草业学报 ›› 2022, Vol. 31 ›› Issue (9): 13-25.DOI: 10.11686/cyxb2021447
收稿日期:
2021-12-01
修回日期:
2022-03-14
出版日期:
2022-09-20
发布日期:
2022-08-12
通讯作者:
李昌晓
作者简介:
Corresponding author. E-mail: lichangx@swu.edu.cn基金资助:
Li-miao ZHANG(), Xue TAN, Zhi DONG, Jie ZHENG, Zhong-xun YUAN, Chang-xiao LI()
Received:
2021-12-01
Revised:
2022-03-14
Online:
2022-09-20
Published:
2022-08-12
Contact:
Chang-xiao LI
摘要:
为评估入侵物种喜旱莲子草对城市河岸带物种组成和多样性的影响,采用样方法在三峡库区重庆主城河岸带对47个样点进行群落调查。结果显示:1)干流河岸带Patrick丰富度指数和Shannon-Wiener多样性指数显著低于支流河岸带,但干流河岸带Pielou均匀度指数显著高于支流河岸带,Simpson多样性指数在干流和支流河岸带之间差异不显著。2)随着喜旱莲子草入侵强度逐渐增大,干、支流河岸带Simpson多样性指数、Shannon-Wiener多样性指数以及Pielou均匀度指数均先升高后降低,且支流河岸带喜旱莲子草入侵阈值低于干流,而支流Patrick丰富度指数显著下降,但干流无显著变化。3)影响干流河岸带物种多样性的主要土壤因子为有机质、硝态氮和全氮;影响支流河岸带物种多样性的主要土壤因子为含水量、全氮和速效磷。4)喜旱莲子草的入侵在干流河岸带受速效钾、有机质和全氮影响较大,在支流河岸带受速效磷、速效钾和全氮影响较大。研究表明,喜旱莲子草更容易入侵土壤养分含量高的生境;其轻度入侵可促进城市河岸带物种多样性,中、重度入侵会降低河岸带物种多样性,尤其是支流河岸带,因此,建议加强对该入侵物种的生态监测并制定合理的防治措施,以遏制其入侵蔓延。
张丽苗, 谭雪, 董智, 郑杰, 袁中勋, 李昌晓. 喜旱莲子草入侵对三峡库区重庆主城河岸带植物多样性的影响[J]. 草业学报, 2022, 31(9): 13-25.
Li-miao ZHANG, Xue TAN, Zhi DONG, Jie ZHENG, Zhong-xun YUAN, Chang-xiao LI. Effects of Alternanthera philoxeroides invasion on plant diversity in the riparian zones of downtown Chongqing in the Three Gorges Reservoir area[J]. Acta Prataculturae Sinica, 2022, 31(9): 13-25.
序号Number | 名称Name | 重要值IV |
---|---|---|
1 | 牛鞭草H. altissima | 14.45 |
2 | 狗牙根C. dactylon | 8.80 |
3 | 喜旱莲子草A. philoxeroides | 4.17 |
4 | 葎草Humulus scandens | 3.47 |
5 | 酸模叶蓼Polygonum lapathifolium | 1.40 |
6 | 芦竹Arundo donax | 1.03 |
7 | 双穗雀稗Paspalum paspaloides | 0.51 |
8 | 蚕茧草Polygonum japonicum | 0.49 |
9 | 香附子Cyperus rotundus | 0.41 |
10 | 苍耳Xanthium sibiricum | 0.36 |
11 | 狗尾草Setaria viridis | 0.25 |
12 | 长芒稗Echinochloa caudata | 0.24 |
13 | 芦苇Phragmites australis | 0.18 |
14 | 马唐Digitaria sanguinalis | 0.16 |
15 | 钻叶紫菀Aster subulatus | 0.10 |
16 | 木贼Equisetum hyemale | 0.07 |
17 | 甜根子草Saccharum spontaneum | 0.07 |
18 | 水蓼Polygonum hydropiper | 0.05 |
19 | 桑Morus alba | 0.04 |
20 | 丁香蓼Ludwigia prostrata | 0.03 |
表1 干流河岸带调查物种名录
Table 1 Surveyed species list in the main waterway riparian zone
序号Number | 名称Name | 重要值IV |
---|---|---|
1 | 牛鞭草H. altissima | 14.45 |
2 | 狗牙根C. dactylon | 8.80 |
