WOFOST模型在不同草地类型覆盖区的全局敏感性参数和优化模型模拟精度。结果表明潜在生产水平下草地地上生物量(AGB)的敏感参数有比叶面积(SLATB)、单叶片CO2的初始光能利用率(EFFTB)、最大光合速率(AMAXTB)、根相对维持呼吸速率(RMR)、总干物质占根和叶的比例(FRTB和FLTB),水分限制条件下的敏感参数有SLATB、AMAXTB、RMR和FLTB。不同生产水平下叶面积指数(LAI)的敏感参数一致,从出苗到出苗后60 d主要受到SLATB、FLTB和FRTB的影响,出苗后60~200 d的敏感性参数为FLTB、FRTB、SLATB和漫射可见光的消光系数(KDIFTB),LAI开始下降后受到KDIFTB的敏感性增强。其中,山地草甸AGB的模拟值与观测值模拟精度最高,R2=0.94、RMSE=11.71 g·m-2,高寒草甸模拟精度最低,R2=0.83、RMSE=32.68 g·m-2。温性荒漠草原LAI的模拟值与观测值模拟精度最高,R2=0.96、RMSE=0.02,温性草原模拟精度最低,R2=0.66、RMSE=0.38。敏感性分析方法在WOFOST模型中的应用减少了人为主观因素的影响,极大地缩短了调参时间,对获取时间连续的草地生长监测方法选择提供参考。
秦格霞, 吴静, 李纯斌, 沈帅杰, 李怀海, 杨道涵, 焦美榕, 祁琦. 不同草地类型WOFOST模型参数敏感性分析[J]. 草业学报, 2022, 31(5): 13-25.
Ge-xia QIN, Jing WU, Chun-bin LI, Shuai-jie SHEN, Huai-hai LI, Dao-han YANG, Mei-rong JIAO, Qi QI. Sensitivity analysis of WOFOST model crop parameters in different grassland types[J]. Acta Prataculturae Sinica, 2022, 31(5): 13-25.
图1 天祝藏族自治县草地类型及野外实测点分布该图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2016) 1549号的标准地图制作,底图无修改。The drawing is based on the standard map with drawing approval No. GS (2016)1549 downloaded from the standard map service website of the State Bureau of Surveying, Mapping and Geographic Information, and the base map is not modified.
Fig.1 Spatial distribution of grassland types and field sites in Tianzhu Zangzu Autonomous County
参数Parameter | 参数范围 Range of parameter in WOFOST |
---|---|
作物初始的干物质重量Initial total crop dry weight (TDWI) | 87~161 |
出苗时叶面积指数Leaf area index at emergence (LAIEM) | 0.10185~0.14650 |
叶面积指数最大相对增长速率Maximum relative increase in LAI (RGRLAI) | 0.007151~0.008326 |
比叶面积Specific leaf area [SLATB0 (DVS=0)] | 0.001008~0.002532 |
比叶面积Specific leaf area [SLATB0.5 (DVS=0.5)] | 0.001008~0.002532 |
比叶面积Specific leaf area [SLATB2 (DVS=2.0)] | 0.001008~0.002532 |
叶片在35 ℃时的生命周期Life span of leaves growing at 35 ℃ (SPAN) | 25.17~30.43 |
叶龄下限温度Lower threshold temperature for aging of leaves (TBASE) | -3~3 |
漫射可见光的消光系数Extinction coefficient for diffuse visible light [KDIFTB0 (DVS=0)] | 0.45~0.56 |
漫射可见光的消光系数Extinction coefficient for diffuse visible light [KDIFTB2 (DVS=2.0)] | 0.45~0.56 |
单叶片光能利用率Light-use efficiency of single leaf [EFFTB0 (T=0 ℃)] | 0.405~0.455 |
单叶片光能利用率Light-use efficiency of single leaf [EFFTB40 (T=40 ℃)] | 0.405 ~ 0.455 |
最大二氧化碳同化速率Maximum leaf CO2 assimilation rate [AMAXTB0 (DVS=0.0)] | 18.247~40.413 |
最大二氧化碳同化速率Maximum leaf CO2 assimilation rate [AMAXTB1 (DVS=1.0)] | 18.247~40.413 |
最大二氧化碳同化速率Maximum leaf CO2 assimilation rate [AMAXTB1.3 (DVS=1.3)] | 18.247~40.413 |
最大二氧化碳同化速率Maximum leaf CO2 assimilation rate [AMAXTB2 (DVS=2.0)] | 4.032~4.928 |
最大二氧化碳同化速率衰减因子Reduction factor of AMAX [TMPFTB0 (T=0 ℃)] | 0.009~0.011 |
最大二氧化碳同化速率衰减因子Reduction factor of AMAX [TMPFTB10 (T=10 ℃)] | 0.44~0.56 |
