草业学报 ›› 2022, Vol. 31 ›› Issue (5): 200-212.DOI: 10.11686/cyxb2021089
• 综合评述 • 上一篇
收稿日期:
2021-03-15
修回日期:
2021-05-24
出版日期:
2022-05-20
发布日期:
2022-03-30
通讯作者:
侯扶江
作者简介:
Corresponding author. E-mail: cyhoufj@lzu.edu.cn基金资助:
You-shun JIN(), Fu-jiang HOU()
Received:
2021-03-15
Revised:
2021-05-24
Online:
2022-05-20
Published:
2022-03-30
Contact:
Fu-jiang HOU
摘要:
放牧家畜养分消化率反映牧草供给量和营养品质、家畜的健康状况以及生产性能等,是草原管理的关键指标之一。放牧家畜养分消化率的测定方法主要有直接测定和间接估测两种,直接法包括全收粪法、指示剂法、近红外光谱法(NIRS)等,间接法主要有体内或体外发酵法、牧草品质和气候等预测法。全收粪法是较精确的测定方法,然而耗时、费力,对家畜放牧行为有较大影响,难以体现牧场饲草供给的空间异质性;指示剂法根据不溶物的回收比例估测养分消化率,对家畜放牧行为干扰较小,指示剂不易收集,也不适于野性较高的放牧动物;NIRS法效率高、劳动强度低、成本小、不影响家畜,能够大尺度地估测放牧家畜的养分消化率,需要大量的实测数据完善预测模型;气候估测法快捷、省时,精确性较差,适于大时空尺度。放牧家畜的养分消化率与家畜、草地、放牧方法、温度、降水等生物因子,环境因子和社会因子密切相关,与遥感、无人机(UAV)和人工智能等结合,可以准确、快速地测定放牧家畜养分消化率,为草地生态修复与健康管理提供支撑。
金有顺, 侯扶江. 放牧家畜养分消化率的测定[J]. 草业学报, 2022, 31(5): 200-212.
You-shun JIN, Fu-jiang HOU. Determination of the nutrient digestibility of herbage consumed by grazing animals[J]. Acta Prataculturae Sinica, 2022, 31(5): 200-212.
类型 Type | 地点 Site | AMP (mm) | AMT (℃) | 家畜品种 Breeds | 性别 Gender | DMD (%) | CPD (%) | NDF/ADF (%) | 参考文献References |
---|---|---|---|---|---|---|---|---|---|
TSS | 阿根廷Argentina (36°46′ S; 64°16′ W) | 900 | 20.0 | Pampinta羊Pampinta sheep | 公Male | 40.90 (OMD) | - | - | [ |
TCG | 临泽县Linze County (39°24′ N; 100°6′ E) | 89 | 8.3 | 西门塔尔牛Simmental | 公Male | 76.70 | 72.90 | 60.90 (NDF) | [ |
TCG | 临泽县Linze County (39°24′ N; 100°6′ E) | 89 | 8.3 | 湖羊×小尾寒羊Hu sheep×Small-tailed Han sheep | 公Male | 60.70 | 63.30 | 59.70/57.10 | [ |
TCG | 临泽县Linze County (39°24′ N; 100°6′ E) | 89 | 8.3 | 西门塔尔牛Simmental | 公Male | 58.70 | 49.50 | 39.60 (NDF) | [ |
TCG | 临泽县Linze County (39°24′ N; 100°6′ E) | 89 | 8.3 | 湖羊×小尾寒羊Hu sheep×Small-tailed Han sheep | 公Male | 56.48 | - | 51.23/53.80 | [ |
FAM | 青海省Qinghai Province (29°46′ N; 94°44′ E) | 350~550 | 0~1.4 | 藏羊×半细毛羊Tibetan sheep×Semifine-wool sheep | 羯羊 Wether | 53.07 | - | - | [ |
EBF | 意大利Italy (36°28′ N; 6°38′ E) | 500~1000 | 2.0~26.0 | 马Horse | 阉马 Gelding | 42.10 | 54.80 | 43.40 (NDF) | [ |
SBF | 巴西Brazil | 1300 | 200.0 | 马Horse | - | 51.19 | 69.73 | 72.35/68.91 | [ |
TTS | 锡林郭勒XilinGol (41°35′ N; 111°9′ E) | 300 | 1.5 | 萨福克肉羊×蒙古羊Suffolk sheep×Mongolian sheep | - | 69.99 | - | - | [ |
表1 全收粪法测定家畜养分消化率
Table 1 Nutrient digestibility of grazed animals measured by total fecal collection method
类型 Type | 地点 Site | AMP (mm) | AMT (℃) | 家畜品种 Breeds | 性别 Gender | DMD (%) | CPD (%) | NDF/ADF (%) | 参考文献References |
---|---|---|---|---|---|---|---|---|---|
TSS | 阿根廷Argentina (36°46′ S; 64°16′ W) | 900 | 20.0 | Pampinta羊Pampinta sheep | 公Male | 40.90 (OMD) | - | - | [ |
TCG | 临泽县Linze County (39°24′ N; 100°6′ E) | 89 | 8.3 | 西门塔尔牛Simmental | 公Male | 76.70 | 72.90 | 60.90 (NDF) | [ |
TCG | 临泽县Linze County (39°24′ N; 100°6′ E) | 89 | 8.3 | 湖羊×小尾寒羊Hu sheep×Small-tailed Han sheep | 公Male | 60.70 | 63.30 | 59.70/57.10 | [ |
TCG | 临泽县Linze County (39°24′ N; 100°6′ E) | 89 | 8.3 | 西门塔尔牛Simmental | 公Male | 58.70 | 49.50 | 39.60 (NDF) | [ |
TCG | 临泽县Linze County (39°24′ N; 100°6′ E) | 89 | 8.3 | 湖羊×小尾寒羊Hu sheep×Small-tailed Han sheep | 公Male | 56.48 | - | 51.23/53.80 | [ |
FAM | 青海省Qinghai Province (29°46′ N; 94°44′ E) | 350~550 | 0~1.4 | 藏羊×半细毛羊Tibetan sheep×Semifine-wool sheep | 羯羊 Wether | 53.07 | - | - | [ |
EBF | 意大利Italy (36°28′ N; 6°38′ E) | 500~1000 | 2.0~26.0 | 马Horse | 阉马 Gelding | 42.10 | 54.80 | 43.40 (NDF) | [ |
SBF | 巴西Brazil | 1300 | 200.0 | 马Horse | - | 51.19 | 69.73 | 72.35/68.91 | [ |
TTS | 锡林郭勒XilinGol (41°35′ N; 111°9′ E) | 300 | 1.5 | 萨福克肉羊×蒙古羊Suffolk sheep×Mongolian sheep | - | 69.99 | - | - | [ |
类型 Type | 地点 Site | AMP (mm) | AMT (℃) | 家畜品种 Breeds | 性别 Gender | DMD (%) | CPD (%) | NDF/ADF (%) | 链烷烃 Alkane | 参考文献 References |
---|---|---|---|---|---|---|---|---|---|---|
EBF | 美国America (37°11′ N; 80°35′ W) | 921 | 15.3 | 赫里福德牛 Hereford cattle | - | 65.30 | - | - | C29 | [ |
WTTS | 英国England (43°38′ S; 172°27′ E) | 500~700 | 14.0 | 马鹿Red deer | - | 67.70 | - | 69.90 (ADF) | C32-C36 | [ |
FAM | 西藏Tibet (30°27′ N; 83°4′ E) | 380 | -3.3~-0.9 | 绒山羊 Cashmere goat | 母Female | 49.03 | 50.36 | 45.68/ 33.48 | C32 | [ |
EBF | 圣保罗Sao Paulo (34°51′ N; 138°30′ E) | 1000 | 15.0~28.0 | 内洛尔肉牛 Nellol beef cattle | 阉牛Bullock | 62.55 | - | - | C35 | [ |