3 | 喜旱莲子草A. philoxeroides | 4.17 |
4 | 葎草Humulus scandens | 3.47 |
5 | 酸模叶蓼Polygonum lapathifolium | 1.40 |
6 | 芦竹Arundo donax | 1.03 |
7 | 双穗雀稗Paspalum paspaloides | 0.51 |
8 | 蚕茧草Polygonum japonicum | 0.49 |
9 | 香附子Cyperus rotundus | 0.41 |
10 | 苍耳Xanthium sibiricum | 0.36 |
11 | 狗尾草Setaria viridis | 0.25 |
12 | 长芒稗Echinochloa caudata | 0.24 |
13 | 芦苇Phragmites australis | 0.18 |
14 | 马唐Digitaria sanguinalis | 0.16 |
15 | 钻叶紫菀Aster subulatus | 0.10 |
16 | 木贼Equisetum hyemale | 0.07 |
17 | 甜根子草Saccharum spontaneum | 0.07 |
18 | 水蓼Polygonum hydropiper | 0.05 |
19 | 桑Morus alba | 0.04 |
20 | 丁香蓼Ludwigia prostrata | 0.03 |
序号Number | 名称Name | 重要值IV | 序号Number | 名称Name | 重要值IV |
---|---|---|---|---|---|
1 | 喜旱莲子草A. philoxeroides | 27.05 | 39 | 打碗花Calystegia hederacea | 0.23 |
2 | 狗牙根C. dactylon | 14.22 | 40 | 反枝苋Amaranthus retroflexus | 0.21 |
3 | 牛鞭草H. altissima | 11.34 | 41 | 酢浆草Oxalis corniculata | 0.18 |
4 | 葎草H. scandens | 10.29 | 42 | 狼杷草Bidens tripartita | 0.18 |
5 | 稗Echinochloa crusgalli | 6.82 | 43 | 碎米莎草Cyperus iria | 0.18 |
6 | 鸭跖草Commelina communis | 3.99 | 44 | 地果Ficus tikoua | 0.15 |
7 | 水蓼P. hydropiper | 3.65 | 45 | 天胡荽Hydrocotyle sibthorpioides | 0.14 |
8 | 水芹Oenanthe javanica | 2.81 | 46 | 叶下珠Phyllanthus urinaria | 0.13 |
9 | 香附子C. rotundus | 2.47 | 47 | 长芒稗E. caudata | 0.13 |
10 | 钻叶紫菀A. subulatus | 2.07 | 48 | 蔊菜Rorippa indica | 0.12 |
11 | 马唐D. sanguinalis | 1.69 | 49 | 青蒿Artemisia caruifolia | 0.11 |
12 | 狗尾草S. viridis | 1.39 | 50 | 构树Broussonetia papyrifera | 0.10 |
13 | 苍耳X. sibiricum | 1.33 | 51 | 落花生Arachis hypogaea | 0.09 |
14 | 芦竹A. donax | 1.32 | 52 | 蚕茧草P. japonicum | 0.07 |
15 | 艾蒿Artemisia argyi | 1.26 | 53 | 木耳菜Gynura cusimbua | 0.07 |
16 | 雾水葛Pouzolzia zeylanica | 0.86 | 54 | 薯蓣Dioscorea polystachya | 0.07 |
17 | 牛筋草Eleusine indica | 0.79 | 55 | 红薯Ipomoea batatas | 0.06 |
18 | 鳢肠Eclipta prostrata | 0.73 | 56 | 荔枝草Salvia plebeia | 0.06 |
19 | 千金子Leptochloa chinensis | 0.69 | 57 | 如意草Viola arcuata | 0.06 |
20 | 节节草Commelina diffusa | 0.67 | 58 | 紫苏Perilla frutescens | 0.06 |
21 | 丁香蓼L. prostrata | 0.66 | 59 | 车前草Plantago depressa | 0.05 |
22 | 乌蔹莓Cayratia japonica | 0.64 | 60 | 茄Solanum melongena | 0.04 |