叶片同化物转化效率Efficiency of conversion into leaves (CVL) | 0.6165~0.7535 |
贮藏器官同化物转化效率Efficiency of conversion into storage organ (CVO) | 0.6381~0.7799 |
根同化物转化效率Efficiency of conversion into roots (CVR) | 0.6246~0.7634 |
茎同化物转化效率Efficiency of conversion into stems (CVS) | 0.5958~0.7282 |
温度每升高10 °C,呼吸速率相对增加Relative increase in respiration rate per 10 °C temperature increase (Q10) | 1.8~2.2 |
叶片相对维持呼吸速率Relative maintenance respiration rate of leaves (RML) | 0.027~0.033 |
贮藏器官相对维持呼吸速率Relative maintenance respiration rate of storage organ (RMO) | 0.009~0.011 |
根相对维持呼吸速率Relative maintenance respiration rate of roots (RMR) | 0.0135~0.0165 |
总干物质占根系的比例Fraction of total dry matter to roots [FRTB0 (DVS=0)] | 0.45~0.55 |
总干物质占根系的比例Fraction of total dry matter to roots [FRTB0.4 (DVS=0.4)] | 0.153~0.187 |
总干物质占根系的比例Fraction of total dry matter to roots [FRTB0.7 (DVS=0.7)] | 0.063~0.077 |
总干物质占根系的比例Fraction of total dry matter to roots [FRTB0.9 (DVS=0.9)] | 0.027~0.033 |
地上干物质到叶片的比例Fraction of aboveground dry matter to leaves [FLTB0 (DVS=0)] | 0.62~0.78 |
地上干物质到叶片的比例Fraction of aboveground dry matter to leaves [FLTB0.25 (DVS=0.25)] | 0.53~0.75 |
地上干物质到叶片的比例Fraction of aboveground dry matter to leaves [FLTB0.5 (DVS=0.5)] | 0.45~0.55 |
地上干物质到叶片的比例Fraction of aboveground dry matter to leaves [FLTB0.646 (DVS=0.646)] | 0.27~0.33 |
水分胁迫对叶片的最大相对死亡率Maximum relative death rate of leaves due to water stress (PERDL) | 0.27~0.33 |
根的相对死亡率Relative death rate of roots [RDRRTB1.5 (DVS=1.5)] | 0.018~0.022 |
根的相对死亡率Relative death rate of roots [RDRRTB2.0 (DVS=2.0)] | 0.018~0.022 |
茎的相对死亡率Relative death rate of stems [RDRSTB1.5 (DVS=1.5)] | 0.018~0.022 |
茎的相对死亡率Relative death rate of stems [RDRSTB2.0 (DVS=2.0)] | 0.018~0.022 |
初始根深Initial rooting depth (RDI) | 2~10 |
最大日生根深度增加量Maximum daily increase in rooting depth (RRI) | 0~1.12 |
最大根深Maximum rooting depth (RDMCR) | 30.5~107.5 |
表1 WOFOST模型参数的取值范围
Table 1 Range of input parameters in WOFOST
参数Parameter | 参数范围 Range of parameter in WOFOST |
---|---|
作物初始的干物质重量Initial total crop dry weight (TDWI) | 87~161 |
出苗时叶面积指数Leaf area index at emergence (LAIEM) | 0.10185~0.14650 |
叶面积指数最大相对增长速率Maximum relative increase in LAI (RGRLAI) | 0.007151~0.008326 |
比叶面积Specific leaf area [SLATB0 (DVS=0)] | 0.001008~0.002532 |
比叶面积Specific leaf area [SLATB0.5 (DVS=0.5)] | 0.001008~0.002532 |
比叶面积Specific leaf area [SLATB2 (DVS=2.0)] | 0.001008~0.002532 |
叶片在35 ℃时的生命周期Life span of leaves growing at 35 ℃ (SPAN) | 25.17~30.43 |
叶龄下限温度Lower threshold temperature for aging of leaves (TBASE) | -3~3 |
漫射可见光的消光系数Extinction coefficient for diffuse visible light [KDIFTB0 (DVS=0)] | 0.45~0.56 |