TSS | 墨西哥Mexico (19°24′ N; 99°9′ W) | 800~1000 | 10.0~26.0 | 驴Donkey | - | 45.90 | - | - | C31-C33 | [ |
TSS | 拉潘帕Rapanpa (36°46′ S; 64°16′ W) | 800~1000 | 10.0~26.0 | Pampinta羊 Pampinta sheep | 公Male | 56.80 (OMD) | - | - | C31-C32 | [ |
- | - | 1000 | 17.0 | 荷斯坦奶牛 Holstein cow | 母Female | 56.70 | - | - | C31 | [ |
TTS | 锡林郭勒XilinGol (42°25′ N; 116°2′ E) | 359 | 1.6 | 蒙古羊 Mongolian sheep | 母Female | 71.40 | - | - | C25-C35 | [ |
EBF | 里兹维尔Ritzville (36°24′ N; 79°43′ W) | 125 | 16.5 | 安格斯肉牛 Angus beef cattle | 母Female | 51.70 | - | - | - | [ |
表2 烷烃法估测家畜养分消化率
Table 2 Estimation of nutrient digestibility of animals by alkane method
类型 Type | 地点 Site | AMP (mm) | AMT (℃) | 家畜品种 Breeds | 性别 Gender | DMD (%) | CPD (%) | NDF/ADF (%) | 链烷烃 Alkane | 参考文献 References |
---|---|---|---|---|---|---|---|---|---|---|
EBF | 美国America (37°11′ N; 80°35′ W) | 921 | 15.3 | 赫里福德牛 Hereford cattle | - | 65.30 | - | - | C29 | [ |
WTTS | 英国England (43°38′ S; 172°27′ E) | 500~700 | 14.0 | 马鹿Red deer | - | 67.70 | - | 69.90 (ADF) | C32-C36 | [ |
FAM | 西藏Tibet (30°27′ N; 83°4′ E) | 380 | -3.3~-0.9 | 绒山羊 Cashmere goat | 母Female | 49.03 | 50.36 | 45.68/ 33.48 | C32 | [ |
EBF | 圣保罗Sao Paulo (34°51′ N; 138°30′ E) | 1000 | 15.0~28.0 | 内洛尔肉牛 Nellol beef cattle | 阉牛Bullock | 62.55 | - | - | C35 | [ |
TSS | 墨西哥Mexico (19°24′ N; 99°9′ W) | 800~1000 | 10.0~26.0 | 驴Donkey | - | 45.90 | - | - | C31-C33 | [ |
TSS | 拉潘帕Rapanpa (36°46′ S; 64°16′ W) | 800~1000 | 10.0~26.0 | Pampinta羊 Pampinta sheep | 公Male | 56.80 (OMD) | - | - | C31-C32 | [ |
- | - | 1000 | 17.0 | 荷斯坦奶牛 Holstein cow | 母Female | 56.70 | - | - | C31 | [ |
TTS | 锡林郭勒XilinGol (42°25′ N; 116°2′ E) | 359 | 1.6 | 蒙古羊 Mongolian sheep | 母Female | 71.40 | - | - | C25-C35 | [ |
EBF | 里兹维尔Ritzville (36°24′ N; 79°43′ W) | 125 | 16.5 | 安格斯肉牛 Angus beef cattle | 母Female | 51.70 | - | - | - | [ |
类型 Type | 地点 Site | AMP (mm) | AMT (℃) | 品种 Breeds | 性别 Gender | DMD (%) | CPD (%) | NDF/ADF (%) | 参考文献 References |
---|---|---|---|---|---|---|---|---|---|
SBS | 阿尔及利亚Algeria (36°42′ N; 3°15′ E) | 455 | 17.5 | 羊Sheep | 母Female | 64.0 | 66.00 | 47.00 (ADF) | [ |
EBF | 意大利Italy (36°27′ N; 6°38′ E) | 750 | 2.0~26.0 | 马Horse | - | 45.5 | 56.10 | 45.00 (NDF) | [ |
EBF | 宾夕法尼亚州Pennsylvania (42°52′ N; 74°43′ W) | 1067 | -6.0~20.0 | 荷斯坦奶牛 Holstein cow | 母Female | 67.1 | 65.60 | 54.50/50.00 | [ |
TRF | 巴西巴伊亚Bahia, Brazil (8°6′ S; 37°5′ W) | 1900 | 24.5 | 波尔山羊 Boer goat | - | 67.0 | - | - | [ |
SBS | 法国 France (48°11′ N; 1°71′ W) | 630 | 10.5 | 荷斯坦奶牛 Holstein cow | 母Female | 66.7 | - | - | [ |
EBF | 意大利Italy (36°27′ N; 6°38′ E) | 750 | 2.0~26.0 | 马Horse | 公Male | 59.7 | - | - | [ |
EBF | 意大利Italy (36°28′ N; 6°38′ E) | 500~1000 | 2.0~26.0 | 马Horse | 公Male | 60.5 | - | - | [ |
FAM | 东北平原Northeast plain (43°48′ N; 129°10′ E) | 500~600 | 1.0~4.0 | 西门塔尔牛 Simmental | 阉牛Bullock | 43.0 | 52.19 | 44.32/36.65 | [ |
- | - | 1000 | 17.0 | 荷斯坦牛 Holstein cow | 母Female | 58.4 | - | - | [ |
表3 AIA法测定家畜养分消化率
Table 3 Determination of nutrient digestibility of animals by AIA method
类型 Type | 地点 Site | AMP (mm) | AMT (℃) | 品种 Breeds | 性别 Gender | DMD (%) | CPD (%) | NDF/ADF (%) | 参考文献 References |
---|---|---|---|---|---|---|---|---|---|
SBS | 阿尔及利亚Algeria (36°42′ N; 3°15′ E) | 455 | 17.5 | 羊Sheep | 母Female | 64.0 | 66.00 | 47.00 (ADF) | [ |
EBF | 意大利Italy (36°27′ N; 6°38′ E) | 750 | 2.0~26.0 | 马Horse | - | 45.5 | 56.10 | 45.00 (NDF) | [ |
EBF | 宾夕法尼亚州Pennsylvania (42°52′ N; 74°43′ W) | 1067 | -6.0~20.0 | 荷斯坦奶牛 Holstein cow | 母Female | 67.1 | 65.60 | 54.50/50.00 | [ |
TRF | 巴西巴伊亚Bahia, Brazil (8°6′ S; 37°5′ W) | 1900 | 24.5 | 波尔山羊 Boer goat | - | 67.0 | - | - | [ |
SBS | 法国 France (48°11′ N; 1°71′ W) | 630 | 10.5 | 荷斯坦奶牛 Holstein cow | 母Female | 66.7 | - | - | [ |
EBF | 意大利Italy (36°27′ N; 6°38′ E) | 750 | 2.0~26.0 | 马Horse | 公Male | 59.7 | - | - | [ |
EBF | 意大利Italy (36°28′ N; 6°38′ E) | 500~1000 | 2.0~26.0 | 马Horse | 公Male | 60.5 | - | - | [ |
FAM | 东北平原Northeast plain (43°48′ N; 129°10′ E) | 500~600 | 1.0~4.0 | 西门塔尔牛 Simmental | 阉牛Bullock | 43.0 | 52.19 | 44.32/36.65 | [ |
- | - | 1000 | 17.0 | 荷斯坦牛 Holstein cow | 母Female | 58.4 | - | - | [ |
类型 Type | 地点 Site | AMP (mm) | AMT (℃) | 家畜品种 Breeds | 性别 Gender | DMD (%) | 指示剂 Indicator | 参考文献 References |