23 | 白茅Imperata cylindrica | 0.63 | 61 | 空心菜Ipomoea aquatica | 0.04 |
24 | 芦苇P. australis | 0.58 | 62 | 龙葵Solanum nigrum | 0.04 |
25 | 苏铁蕨Eclipta prostrata | 0.57 | 63 | 甜根子草S. spontaneum | 0.04 |
26 | 酸模叶蓼P. lapathifolium | 0.54 | 64 | 旋鳞莎草Cyperus michelianus | 0.04 |
27 | 双穗雀稗P. paspaloides | 0.49 | 65 | 接骨草Sambucus javanica | 0.03 |
28 | 铁苋菜Acalypha australis | 0.49 | 66 | 牛至Origanum vulgare | 0.03 |
29 | 小蓬草Conyza canadensis | 0.47 | 67 | 山茱萸Cornus officinalis | 0.03 |
30 | 积雪草Centella asiatica | 0.44 | 68 | 问荆Equisetum arvense | 0.03 |
31 | 荩草Arthraxon hispidus | 0.36 | 69 | 苎麻Boehmeria nivea | 0.03 |
32 | 薄荷Mentha canadensis | 0.35 | 70 | 风轮菜Clinopodium chinense | 0.02 |
33 | 藿香蓟Ageratum conyzoides | 0.35 | 71 | 马齿苋Portulaca oleracea | 0.02 |
34 | 鬼针草Bidens pilosa | 0.33 | 72 | 毛酸浆Physalis pubescens | 0.02 |
35 | 凤尾蕨Pteris cretica | 0.29 | 73 | 糯米团Gonostegia hirta | 0.02 |
36 | 火炭母Polygonum chinense | 0.29 | 74 | 枇杷Eriobotrya japonica | 0.02 |
37 | 酸模Rumex acetosa | 0.24 | 75 | 桑M. alba | 0.02 |
38 | 细叶旱芹Apium leptophyllum | 0.24 | 76 | 石芥菜Mosla scabra | 0.02 |
表2 支流河岸带调查物种名录
Table 2 Surveyed species list in the tributary riparian zone
序号Number | 名称Name | 重要值IV | 序号Number | 名称Name | 重要值IV |
---|---|---|---|---|---|
1 | 喜旱莲子草A. philoxeroides | 27.05 | 39 | 打碗花Calystegia hederacea | 0.23 |
2 | 狗牙根C. dactylon | 14.22 | 40 | 反枝苋Amaranthus retroflexus | 0.21 |
3 | 牛鞭草H. altissima | 11.34 | 41 | 酢浆草Oxalis corniculata | 0.18 |
4 | 葎草H. scandens | 10.29 | 42 | 狼杷草Bidens tripartita | 0.18 |
5 | 稗Echinochloa crusgalli | 6.82 | 43 | 碎米莎草Cyperus iria | 0.18 |
6 | 鸭跖草Commelina communis | 3.99 | 44 | 地果Ficus tikoua | 0.15 |
7 | 水蓼P. hydropiper | 3.65 | 45 | 天胡荽Hydrocotyle sibthorpioides | 0.14 |
8 | 水芹Oenanthe javanica | 2.81 | 46 | 叶下珠Phyllanthus urinaria | 0.13 |
9 | 香附子C. rotundus | 2.47 | 47 | 长芒稗E. caudata | 0.13 |
10 | 钻叶紫菀A. subulatus | 2.07 | 48 | 蔊菜Rorippa indica | 0.12 |
11 | 马唐D. sanguinalis | 1.69 | 49 | 青蒿Artemisia caruifolia | 0.11 |
12 | 狗尾草S. viridis | 1.39 | 50 | 构树Broussonetia papyrifera | 0.10 |
13 | 苍耳X. sibiricum | 1.33 | 51 | 落花生Arachis hypogaea | 0.09 |
14 | 芦竹A. donax | 1.32 | 52 | 蚕茧草P. japonicum | 0.07 |
15 | 艾蒿Artemisia argyi | 1.26 | 53 | 木耳菜Gynura cusimbua | 0.07 |