漫射可见光的消光系数Extinction coefficient for diffuse visible light [KDIFTB2 (DVS=2.0)] | 0.45~0.56 |
单叶片光能利用率Light-use efficiency of single leaf [EFFTB0 (T=0 ℃)] | 0.405~0.455 |
单叶片光能利用率Light-use efficiency of single leaf [EFFTB40 (T=40 ℃)] | 0.405 ~ 0.455 |
最大二氧化碳同化速率Maximum leaf CO2 assimilation rate [AMAXTB0 (DVS=0.0)] | 18.247~40.413 |
最大二氧化碳同化速率Maximum leaf CO2 assimilation rate [AMAXTB1 (DVS=1.0)] | 18.247~40.413 |
最大二氧化碳同化速率Maximum leaf CO2 assimilation rate [AMAXTB1.3 (DVS=1.3)] | 18.247~40.413 |
最大二氧化碳同化速率Maximum leaf CO2 assimilation rate [AMAXTB2 (DVS=2.0)] | 4.032~4.928 |
最大二氧化碳同化速率衰减因子Reduction factor of AMAX [TMPFTB0 (T=0 ℃)] | 0.009~0.011 |
最大二氧化碳同化速率衰减因子Reduction factor of AMAX [TMPFTB10 (T=10 ℃)] | 0.44~0.56 |
叶片同化物转化效率Efficiency of conversion into leaves (CVL) | 0.6165~0.7535 |
贮藏器官同化物转化效率Efficiency of conversion into storage organ (CVO) | 0.6381~0.7799 |
根同化物转化效率Efficiency of conversion into roots (CVR) | 0.6246~0.7634 |
茎同化物转化效率Efficiency of conversion into stems (CVS) | 0.5958~0.7282 |
温度每升高10 °C,呼吸速率相对增加Relative increase in respiration rate per 10 °C temperature increase (Q10) | 1.8~2.2 |
叶片相对维持呼吸速率Relative maintenance respiration rate of leaves (RML) | 0.027~0.033 |
贮藏器官相对维持呼吸速率Relative maintenance respiration rate of storage organ (RMO) | 0.009~0.011 |
根相对维持呼吸速率Relative maintenance respiration rate of roots (RMR) | 0.0135~0.0165 |
总干物质占根系的比例Fraction of total dry matter to roots [FRTB0 (DVS=0)] | 0.45~0.55 |
总干物质占根系的比例Fraction of total dry matter to roots [FRTB0.4 (DVS=0.4)] | 0.153~0.187 |
总干物质占根系的比例Fraction of total dry matter to roots [FRTB0.7 (DVS=0.7)] | 0.063~0.077 |
总干物质占根系的比例Fraction of total dry matter to roots [FRTB0.9 (DVS=0.9)] | 0.027~0.033 |
地上干物质到叶片的比例Fraction of aboveground dry matter to leaves [FLTB0 (DVS=0)] | 0.62~0.78 |
地上干物质到叶片的比例Fraction of aboveground dry matter to leaves [FLTB0.25 (DVS=0.25)] | 0.53~0.75 |
地上干物质到叶片的比例Fraction of aboveground dry matter to leaves [FLTB0.5 (DVS=0.5)] | 0.45~0.55 |
地上干物质到叶片的比例Fraction of aboveground dry matter to leaves [FLTB0.646 (DVS=0.646)] | 0.27~0.33 |
水分胁迫对叶片的最大相对死亡率Maximum relative death rate of leaves due to water stress (PERDL) | 0.27~0.33 |
根的相对死亡率Relative death rate of roots [RDRRTB1.5 (DVS=1.5)] | 0.018~0.022 |
根的相对死亡率Relative death rate of roots [RDRRTB2.0 (DVS=2.0)] | 0.018~0.022 |
茎的相对死亡率Relative death rate of stems [RDRSTB1.5 (DVS=1.5)] | 0.018~0.022 |
茎的相对死亡率Relative death rate of stems [RDRSTB2.0 (DVS=2.0)] | 0.018~0.022 |
初始根深Initial rooting depth (RDI) | 2~10 |
最大日生根深度增加量Maximum daily increase in rooting depth (RRI) | 0~1.12 |
最大根深Maximum rooting depth (RDMCR) | 30.5~107.5 |