---|---|---|---|---|---|---|---|---|
EBF | 巴西Brazil (23°32′ S; 46°37′ W) | 1000 | 15.0~28.0 | 荷斯坦奶牛Holstein cow | 母Female | 68.8 | Cr2O3 | [ |
EBF | 巴西Brazil (23°32′ S; 46°37′ W) | 1000 | 15.0~28.0 | 荷斯坦奶牛Holstein cow | 母Female | 71.8 | TiO2 | [ |
TTS | 内蒙古Inner Mongolia (43°39′ N; 116°43′ E) | 296 | 1.4 | 蒙古羊Mongolian sheep | 母Female | 56.3 | TiO2 | [ |
SBS | 法国雷恩市Rennes, France (48°11′ N; 1°71′ W) | 630 | 10.0 | 荷斯坦奶牛Holstein cow | 母Female | 72.6 | Cr2O3 | [ |
TSS | 墨西哥Mexico (19°24′ N; 99°9′ W) | 800~1000 | 10.0~26.0 | Pelibuey羊Pelibuey sheep | - | 83.0 | Cr2O3 | [ |
TSS | 墨西哥Mexico (19°24′ N; 99°9′ W) | 800~1000 | 10.0~26.0 | Pelibuey羊Pelibuey sheep | - | 81.0 | TiO2 | [ |
SSF | 澳大利亚棉花山Cotton hill, Australia (27°28′ S; 153°2′ E) | 1153 | 20.5 | 美利奴×多塞特Merino×Dorset | 公Male | 68.2 | Cr-EDTA | [ |
EBF | 西班牙萨拉戈萨Zaragoza, Spain (43°21′ N; -6°53′ W) | 300~800 | 10.0~25.0 | 荷斯坦×弗里赛Holstein×Frisai | 公Male | 72.0 | Cr2O3 | [ |
表4 外源指示剂法测定家畜养分消化率
Table 4 Determination of nutrient digestibility of animals by exogenous indicator method
类型 Type | 地点 Site | AMP (mm) | AMT (℃) | 家畜品种 Breeds | 性别 Gender | DMD (%) | 指示剂 Indicator | 参考文献 References |
---|---|---|---|---|---|---|---|---|
EBF | 巴西Brazil (23°32′ S; 46°37′ W) | 1000 | 15.0~28.0 | 荷斯坦奶牛Holstein cow | 母Female | 68.8 | Cr2O3 | [ |
EBF | 巴西Brazil (23°32′ S; 46°37′ W) | 1000 | 15.0~28.0 | 荷斯坦奶牛Holstein cow | 母Female | 71.8 | TiO2 | [ |
TTS | 内蒙古Inner Mongolia (43°39′ N; 116°43′ E) | 296 | 1.4 | 蒙古羊Mongolian sheep | 母Female | 56.3 | TiO2 | [ |
SBS | 法国雷恩市Rennes, France (48°11′ N; 1°71′ W) | 630 | 10.0 | 荷斯坦奶牛Holstein cow | 母Female | 72.6 | Cr2O3 | [ |
TSS | 墨西哥Mexico (19°24′ N; 99°9′ W) | 800~1000 | 10.0~26.0 | Pelibuey羊Pelibuey sheep | - | 83.0 | Cr2O3 | [ |
TSS | 墨西哥Mexico (19°24′ N; 99°9′ W) | 800~1000 | 10.0~26.0 | Pelibuey羊Pelibuey sheep | - | 81.0 | TiO2 | [ |
SSF | 澳大利亚棉花山Cotton hill, Australia (27°28′ S; 153°2′ E) | 1153 | 20.5 | 美利奴×多塞特Merino×Dorset | 公Male | 68.2 | Cr-EDTA | [ |
EBF | 西班牙萨拉戈萨Zaragoza, Spain (43°21′ N; -6°53′ W) | 300~800 | 10.0~25.0 | 荷斯坦×弗里赛Holstein×Frisai | 公Male | 72.0 | Cr2O3 | [ |
类型 Type | 地点 Site | AMP (mm) | AMT (℃) | 家畜品种 Breeds | 性别 Gender | OMD (%) | 参考文献 References |
---|---|---|---|---|---|---|---|
TDB | 塞内加尔Senegal (15°58′ N; 15°10′ W) | 300.0 | 29.0 | Toronke绵羊Toronke sheep | - | 59.0 | [ |
TDB | 塞内加尔Senegal (15°58′ N; 15°10′ W) | 300.0 | 29.0 | 瘤牛Zebu | - | 65.0 | [ |
EBF | 让布卢Gembloux (53°32′ N; 4°40′ E) | 600.0 | 7.2~25.0 | 荷斯坦奶牛Holstein cow | 母Female | 69.8 | [ |
TXF | 加勒比Caribbean (16°17′ N; 61°31′ W) | 1116.0 | 25.0 | Martinik羊Martinik sheep | 母Female | 64.4 | [ |
TXF | 加勒比Caribbean (16°17′ N; 61°31′ W) | 1116.0 | 15.3 | 克里奥尔牛Creole cow | - | 64.0 | [ |
WFG | 法国农科院试验农场Institut Nationale de la Recherche Agronomigue (43°55′ N; 3°5′ E) | 775.1 | 10.5 | Romane羊Romane sheep | 母Female | 59.5 (DMD) | [ |
TSS | 卡梅尔山脊Carmel ridge (32°32′ N; 34°52′ E) | 600.0 | - | 大马士革山羊Damascene goat | - | 56.4 (DMD) | [ |
TSS | 卡梅尔山脊Carmel ridge (32°32′ N; 34°52′ E) | 600.0 | - | 大马士革山羊Damascene goat | - | 59.0 | [ |
表5 NIRS测定家畜养分消化率
Table 5 Determination of nutrient digestibility of animals by NIRS method
类型 Type | 地点 Site | AMP (mm) | AMT (℃) | 家畜品种 Breeds | 性别 Gender | OMD (%) | 参考文献 References |
---|---|---|---|---|---|---|---|
TDB | 塞内加尔Senegal (15°58′ N; 15°10′ W) | 300.0 | 29.0 | Toronke绵羊Toronke sheep | - | 59.0 | [ |
TDB | 塞内加尔Senegal (15°58′ N; 15°10′ W) | 300.0 | 29.0 | 瘤牛Zebu | - | 65.0 | [ |
EBF | 让布卢Gembloux (53°32′ N; 4°40′ E) | 600.0 | 7.2~25.0 | 荷斯坦奶牛Holstein cow | 母Female | 69.8 | [ |
TXF | 加勒比Caribbean (16°17′ N; 61°31′ W) | 1116.0 | 25.0 | Martinik羊Martinik sheep | 母Female | 64.4 | [ |
TXF | 加勒比Caribbean (16°17′ N; 61°31′ W) | 1116.0 | 15.3 | 克里奥尔牛Creole cow | - | 64.0 | [ |
WFG | 法国农科院试验农场Institut Nationale de la Recherche Agronomigue (43°55′ N; 3°5′ E) | 775.1 | 10.5 | Romane羊Romane sheep | 母Female | 59.5 (DMD) | [ |
TSS | 卡梅尔山脊Carmel ridge (32°32′ N; 34°52′ E) | 600.0 | - | 大马士革山羊Damascene goat | - | 56.4 (DMD) | [ |
TSS | 卡梅尔山脊Carmel ridge (32°32′ N; 34°52′ E) | 600.0 | - | 大马士革山羊Damascene goat | - | 59.0 | [ |
类型 Type | 地点 Site | AMP (mm) | AMT (℃) | 家畜品种 Breeds | 性别 Gender | DMD (%) | CPD (%) | NDF/ADF (%) | 参考文献References |