16 | 雾水葛Pouzolzia zeylanica | 0.86 | 54 | 薯蓣Dioscorea polystachya | 0.07 |
17 | 牛筋草Eleusine indica | 0.79 | 55 | 红薯Ipomoea batatas | 0.06 |
18 | 鳢肠Eclipta prostrata | 0.73 | 56 | 荔枝草Salvia plebeia | 0.06 |
19 | 千金子Leptochloa chinensis | 0.69 | 57 | 如意草Viola arcuata | 0.06 |
20 | 节节草Commelina diffusa | 0.67 | 58 | 紫苏Perilla frutescens | 0.06 |
21 | 丁香蓼L. prostrata | 0.66 | 59 | 车前草Plantago depressa | 0.05 |
22 | 乌蔹莓Cayratia japonica | 0.64 | 60 | 茄Solanum melongena | 0.04 |
23 | 白茅Imperata cylindrica | 0.63 | 61 | 空心菜Ipomoea aquatica | 0.04 |
24 | 芦苇P. australis | 0.58 | 62 | 龙葵Solanum nigrum | 0.04 |
25 | 苏铁蕨Eclipta prostrata | 0.57 | 63 | 甜根子草S. spontaneum | 0.04 |
26 | 酸模叶蓼P. lapathifolium | 0.54 | 64 | 旋鳞莎草Cyperus michelianus | 0.04 |
27 | 双穗雀稗P. paspaloides | 0.49 | 65 | 接骨草Sambucus javanica | 0.03 |
28 | 铁苋菜Acalypha australis | 0.49 | 66 | 牛至Origanum vulgare | 0.03 |
29 | 小蓬草Conyza canadensis | 0.47 | 67 | 山茱萸Cornus officinalis | 0.03 |
30 | 积雪草Centella asiatica | 0.44 | 68 | 问荆Equisetum arvense | 0.03 |
31 | 荩草Arthraxon hispidus | 0.36 | 69 | 苎麻Boehmeria nivea | 0.03 |
32 | 薄荷Mentha canadensis | 0.35 | 70 | 风轮菜Clinopodium chinense | 0.02 |
33 | 藿香蓟Ageratum conyzoides | 0.35 | 71 | 马齿苋Portulaca oleracea | 0.02 |
34 | 鬼针草Bidens pilosa | 0.33 | 72 | 毛酸浆Physalis pubescens | 0.02 |
35 | 凤尾蕨Pteris cretica | 0.29 | 73 | 糯米团Gonostegia hirta | 0.02 |
36 | 火炭母Polygonum chinense | 0.29 | 74 | 枇杷Eriobotrya japonica | 0.02 |
37 | 酸模Rumex acetosa | 0.24 | 75 | 桑M. alba | 0.02 |
38 | 细叶旱芹Apium leptophyllum | 0.24 | 76 | 石芥菜Mosla scabra | 0.02 |
图2 干流和支流河岸带物种多样性及喜旱莲子草平均相对重要值比较A: Patrick丰富度指数Patrick richness index; B: Simpson多样性指数Simpson diversity index; C: Shannon-Wiener多样性指数Shannon-Wiener diversity index; D: Pielou均匀度指数Pielou evenness index; E: 喜旱莲子草相对重要值 Average relative IV of A. philoxeroides.不同小写字母表示在0.05水平上差异显著。Different lowercase letters indicate significant difference at the 0.05 level.
Fig.2 Comparison of species diversity and average relative importance value of A. philoxeroides between the main waterway and tributary riparian zone
图3 喜旱莲子草入侵强度对干流和支流河岸带物种多样性的影响黑色箭头的值是入侵强度的阈值。The values of black arrows are the thresholds of invasion intensity.