图3 草地地上生物量敏感性指数总敏感性指数在0.05以下的参数没有在图中显示。Parameters whose total sensitivity index of biomass was less than 0.05 are not shown in the figure. SM: 山地草甸Slope meadow; AM: 高寒草甸Alpine meadow; WS: 温性草原Warm steppe; TDS: 温性荒漠草原Temperate desert steppe. 下同The same below.
Fig.3 The sensitivity index of parameters of AGB
1 | Wang J, Zhao W, Wang G, et al. Effects of long-term afforestation and natural grassland recovery on soil properties and quality in Loess Plateau (China). Science of the Total Environment, 2021, 770: 144833. |
2 | Emadodin I, Corral D E F, Reinsch T, et al. Climate change effects on temperate grassland and its implication for forage production: A case study from Northern Germany. Agriculture, 2021, 11(3): 232. |
3 | Petersen K, Kraus D, Calanca P, et al. Dynamic simulation of management events for assessing impacts of climate change on pre-alpine grassland productivity. European Journal of Agronomy, 2021, 128: 126306. |
4 | Liu D, Zhang C, Ogaya R, et al. Increasing climatic sensitivity of global grassland vegetation biomass and species diversity correlates with water availability. New Phytologist, 2021, 230: 1761-1771. |
5 | Ding Y H, Ren G Y, Shi G Y. China’s National Assessment Report on Climate Change (I): Climate change in China and the future trend. Advances in Climate Change Research, 2007, 3: 1-5. |
6 | Scurlock J M O, Hall D O. The global carbon sink: A grassland perspective. Global Change Biology, 1998, 4(2): 229-233. |
7 | Jin Y, Yang X, Qiu J, et al. Remote sensing-based biomass estimation and its spatiotemporal variations in temperate grassland, Northern China. Remote Sensing, 2014, 6(2): 1496-1513. |
8 | Ma X C, Li Z F. The vegetation coverage, biomass and leaf area index of meadow in Napahai wetlands. Wetland Science, 2017, 15(1): 144-147. |
马旭晨, 栗忠飞. 纳帕海湿地区草甸的植物盖度、生物量和叶面积指数. 湿地科学, 2017, 15(1): 144-147. | |
9 | Chen S C, Wang B S. Analysis of influencing factors of LAI remote sensing inversion based on neural network. Geospatial Information, 2019, 17(12): 72-74. |
陈士城, 王宝水. 基于神经网络的LAI遥感反演影响因素分析. 地理空间信息, 2019, 17(12): 72-74. | |
10 | Xu K X, Su Y J, Liu J, et al. Estimation of degraded grassland aboveground biomass using machine learning methods from terrestrial laser scanning data. Ecological Indicators, 2020, 108: 105747. |
11 | Yang R R, Lan Y, Zhang Z. Research progress on aboveground biomass of grassland in China in recent 30 years. Subtropical Soil and Water Conservation, 2019, 2: 38-41. |
杨荣荣, 兰垚, 张卓. 中国近30年草地地上生物量的研究进展. 亚热带水土保持, 2019, 2: 38-41. | |
12 | Zhang X T. Estimation method and application for grassland aboveground dry biomass based on assimilation of remote sensing data and crop growth model. Chengdu: University of Electronic Science and Technology of China, 2017. |