---|---|---|---|---|---|---|---|---|---|
TSS | 拉潘帕Rapanpa (36°46′ S; 64°16′ W) | 900.0 | 10.0~26.0 | Pampinta羊 Pampinta sheep | 公Male | 40.10 | - | - | [ |
TCG | 爱尔兰Ireland (53°23′ N; 8°6′ W) | 750.0~1000.0 | 15.5 | 羊Sheep | 阉羊 Wether | 75.50 | - | - | [ |
TCG | 爱尔兰Ireland (53°23′ N; 8°6′ W) | 750.0~1000.0 | 15.5 | 牛Cow | - | 74.70 | - | - | [ |
TRF | 巴伊亚Bahia (8°6′ S; 37°5′ W) | 1950.0 | 24.5 | 波尔山羊 Boer goat | - | 59.90 (OMD) | - | - | [ |
TCG | 爱尔兰Ireland (52°9′ N; 8°15′ W) | 1000.0~1200.0 | 14.5 | 羊Sheep | 公Male | 76.50 | - | 76.90/63.30 | [ |
- | - | 89.0 | 8.3 | 湖羊×小尾寒羊Hu sheep×Small-tailed Han sheep | 公Male | 79.40 | - | - | [ |
FAM | 西藏Tibet (29°46′ N; 94°44′ E) | 361.6 | 0.6~3.8 | 高山美利奴 Alpine Merino | 公Male | 62.94 | 84.95 | 60.70/64.08 | [ |
- | - | 450.0 | 17.5 | 牛Cow | 公Male | 66.30 | - | - | [ |
- | - | 450.0 | 17.5 | 牛Cow | 公Male | 49.40 | - | - | [ |
表6 体外产气法测定家畜养分消化率
Table 6 Determination of nutrient digestibility of animals by in vitro gas production method
类型 Type | 地点 Site | AMP (mm) | AMT (℃) | 家畜品种 Breeds | 性别 Gender | DMD (%) | CPD (%) | NDF/ADF (%) | 参考文献References |
---|---|---|---|---|---|---|---|---|---|
TSS | 拉潘帕Rapanpa (36°46′ S; 64°16′ W) | 900.0 | 10.0~26.0 | Pampinta羊 Pampinta sheep | 公Male | 40.10 | - | - | [ |
TCG | 爱尔兰Ireland (53°23′ N; 8°6′ W) | 750.0~1000.0 | 15.5 | 羊Sheep | 阉羊 Wether | 75.50 | - | - | [ |
TCG | 爱尔兰Ireland (53°23′ N; 8°6′ W) | 750.0~1000.0 | 15.5 | 牛Cow | - | 74.70 | - | - | [ |
TRF | 巴伊亚Bahia (8°6′ S; 37°5′ W) | 1950.0 | 24.5 | 波尔山羊 Boer goat | - | 59.90 (OMD) | - | - | [ |
TCG | 爱尔兰Ireland (52°9′ N; 8°15′ W) | 1000.0~1200.0 | 14.5 | 羊Sheep | 公Male | 76.50 | - | 76.90/63.30 | [ |
- | - | 89.0 | 8.3 | 湖羊×小尾寒羊Hu sheep×Small-tailed Han sheep | 公Male | 79.40 | - | - | [ |
FAM | 西藏Tibet (29°46′ N; 94°44′ E) | 361.6 | 0.6~3.8 | 高山美利奴 Alpine Merino | 公Male | 62.94 | 84.95 | 60.70/64.08 | [ |
- | - | 450.0 | 17.5 | 牛Cow | 公Male | 66.30 | - | - | [ |
- | - | 450.0 | 17.5 | 牛Cow | 公Male | 49.40 | - | - | [ |
家畜种类Breeds | 预测方程Prediction equation | R2 | 参考文献References |
---|---|---|---|
杂交公羊Crossbred rams | 0.956 | [ | |
特塞尔绵羊Texel sheep | 0.144 | [ | |
藏羊Tibetan sheep | 0.660 | [ | |
甘肃高山细毛羊 Gansu alpine fine-wool sheep | 0.701 | [ | |
马Horse | 0.878 | [ | |
奶牛Cow | 0.640 | [ | |
绵羊Sheep | 0.380 | [ |
表7 牧草品质预测家畜养分消化率
Table 7 Prediction of nutrient digestibility of animals by forage quality
家畜种类Breeds | 预测方程Prediction equation | R2 | 参考文献References |
---|---|---|---|
杂交公羊Crossbred rams | 0.956 | [ | |
特塞尔绵羊Texel sheep | 0.144 | [ | |
藏羊Tibetan sheep | 0.660 | [ | |
甘肃高山细毛羊 Gansu alpine fine-wool sheep | 0.701 | [ | |
马Horse | 0.878 | [ | |
奶牛Cow | 0.640 | [ | |
绵羊Sheep | 0.380 | [ |
测定方法 Determination method | 适用性Applicability | 准确性Accuracy | 成本Cost | 尺度Scale | 特殊性Particularity | |||||
---|---|---|---|---|---|---|---|---|---|---|
放牧 Grazing | 舍饲 Feeding | 放牧 Grazing | 舍饲 Feeding | 放牧 Grazing | 舍饲 Feeding | 放牧 Grazing | 舍饲 Feeding | 放牧 Grazing | 舍饲 Feeding | |
全收粪法Total fecal collection method | ++ | +++ | +++ | +++ | +++ | ++ | + | ++ | 影响放牧行为Affecting grazing behavior | - |
烷烃法Alkane method | +++ | +++ | ++ | +++ | + | + | +++ | ++ | 饲喂烷烃胶囊Feeding alkane capsules | 饲喂烷烃胶囊Feeding alkane capsules |
酸不溶灰分法AIA method | ++ | +++ | + | ++ | ++ | + | ++ | + | 嗜土行为Pedophilic behavior | - |
外源指示剂法Exogenous indicator method | + | ++ | ++ | +++ | ++ | + | ++ | ++ | 饲喂外源指示剂Feeding exogenous indicator | 饲喂外源指示剂Feeding exogenous indicator |
近红外光谱技术NIRS method | ++ | +++ | ++ | +++ | + | + | +++ | +++ | 代表性采食牧草Representative forage samples | - |
体外产气法In vitro gas production method | ++ | +++ | ++ | ++ | ++ | + | + | +++ | 代表性采食牧草Representative forage samples | - |
牧草品质预测法 Forage quality prediction method | ++ | +++ | + | ++ | + | + | +++ | +++ | 代表性采食牧草Representative forage samples | - |
气候预测法Climate prediction method | +++ | + | + | + | + | ++ | +++ | + | - | - |
表8 放牧家畜养分消化率测定方法的比较
Table 8 Comparison of the methods for determination of nutrient digestibility in grazing animals
测定方法 Determination method | 适用性Applicability | 准确性Accuracy | 成本Cost | 尺度Scale | 特殊性Particularity | |||||
---|---|---|---|---|---|---|---|---|---|---|