Fig.3 The effect of A. philoxeroides invasion on species diversity in the main waterway and tributary riparian zone
土壤因子 Soil factor | 干流河岸带 The main waterway riparian zone | 支流河岸带 The tributary riparian zone | 土壤因子 Soil factor | 干流河岸带 The main waterway riparian zone | 支流河岸带 The tributary riparian zone |
---|---|---|---|---|---|
全碳TC (g·kg-1) | 17.35±0.36a | 15.73±0.59a | 有机质SOM (%) | 0.70±0.07b | 1.70±0.09a |
全氮TN (g·kg-1) | 0.56±0.04b | 1.22±0.05a | 铵态氮NH4+-N (mg·kg-1) | 1.90±0.19b | 3.02±0.14a |
全磷TP (g·kg-1) | 0.59±0.01a | 0.60±0.02a | 硝态氮NO3--N (mg·kg-1) | 1.44±0.16a | 1.66±0.16a |
全钾TK (g·kg-1) | 10.02±0.14b | 12.45±0.18a | 速效磷AP (mg·kg-1) | 8.10±0.60b | 15.76±1.45a |
pH | 7.74±0.03a | 7.62±0.03b | 速效钾AK (mg·kg-1) | 26.56±1.26b | 41.74±3.25a |
容重BD (g·cm-3) | 1.15±0.04a | 1.24±0.03a | 土壤含水量SM (%) | 29.14±2.11a | 25.08±1.35a |
温度T (℃) | 33.46±0.59a | 31.10±0.22b | 氧化还原电位ORP (mV) | 206.69±7.30b | 230.33±4.12a |
表3 干流和支流河岸带土壤因子特征
Table 3 Characteristics of soil factors in the main waterway and tributary riparian zone
土壤因子 Soil factor | 干流河岸带 The main waterway riparian zone | 支流河岸带 The tributary riparian zone | 土壤因子 Soil factor | 干流河岸带 The main waterway riparian zone | 支流河岸带 The tributary riparian zone |
---|---|---|---|---|---|
全碳TC (g·kg-1) | 17.35±0.36a | 15.73±0.59a | 有机质SOM (%) | 0.70±0.07b | 1.70±0.09a |
全氮TN (g·kg-1) | 0.56±0.04b | 1.22±0.05a | 铵态氮NH4+-N (mg·kg-1) | 1.90±0.19b | 3.02±0.14a |
全磷TP (g·kg-1) | 0.59±0.01a | 0.60±0.02a | 硝态氮NO3--N (mg·kg-1) | 1.44±0.16a | 1.66±0.16a |
全钾TK (g·kg-1) | 10.02±0.14b | 12.45±0.18a | 速效磷AP (mg·kg-1) | 8.10±0.60b | 15.76±1.45a |
pH | 7.74±0.03a | 7.62±0.03b | 速效钾AK (mg·kg-1) | 26.56±1.26b | 41.74±3.25a |
容重BD (g·cm-3) | 1.15±0.04a | 1.24±0.03a | 土壤含水量SM (%) | 29.14±2.11a | 25.08±1.35a |
温度T (℃) | 33.46±0.59a | 31.10±0.22b | 氧化还原电位ORP (mV) | 206.69±7.30b | 230.33±4.12a |
图4 干流(a)和支流(b)河岸带物种多样性与环境因子的RDA分析红色箭头表示土壤因子,蓝色箭头表示物种多样性。The red arrows indicate soil factors, and the blue arrows indicate species diversity. BD: 容重Bulk density; SM: 土壤含水量Soil moisture; ORP: 氧化还原电位Oxidation-reduction potential; SOM: 有机质Soil organic matter; TN: 全氮Total nitrogen; TC: 全碳Total carbon; TP: 全磷Total phosphorus; TK: 全钾Total potassium; AP: 速效磷Available phosphorus; AK: 速效钾Available potassium; NH4+-N: 铵态氮Ammonium nitrogen; NO3--N: 硝态氮Nitrate nitrogen; T: 土壤温度Soil temperature; Cover: 喜旱莲子草盖度Species cover of A. philoxeroides.下同The same below.