张雪婷. 基于作物生长模型和遥感数据同化的草地生物量估算方法及应用. 成都: 电子科技大学, 2017. | |
13 | De W A, Boogaard H, Fumagalli D, et al. 25 years of the WOFOST cropping systems model. Agricultural Systems, 2019, 168: 154-167. |
14 | Mishra S K, Shekh A M, Pandey V, et al. Sensitivity analysis of four wheat cultivars to varying photoperiod and temperature at different phenological stages using WOFOST model. Journal of Agrometeorology, 2015, 17(1): 74-79. |
15 | Wang J, Li X. Progresses on data fusion technology of crop growth model and multi-source observation information. Remote Sensing Technology and Application, 2015, 30(2): 209-219. |
王静, 李新. 基于作物生长模型和多源数据的融合技术研究进展. 遥感技术与应用, 2015, 30(2): 209-219. | |
16 | Cheng Z Q, Meng J H. Research advances and perspectives on crop yield estimation models. Chinese Journal of Eco-Agriculture, 2015, 23(4): 402-415. |
程志强, 蒙继华. 作物单产估算模型研究进展与展望. 中国生态农业学报, 2015, 23(4): 402-415. | |
17 | Huang J X, Jia S L, Ma H Y, et al. Dynamic simulation of growth process of winter wheat in main production areas of China based on WOFOST model. Transactions of the Chinese Society of Agricultural Engineering, 2017(10): 222-228. |
黄健熙, 贾世灵, 马鸿元, 等. 基于WOFOST模型的中国主产区冬小麦生长过程动态模拟. 农业工程学报, 2017(10): 222-228. | |
18 | Liu J M, Pan P Z, Wang P X, et al. Parameters optimization of wheat spike differentiation stages model based on SCE-UA algorithm. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 232-240. |
刘峻明, 潘佩珠, 王鹏新, 等. 基于SCE-UA 算法的小麦穗分化期模拟模型参数优化. 农业机械学报, 2018, 49(4): 232-240. | |
19 | Xing A, Zhuo Z Q, Zhao Y Z, et al. Sensitivity analysis of WOFOST model crop parameters under different production levels based on EFAST method. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 161-171. |
兴安, 卓志清, 赵云泽, 等. 基于EFAST的不同生产水平下WOFOST模型参数敏感性分析. 农业机械学报, 2020, 51(2): 161-171. | |
20 | Huang J X, Huang H, Ma H Y, et al. Markov Chain Monte Carlo based WOFOST model parameters calibration and uncertainty analysis. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(16): 113-119. |
黄健熙, 黄海, 马鸿元, 等. 基于MCMC方法的WOFOST模型参数标定与不确定性分析. 农业工程学报, 2018, 34(16): 113-119. | |
21 | Sun H, Zhu Y, Yang J, et al. Global sensitivity analysis for an integrated model for simulation of nitrogen dynamics under the irrigation with treated wastewater. Environment Science Pollution Resource, 2015, 22: 16664-16675. |
22 | Cai Y, Xing Y, Hu D. On sensitivity analysis. Journal of Beijing Normal University (Natural Science), 2008, 44(1): 9-16. |
蔡毅, 邢岩, 胡丹. 敏感性分析综述. 北京师范大学学报(自然科学版), 2008, 44(1): 9-16. | |
23 | Sobol I M. Sensitivity estimates for nonlinear mathematical models. Math Modeling and Computational Experiment, 1993, 1(4): 407-413. |
24 | Morris M D. Factorial sampling plans for preliminary computational experiments. Technometrics, 1991, 33(2): 161-174. |