放牧 Grazing | 舍饲 Feeding | 放牧 Grazing | 舍饲 Feeding | 放牧 Grazing | 舍饲 Feeding | 放牧 Grazing | 舍饲 Feeding | 放牧 Grazing | 舍饲 Feeding | |
全收粪法Total fecal collection method | ++ | +++ | +++ | +++ | +++ | ++ | + | ++ | 影响放牧行为Affecting grazing behavior | - |
烷烃法Alkane method | +++ | +++ | ++ | +++ | + | + | +++ | ++ | 饲喂烷烃胶囊Feeding alkane capsules | 饲喂烷烃胶囊Feeding alkane capsules |
酸不溶灰分法AIA method | ++ | +++ | + | ++ | ++ | + | ++ | + | 嗜土行为Pedophilic behavior | - |
外源指示剂法Exogenous indicator method | + | ++ | ++ | +++ | ++ | + | ++ | ++ | 饲喂外源指示剂Feeding exogenous indicator | 饲喂外源指示剂Feeding exogenous indicator |
近红外光谱技术NIRS method | ++ | +++ | ++ | +++ | + | + | +++ | +++ | 代表性采食牧草Representative forage samples | - |
体外产气法In vitro gas production method | ++ | +++ | ++ | ++ | ++ | + | + | +++ | 代表性采食牧草Representative forage samples | - |
牧草品质预测法 Forage quality prediction method | ++ | +++ | + | ++ | + | + | +++ | +++ | 代表性采食牧草Representative forage samples | - |
气候预测法Climate prediction method | +++ | + | + | + | + | ++ | +++ | + | - | - |
1 | Hou F J, Wang C M, Lou S N, et al. Rangeland productivity in China. Strategic Study of CAE, 2016, 18(1): 80-93. |
侯扶江, 王春梅, 娄珊宁, 等. 我国草原生产力. 中国工程科学, 2016, 18(1): 80-93. | |
2 | Hou F J, Yang Z Y. Effects of grazing of livestock on grassland. Acta Ecologica Sinica, 2006, 26(1): 244-264. |
侯扶江, 杨中艺. 放牧对草地的作用. 生态学报, 2006, 26(1): 244-264. | |
3 | Beecher M, Baumont R, O’donovan M, et al. Effects of harvesting perennial ryegrass at different levels of herbage mass on voluntary intake and in vivo digestibility in sheep. Grass and Forage Science, 2018, 73(2): 553-561. |
4 | Marco M D, Miraglia N, Peiretti P G, et al. Apparent digestibility of wheat bran and extruded flax in horses determined from the total collection of feces and acid-insoluble ash as an internal marker. Animal, 2012, 6(2): 227-231. |
5 | Ren J Z, Hu Z Z, Hou F J, et al. A grassland classification system and its application in China. The Rangeland Journal, 2008, 30(2): 199-209. |
6 | Ko Y D, Kim J H, Adesogan A T, et al. The effect of replacing rice straw with dry wormwood on intake, digestibility, nitrogen balance and ruminal fermentation characteristics in sheep. Animal Feed Science & Technology, 2006, 125(1/2): 99-110. |
7 | Hou F J, Nan Z B, Ren J Z. Integrated crop-livestock production system. Acta Prataculturae Sinica, 2009, 18(5): 211-234. |
侯扶江, 南志标, 任继周. 作物-家畜综合生产系统. 草业学报, 2009, 18(5): 211-234. | |
8 | Hou F J. Research on grassland productivity and food safety in China. Beijing: Science Press, 2017. |
侯扶江. 中国草原生产力与食物安全研究. 北京: 科学出版社, 2017. | |
9 | Mayes R W, Lamb C S, Colgrove P M, et al. The use of dosed herbage n-alkanes as markers for the determination of herbage intake. The Journal of Agricultural Science, 1986, 107(1): 161-170. |
10 | Norris K H, Barnes R F, Moore J E, et al. Predicting forage quality by infrared reflectance spectroscopy. Journal of Animal Science, 1976, 43: 889-897. |
11 | Jin Y S, Hou F J. Determination of feed intake of grazing livestock. Chinese Journal of Animal Nutrition, 2020, 32(7): 3012-3030. |
金有顺, 侯扶江. 放牧家畜采食量的测定. 动物营养学报, 2020, 32(7): 3012-3030. | |
12 | Ferri, Carlos M. Comparison of four techniques to estimate forage intake by rams grazing on a Panicum coloratum L. pasture. Chilean Journal of Agricultural Research, 2008, 68(3): 248-256. |
13 | Kobayashi N, Hou F J, Tsunekawa A, et al. Effects of substituting alfalfa hay for concentrate on energy utilization and feeding cost of crossbred simmental male calves in Gansu province, China. Grassland Science, 2017, 63(4): 245-254. |
14 | Wang C M, Zhang C, Hou F J, et al. Increasing roughage quality by using alfalfa hay as a substitute for concentrate mitigates CH4 emissions and urinary N and ammonia excretion from dry ewes. Journal of Animal Physiology and Animal Nutrition, 2019, 104(5): 22-31. |
15 | Kobayashi N, Hou F J, Tsunekawa A, et al. Appropriate level of alfalfa hay in diets for rearing Simmental crossbred calves in dryland China. Asian Australasian Journal of Animal Sciences, 2018, 31(12): 1881-1889. |
16 | Liu X L, Liu F Y, Yan T H, et al. Cistanche deserticola addition improves growth, digestibility, and metabolism of sheep fed on fresh forage from alfalfa/tall fescue pasture. Animals, 2020, 10(4): 668. |