Fig.4 RDA analysis of species diversity and environmental factors in the main waterway (a) and tributary (b) riparian zone
指标 Item | 干流河岸带The main waterway riparian zone | 指标 Item | 支流河岸带The tributary riparian zone | ||
---|---|---|---|---|---|
解释率Explains | 贡献率Contribution | 解释率Explains | 贡献率Contribution | ||
有机质SOM | 21.1 | 51.7 | 土壤含水量SM | 17.9 | 41.7 |
硝态氮NO3--N | 6.3 | 15.5 | 全氮TN | 9.6 | 22.4 |
全氮TN | 3.7 | 9.1 | 速效磷AP | 5.1 | 11.8 |
铵态氮NH4+-N | 2.3 | 5.5 | 硝态氮NO3--N | 4.4 | 10.2 |
速效钾AK | 1.4 | 3.3 | 氧化还原电位ORP | 3.0 | 6.9 |
pH | 1.2 | 3.0 | 铵态氮NH4+-N | 1.7 | 3.9 |
全磷TP | 1.2 | 2.9 | pH | 0.5 | 1.2 |
土壤含水量SM | 1.0 | 2.4 | 土壤温度T | 0.4 | 0.9 |
氧化还原电位ORP | 1.0 | 2.4 | 速效钾AK | 0.3 | 0.6 |
土壤温度T | 0.9 | 2.3 | 全碳TC | 0.2 | 0.4 |
全钾TK | 0.8 | 1.9 | 全钾TK | <0.1 | 0.1 |
表4 物种多样性指数进行RDA分析的前向选择
Table 4 Forward selection for the RDA on diversity index (%)
指标 Item | 干流河岸带The main waterway riparian zone | 指标 Item | 支流河岸带The tributary riparian zone | ||
---|---|---|---|---|---|
解释率Explains | 贡献率Contribution | 解释率Explains | 贡献率Contribution | ||
有机质SOM | 21.1 | 51.7 | 土壤含水量SM | 17.9 | 41.7 |
硝态氮NO3--N | 6.3 | 15.5 | 全氮TN | 9.6 | 22.4 |
全氮TN | 3.7 | 9.1 | 速效磷AP | 5.1 | 11.8 |
铵态氮NH4+-N | 2.3 | 5.5 | 硝态氮NO3--N | 4.4 | 10.2 |
速效钾AK | 1.4 | 3.3 | 氧化还原电位ORP | 3.0 | 6.9 |
pH | 1.2 | 3.0 | 铵态氮NH4+-N | 1.7 | 3.9 |
全磷TP | 1.2 | 2.9 | pH | 0.5 | 1.2 |
土壤含水量SM | 1.0 | 2.4 | 土壤温度T | 0.4 | 0.9 |
氧化还原电位ORP | 1.0 | 2.4 | 速效钾AK | 0.3 | 0.6 |
土壤温度T | 0.9 | 2.3 | 全碳TC | 0.2 | 0.4 |
全钾TK | 0.8 | 1.9 | 全钾TK | <0.1 | 0.1 |
图5 干流(a)和支流(b)河岸带物种分布的CCA分析图5a中数字对应物种参照表1,图5b中数字对应物种参照表2。Refer to Table 1 for the species corresponding to the numbers in Fig.5a, refer to Table 2 for the species corresponding to the numbers in Fig.5b.