25 | Saltelli A, Bolado R. An alternative way to compute Fourier amplitude sensitivity test (FAST). Computational Statistics and Data Analysis, 1998, 26(4): 445-460. |
26 | Saltelli A, Tarantola S, Chan K P S. A quantitative model-independent method for global sensitivity analysis of model output. Technometrics, 1999, 41(1): 39-56. |
27 | He L, Hou Y Y, Zhao G, et al. Parameters optimization of WOFOST model by integration of global sensitivity analysis and Bayesian calibration method. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(2): 169-179. |
何亮, 侯英雨, 赵刚, 等. 基于全局敏感性分析和贝叶斯方法的WOFOST作物模型参数优化. 农业工程学报, 2016, 32(2): 169-179. | |
28 | Lai S F. Localization and calibration of model parameters based on PCSE crop model and sensitivity analysis. Changchun: Jilin University, 2019. |
来守芳. 基于PCSE作物模型与敏感性分析的模型参数本地化校准研究. 长春: 吉林大学, 2019. | |
29 | Chen Y L, Gu X H, Gong A D. Global sensitivity analysis of WOFOST model parameters based on EFAST method. Journal of Henan Polytechnic University (Natural Science), 2018, 37(3): 72-78. |
陈艳玲, 顾晓鹤, 宫阿都. 基于EFAST方法的WOFOST作物模型参数敏感性分析. 河南理工大学学报(自然科学版), 2018, 37(3): 72-78. | |
30 | Xu X, Shen S, Xiong S, et al. Water stress is a key factor influencing the parameter sensitivity of the WOFOST model in different agro‑meteorological conditions. International Journal of Plant Production, 2021, 15: 231-242. |
31 | Gilardelli C, Confalonieri R, Cappelli G A, et al. Sensitivity of WOFOST-based modelling solutions to crop parameters under climate change. Ecological Modelling, 2018, 368: 1-14. |
32 | Paleari L, Movedi E, Zoli M, et al. Sensitivity analysis using Morris: Just screening or an effective ranking method? Ecological Modelling, 2021, 455: 109648. |
33 | Wang L X, Zhang Y, Li Q, et al. Current status and prospects of sensitivity analysis of crop model parameters. Meteorological Science and Technology, 2018, 46(2): 382-389. |
王连喜, 张阳, 李琪, 等. 作物模型参数敏感性分析现状与展望. 气象科技, 2018, 46(2): 382-389. | |
34 | Chen X H. Analysis on the prospect of grass and livestock industry in Tianzhu Tibetan Autonomous County. China Herbivores, 2012, 32(1): 57-59. |
陈新辉. 天祝藏族自治县草畜产业前景浅析. 中国草食动物, 2012, 32(1): 57-59. | |
35 | Zhang Z L. Research report on grassland industrialization in Tianzhu Tibetan Autonomous County//Proceedings of 2009 academic conference of Gansu Province. Lanzhou: Gansu Association for Science and Technology, 2019: 272-276. |
张子廉. 天祝藏族自治县草业产业化调研报告//甘肃省2009年学术会议论文集. 兰州: 甘肃省科学技术协会, 2009: 272-276. | |
36 | Hu Q F, Yang D W, Wang Y T, et al. Effects of Angstrom coefficients on ET0 estimation and the applicability of FAO recommended coefficient values in China. Advances in Water Science, 2010, 21(5): 644-652. |