17 | Feng X W, Zhang L, Zheng Z C, et al. Study on the forage intake and dry-matter digestion coefficient in the different season in HaiNan QingHai. China Herbivores Science, 2005, 25(5): 18-20. |
冯昕炜, 张力, 郑中朝, 等. 青海海南不同季节牧场放牧绵羊采食量与消化率的研究. 中国草食动物科学, 2005, 25(5): 18-20. | |
18 | Rodrigues L M, Almeida F Q D, Pereira M B, et al. Roughage digestion evaluation in horses with total feces collection and mobile nylon bags. Revista Brasilra De Zootecnia, 2012, 41(2): 341-346. |
19 | Yin G M. Effects of different grassland type on meat performance and quality of grazing sheep. Hohhot: Inner Mongolia Agricultural University, 2009. |
殷国梅. 不同类型草地对放牧绵羊产肉性能及品质的影响. 呼和浩特: 内蒙古农业大学, 2009. | |
20 | De Souza J, Batistel F, Welter K C, et al. Evaluation of external markers to estimate fecal excretion, intake, and digestibility in dairy cows. Tropical Animal Health & Production, 2015, 47(1): 265-268. |
21 | Guzman-Cedillo A E, Corona L, Castrejon-Pineda F, et al. Evaluation of chromium oxide and titanium dioxide as inert markers for calculating apparent digestibility in sheep. Journal of Applied Animal Research, 2017, 45(1): 275-279. |
22 | Jiao T, Wu T C, Wu J P, et al. A comparative study on digestibility and feed intake of Tibetan sheep of different types. Acta Prataculturae Sinica, 2019, 28(5): 102-110. |
焦婷, 吴铁成, 吴建平, 等. 不同类型藏羊消化率与采食量的比较研究. 草业学报, 2019, 28(5): 102-110. | |
23 | Fers S S, Bulang M, Meyer U, et al. Suitability of n-alkanes and chromium (Ⅲ) oxide as digestibility markers in calves at the end of the milk feeding period supplemented with a prebiotic. Animal Nutrition, 2018, 4(1): 84-89. |
24 | Boland H T, Scaglia G, Notter D R, et al. Diet composition and dry matter intake of beef steers grazing tall fescue and alfalfa. Crop Science, 2012, 52(6): 2817. |
25 | Narvaez N, Brosh A, Pittroff W, et al. Use of n-alkanes to estimate seasonal diet composition and intake of sheep and goats grazing in California chaparral. Small Ruminant Research, 2012, 104(1/2/3): 129-138. |
26 | Charmley E, Ouellet D R, Veira D M, et al. Estimation of intake and digestibility of silage by beef steers using a controlled release capsule of n-alkanes. Canadian Journal of Animal Science, 2003, 83(4): 761-768. |
27 | Konagh G, Beck M R, Kelly F, et al. A comparison of methods for estimating forage intake, digestibility, and fecal output in red deer (Cervus elaphus). Journal of Animal Science, 2020, 98(3): 1-7. |
28 | Zhang K D. Study on feeding preference, intake and nutrients digestibility of cashmere goats in Naqu area. Xianyang: Northwest A&F University, 2019. |
张开栋. 那曲地区放牧绒山羊采食习性、采食量和消化率研究. 咸阳: 西北农林科技大学, 2019. | |
29 | Morais J A S, Berchielli T T, Vega A D, et al. The validity of n-alkanes to estimate intake and digestibility in Nellore beef cattle fed a tropical grass (Brachiaria brizantha cv. Marandu). Livestock Science, 2011, 135(2/3): 184-192. |
30 | Castelan-Ortega O A, Estrada-Flores J G, Smith D G, et al. Use of n-alkanes for estimation of voluntary intake and digestibility in donkeys (Equus asinus). Journal of Animal & Feed Sciences, 2007, 16(2): 307-312. |
31 | Ferreira L M M, Oliván M, Rodrigues M A M, et al. Estimation of feed intake by cattle using controlled-release capsules containing n-alkanes or chromium sesquioxide. The Journal of Agricultural Science, 2004, 142(2): 225-234. |
32 | Li C Q, Alatengdalai, Xue S Y. Estimation of herbage intake and digestibility of grazing sheep in Zhenglan Banner of Inner Mongolia by using n-alkanes. Animal Nutrition, 2015, 1(4): 324-328. |
33 | Reis S F, Huntington G, Hopkins M, et al. Herbage selection, intake and digestibility in grazing beef cattle. Livestock Science, 2015, 174: 39-45. |
34 | Schaafstra F J, Doorn D A V, Schonewille J T, et al. Evaluation of ADL, AIA and TiO2 as markers to determine apparent digestibility in ponies fed increasing proportions of concentrate. EAAP Scientific Series, 2012, 132(1): 121-124. |
35 | Lee C, Hristov A N. Short communication: Evaluation of acid-insoluble ash and indigestible neutral detergent fiber as total-tract digestibility markers in dairy cows fed corn silage-based diets. Journal of Dairy Science, 2013, 96(8): 5295-5299. |
36 | Ouyang Y X, Wang Q F, Wang J, et al. Comparison of testing daily intake and dry-matter digestion coefficient of Tibetan goat. Journal of Southwest University for Nationalities (Natural Science Edition), 2000, 26(2): 188-191. |
欧阳熙, 王茜飞, 王杰, 等. 藏山羊放牧采食量及牧草干物质消化率测定方法的比较研究. 西南民族大学学报(自然科学版), 2000, 26(2): 188-191. | |
37 | Chemmam M, Moujahed N, Ouzrout R, et al. Seasonal variations of chemical composition, intake and digestibility by ewes of natural pasture in the south-eastern regions of Algeria. Mediterranean Seminars, 2009, 85: 123-127. |
38 | Min B R, Solaiman S. Prediction of feed intake and its relationships with chemical composition of diets in goats consuming concentrate, bahiagrass pasture and mimosa browse. Open Journal of Animal Sciences, 2015, 5(3): 283-293. |
39 | Jurjanz S, Feidt C, Pérez-Prieto L A, et al. Soil intake of lactating dairy cows in intensive strip grazing systems. Animal, 2012, 6(8): 1350-1359. |
40 | Bergero D, Préfontaine C, Miraglia N, et al. A comparison between the 2N and 4N HCl acid-insoluble ash methods for digestibility trials in horses. Animal, 2009, 3(12): 1728-1732. |
41 | Sun D F. Study of supplementary on grazing beef cattle in Deyeuxia angustifolia meadow Sanjiang plain in four seasons. Harbin: Northeast Agricultural University, 2013. |
孙东峰. 三江平原小叶章草甸放牧肉牛四季补饲的研究. 哈尔滨: 东北农业大学, 2013. | |
42 | Bösing B M, Susenbeth A, Hao J, et al. Effect of concentrate supplementation on herbage intake and live weight gain of sheep grazing a semi-arid grassland steppe of North-Eastern Asia in response to different grazing management systems and intensities. Livestock Science, 2014, 165: 157-166. |
43 | Delagarde R, Pérez-Ramírez E, Peyraud J L, et al. Ytterbium oxide has the same accuracy as chromic oxide for estimating variations of faecal dry matter output in dairy cows fed a total mixed ration at two feeding levels. Animal Feed Science and Technology, 2010, 161(3/4): 121-131. |
44 | Vega A D, Poppi D P. Extent of digestion and rumen condition as factors affecting passage of liquid and digesta particles. The Journal of Agricultural Science, 1997, 128(2): 207-215. |
45 | Alami A Al, Gimeno A, Vega A de, et al. Effects of Cr2O3 labelling dose, and of faeces sampling schedule, on faecal Cr concentration and on digestibility estimation in cattle fed high-concentrate diets. Livestock Science, 2014, 168: 53-59. |
46 | Assouma M H, Lecomte P, Hiernaux P, et al. How to better account for livestock diversity and fodder seasonality in assessing the fodder intake of livestock grazing semi-arid sub-Saharan Africa rangelands. Livestock Science, 2018, 216: 16-23. |
47 | Decruyenaere V, Froidmont E, Bartiaux-Thill N, et al. Faecal near-infrared reflectance spectroscopy (NIRS) compared with other techniques for estimating the in vivo digestibility and dry matter intake of lactating grazing dairy cows. Animal Feed Science and Technology, 2012, 173(3/4): 220-234. |
48 | Boval M, Ortega-Jimenez E, Fanchone A, et al. Diet attributes of lactating ewes at pasture using faecal NIRS and relationship to pasture characteristics and milk production. The Journal of Agricultural Science, 2010, 148(4): 477-485. |
49 | Boval M, Coates D B, Lecomte P, et al. Faecal near infrared reflectance spectroscopy (NIRS) to assess chemical composition, in vivo digestibility and intake of tropical grass by Creole cattle. Animal Feed Science & Technology, 2004, 114(1/2/3/4): 19-29. |
50 | Hassoun P, Bastianelli D, Foulquié D, et al. Polyethylene glycol marker measured with NIRS gives a reliable estimate of the rangeland intake of grazing sheep. Animal, 2016, 10(5): 771-778. |
51 | Glasser T, Landau S, Ungar E D, et al. A fecal near-infrared reflectance spectroscopy-aided methodology to determine goat dietary composition in a Mediterranean shrubland. Journal of Animal Science, 2008, 86(6): 1345-1356. |
52 | Garry B, Kennedy E, Baumont R, et al. Comparison of sheep and dairy cows for in vivo digestibility of perennial ryegrass. Animal, 2021, 15(6): 100258. |
53 | Wang C M, Hou F J, Wanapat M, et al. Assessment of cutting time on nutrient values, in vitro fermentation and methane production among three ryegrass cultivars. Asian-Australasian Journal of Animal Sciences, 2020, 33(8): 1242-1251. |