胡庆芳, 杨大文, 王银堂, 等. Angstrom公式参数对ET0的影响及FAO建议值适用性评价. 水科学进展, 2010, 21(5): 644-652. | |
37 | Saxton K E, Rawls W J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal, 2006, 70(5): 1569-1578. |
38 | Wang J, Li X, Lu L, et al. Parameter sensitivity analysis of crop growth models based on the extended Fourier Amplitude Sensitivity Test method. Environment Model Software, 2013, 48: 171-182. |
39 | Li Z H, Jin X L, Liu H L, et al. Global sensitivity analysis of wheat grain yield and quality and the related process variables from the DSSAT-CERES model based on the extended Fourier Amplitude Sensitivity Test method. Journal of Integrative Agriculture, 2019, 18(7): 1547-1561. |
40 | Rowan T H. Functional stability analysis of numerical algorithms. Austin: The University of Texas at Austin, 1990. |
41 | Bai T C, Wang S G, Meng W B, et al. Assimilation of remotely-sensed LAI into WOFOST model with the SUBPLEX algorithm for improving the field-scale jujube yield forecasts. Remote Sensing, 2019, 11(16): 1945. |
42 | Wang W M, Li Z L, Su H B. Comparison of leaf angle distribution functions: Effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 2007, 143(1/2): 106-122. |
[1] | 秦格霞, 吴静, 李纯斌, 吉珍霞, 邱政超, 李颖. 基于机器学习算法的天祝藏族自治县草地地上生物量反演[J]. 草业学报, 2022, 31(4): 177-188. |
[2] | 张彩荷, 李纯斌, 吴静. 基于草原综合顺序分类法的中国山地草地亚类分类研究[J]. 草业学报, 2022, 31(3): 16-25. |
[3] | 刘启宇, 云岚, 陈逸凡, 郭宏宇, 李珍, 高志琦, 王俊, 石凤翎. 苜蓿—禾草混播草地牧草产量及种间竞争关系的动态研究[J]. 草业学报, 2022, 31(3): 181-191. |
[4] | 周磊, 魏雪, 王长庭, 吴鹏飞. 高寒草地小型土壤节肢动物群落特征及其对草地退化的指示作用[J]. 草业学报, 2022, 31(3): 34-46. |
[5] | 赵利清, 郝志刚, 崔笑岩, 彭向永. 赤霉素及其抑制剂调控草地早熟禾生长及赤霉素相关基因表达的研究[J]. 草业学报, 2022, 31(3): 85-91. |
[6] | 王亚晖, 唐文家, 李森, 赵鸿雁, 谢家丽, 马超, 颜长珍. 青海省草地生产力变化及其驱动因素[J]. 草业学报, 2022, 31(2): 1-13. |
[7] | 孙彩彩, 董全民, 刘文亭, 冯斌, 时光, 刘玉祯, 俞旸, 张春平, 张小芳, 李彩弟, 杨增增, 杨晓霞. 放牧方式对青藏高原高寒草地土壤节肢动物群落结构和多样性的影响[J]. 草业学报, 2022, 31(2): 62-75. |
[8] | 张仁平, 郭靖, 马晓芳, 郭伟勇. 基于MODIS数据的新疆草地物候提取方法及变化趋势分析[J]. 草业学报, 2022, 31(1): 1-12. |
[9] | 王斌, 李满有, 王欣盼, 董秀, 庞军宝, 兰剑. 深松浅旋对半干旱区退化紫花苜蓿人工草地改良效果研究[J]. 草业学报, 2022, 31(1): 107-117. |
[10] | 韩小雨, 郭宁, 李冬冬, 谢明阳, 焦峰. 氮添加对内蒙古不同草原生物量及土壤碳氮变化特征的影响[J]. 草业学报, 2022, 31(1): 13-25. |
[11] | 马文明, 刘超文, 周青平, 邓增卓玛, 唐思洪, 迪力亚尔·莫合塔尔null, 侯晨. 高寒草地灌丛化对土壤团聚体生态化学计量学及酶活性的影响[J]. 草业学报, 2022, 31(1): 57-68. |
[12] | 汪精海, 李广, 银敏华, 齐广平, 康燕霞, 马彦麟. 调亏灌溉对高寒荒漠区人工混播草地土壤环境与牧草生长的影响[J]. 草业学报, 2022, 31(1): 95-106. |
[13] | 吴廷美, 林慧龙, 范迪, 籍常婷, 赵玉婷, 魏靖琼. 冻原高山草地牧户家畜养殖规模影响因素分析——以青海省为例[J]. 草业学报, 2021, 30(9): 117-126. |
[14] | 刘佳丽, 范建容, 张茜彧, 杨超, 徐富宝, 张晓雪, 梁博. 高寒草地生长季/非生长季植被盖度遥感反演[J]. 草业学报, 2021, 30(9): 15-26. |
[15] | 宋梅玲, 王玉琴, 王宏生, 鲍根生. 内生真菌对高寒草地紫花针茅凋落物分解的影响[J]. 草业学报, 2021, 30(9): 150-158. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||