54 | Zhang S M. Research on grazing nutrition monitoring and energy and protein nutrition requirements of apline merino rams. Lanzhou: Lanzhou University, 2019. |
张树淼. 高山美利奴种公羊放牧营养监测及其能量与蛋白质营养需要研究. 兰州: 兰州大学, 2019. | |
55 | Murillo M, Herrera E, Reyes O, et al. Use in vitro gas production technique for assessment of nutritional quality of diets by range steers. African Journal of Agricultural Research, 2011, 6(11): 2522-2526. |
56 | Liu J, Diao Q Y, Zhao Y G, et al. Prediction of nutrient digestibility and energy concentrations using chemical compositions in meat sheep feeds. Acta Veterinaria et Zootechnica Sinica, 2012, 43(8): 1230-1238. |
刘洁, 刁其玉, 赵一广, 等. 肉用绵羊饲料养分消化率和有效能预测模型的研究. 畜牧兽医学报, 2012, 43(8): 1230-1238. | |
57 | Andueza D, Picard F, Pradel P, et al. Reproducibility and repeatability of forage in vivo digestibility and voluntary intake of permanent grassland forages in sheep. Livestock Science, 2011, 140(1/2/3): 42-48. |
58 | Yang C T, Gao P, Hou F J, et al. Relationship between chemical composition of native forage and nutrient digestibility by Tibetan sheep on the Qinghai-Tibetan Plateau. Journal of Animal Science, 2018, 96(4): 1140-1149. |
59 | Yao X X. Studies on response mechanism of plant community and livestock to grazing pressure in an alpine meadow. Lanzhou: Gansu Agricultural University, 2019. |
姚喜喜. 高寒草甸植物群落和家畜对放牧压力的响应机制研究. 兰州: 甘肃农业大学, 2019. | |
60 | Martin R W, Andrieu J, Jestin M, et al. Prediction of organic matter digestibility of forages in horses using different chemical, biological and physical methods. EAAP Scientific Series, 2012, 132(1): 83-96. |
61 | Stergiadis S, Allen M, Chen X J, et al. Prediction of nutrient digestibility and energy concentrations in fresh grass using nutrient composition. Journal of Dairy Science, 2015, 98(5): 3257-3273. |
62 | Peripolli V, Ênio R P, Barcellos O J J. Fecal nitrogen to estimate intake and digestibility in grazing ruminants. Animal Feed Science and Technology, 2011, 163(2/3/4): 170-176. |
63 | Grant K, Kreyling J, Dienstbach L F H, et al. Water stress due to increased intra-annual precipitation variability reduced forage yield but raised forage quality of a temperate grassland agriculture. Ecosystems & Environment, 2014, 186: 11-22. |
64 | Cain Iii J W, Gedir J V, Marshal J P, et al. Extreme precipitation variability, forage quality and large herbivore diet selection in arid environments. Oikos, 2017, 126(10): 1459-1471. |
65 | Jarillo-Rodríguez J, Castillo-Gallegos E, Avilés R Y L, et al. Milk production, grazing behaviour and biomass quality in native tropical pastures grazed to different stocking rate during two years. Tropical and Subtropical Agroecosystems, 2018, 21(3): 373-386. |
[1] | 秦格霞, 吴静, 李纯斌, 沈帅杰, 李怀海, 杨道涵, 焦美榕, 祁琦. 不同草地类型WOFOST模型参数敏感性分析[J]. 草业学报, 2022, 31(5): 13-25. |
[2] | 秦格霞, 吴静, 李纯斌, 吉珍霞, 邱政超, 李颖. 基于机器学习算法的天祝藏族自治县草地地上生物量反演[J]. 草业学报, 2022, 31(4): 177-188. |
[3] | 张彩荷, 李纯斌, 吴静. 基于草原综合顺序分类法的中国山地草地亚类分类研究[J]. 草业学报, 2022, 31(3): 16-25. |
[4] | 刘启宇, 云岚, 陈逸凡, 郭宏宇, 李珍, 高志琦, 王俊, 石凤翎. 苜蓿—禾草混播草地牧草产量及种间竞争关系的动态研究[J]. 草业学报, 2022, 31(3): 181-191. |
[5] | 周磊, 魏雪, 王长庭, 吴鹏飞. 高寒草地小型土壤节肢动物群落特征及其对草地退化的指示作用[J]. 草业学报, 2022, 31(3): 34-46. |
[6] | 赵利清, 郝志刚, 崔笑岩, 彭向永. 赤霉素及其抑制剂调控草地早熟禾生长及赤霉素相关基因表达的研究[J]. 草业学报, 2022, 31(3): 85-91. |
[7] | 王亚晖, 唐文家, 李森, 赵鸿雁, 谢家丽, 马超, 颜长珍. 青海省草地生产力变化及其驱动因素[J]. 草业学报, 2022, 31(2): 1-13. |
[8] | 孙彩彩, 董全民, 刘文亭, 冯斌, 时光, 刘玉祯, 俞旸, 张春平, 张小芳, 李彩弟, 杨增增, 杨晓霞. 放牧方式对青藏高原高寒草地土壤节肢动物群落结构和多样性的影响[J]. 草业学报, 2022, 31(2): 62-75. |
[9] | 张仁平, 郭靖, 马晓芳, 郭伟勇. 基于MODIS数据的新疆草地物候提取方法及变化趋势分析[J]. 草业学报, 2022, 31(1): 1-12. |
[10] | 王斌, 李满有, 王欣盼, 董秀, 庞军宝, 兰剑. 深松浅旋对半干旱区退化紫花苜蓿人工草地改良效果研究[J]. 草业学报, 2022, 31(1): 107-117. |
[11] | 韩小雨, 郭宁, 李冬冬, 谢明阳, 焦峰. 氮添加对内蒙古不同草原生物量及土壤碳氮变化特征的影响[J]. 草业学报, 2022, 31(1): 13-25. |
[12] | 马文明, 刘超文, 周青平, 邓增卓玛, 唐思洪, 迪力亚尔·莫合塔尔null, 侯晨. 高寒草地灌丛化对土壤团聚体生态化学计量学及酶活性的影响[J]. 草业学报, 2022, 31(1): 57-68. |
[13] | 汪精海, 李广, 银敏华, 齐广平, 康燕霞, 马彦麟. 调亏灌溉对高寒荒漠区人工混播草地土壤环境与牧草生长的影响[J]. 草业学报, 2022, 31(1): 95-106. |
[14] | 吴廷美, 林慧龙, 范迪, 籍常婷, 赵玉婷, 魏靖琼. 冻原高山草地牧户家畜养殖规模影响因素分析——以青海省为例[J]. 草业学报, 2021, 30(9): 117-126. |
[15] | 刘佳丽, 范建容, 张茜彧, 杨超, 徐富宝, 张晓雪, 梁博. 高寒草地生长季/非生长季植被盖度遥感反演[J]. 草业学报, 2021, 30(9): 15-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||