Fig.5 CCA analysis of species distributions in the main waterway (a) and tributary (b) riparian zone
指标 Item | 干流河岸带The main waterway riparian zone | 指标 Item | 支流河岸带The tributary riparian zone | ||
---|---|---|---|---|---|
解释率Explains | 贡献率Contribution | 解释率Explains | 贡献率Contribution | ||
速效钾AK | 12.2 | 26.0 | 速效磷AP | 3.8 | 17.7 |
土壤含水量SM | 8.7 | 18.6 | 土壤含水量SM | 2.8 | 12.9 |
pH | 5.7 | 12.2 | 土壤温度T | 2.8 | 12.8 |
有机质SOM | 3.8 | 8.1 | 全氮TN | 2.2 | 10.2 |
氧化还原电位ORP | 3.3 | 7.0 | 全碳TC | 2.0 | 9.2 |
铵态氮NH4+-N | 2.7 | 5.8 | 全钾TK | 1.6 | 7.4 |
土壤温度T | 2.6 | 5.5 | 硝态氮NO3--N | 1.5 | 7.1 |
硝态氮NO3--N | 2.5 | 5.2 | 氧化还原电位ORP | 1.4 | 6.7 |
全磷TP | 2.3 | 4.9 | pH | 1.2 | 5.7 |
全氮TN | 1.7 | 3.6 | 速效钾AK | 1.2 | 5.6 |
全钾TK | 1.4 | 3.0 | 铵态氮NH4+-N | 1.0 | 4.8 |
表5 物种分布进行CCA分析的前向选择
Table 5 Forward selection for the CCA on species distribution (%)
指标 Item | 干流河岸带The main waterway riparian zone | 指标 Item | 支流河岸带The tributary riparian zone | ||
---|---|---|---|---|---|
解释率Explains | 贡献率Contribution | 解释率Explains | 贡献率Contribution | ||
速效钾AK | 12.2 | 26.0 | 速效磷AP | 3.8 | 17.7 |
土壤含水量SM | 8.7 | 18.6 | 土壤含水量SM | 2.8 | 12.9 |
pH | 5.7 | 12.2 | 土壤温度T | 2.8 | 12.8 |
有机质SOM | 3.8 | 8.1 | 全氮TN | 2.2 | 10.2 |
氧化还原电位ORP | 3.3 | 7.0 | 全碳TC | 2.0 | 9.2 |
铵态氮NH4+-N | 2.7 | 5.8 | 全钾TK | 1.6 | 7.4 |
土壤温度T | 2.6 | 5.5 | 硝态氮NO3--N | 1.5 | 7.1 |
硝态氮NO3--N | 2.5 | 5.2 | 氧化还原电位ORP | 1.4 | 6.7 |
全磷TP | 2.3 | 4.9 | pH | 1.2 | 5.7 |
全氮TN | 1.7 | 3.6 | 速效钾AK | 1.2 | 5.6 |
全钾TK | 1.4 | 3.0 | 铵态氮NH4+-N | 1.0 | 4.8 |
1 | Yi X M, Huang Y Y, Ma M H, et al. Plant trait-based analysis reveals greater focus needed for mid-channel bar downstream from the Three Gorges Dam of the Yangtze River. Ecological Indicators, 2020, 111: 105950. |
2 | Arif M, Jie Z, Wokadala C, et al. Assessing riparian zone changes under the influence of stress factors in higher-order streams and tributaries: Implications for the management of massive dams and reservoirs. Science of the Total Environment, 2021, 776: 146011. |
3 | Suwal N, Huang X F, Kuriqi A, et al. Optimisation of cascade reservoir operation considering environmental flows for different environmental management classes. Renewable Energy, 2020, 158: 453-464. |
4 | Arif M, Tahir M, Jie Z, et al. Impacts of riparian width and stream channel width on ecological networks in main waterways and tributaries. Science of the Total Environment, 2021, 792: 148457. |
5 | Chen C D, Wu S J, Meurk C D, et al. Effects of local and landscape factors on exotic vegetation in the riparian zone of a regulated river: Implications for reservoir conservation. Landscape and Urban Planning, 2017, 157: 45-55. |
6 | Voesenek L, Colmer T D, Pierik R, et al. How plants cope with complete submergence. New Phytologist, 2006, 170(2): 213-226. |
7 | Francis R A. Positioning urban rivers within urban ecology. Urban Ecosystems, 2012, 15(2): 285-291. |
8 | Vilà M, Espinar J L, Hejda M, et al. Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecology Letters, 2011, 14(7): 702-708. |
9 | Vitousek P M, D’Antonio C M, Loope L L, et al. Biological invasions as global environmental change. American Scientist, 1996, 84: 468-478. |
10 | Mack R N, Simberloff D, Mark L W, et al. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecological Applications, 2000, 10(3): 689-710. |
11 | Pan X Y, Geng Y P, Zhang W J, et al. The influence of abiotic stress and phenotypic plasticity on the distribution of invasive Alternanthera philoxeroides along a riparian zone. Acta Oecologica, 2006, 30(3): 333-341. |
12 | Gaertner M, Wilson J R U, Cadotte M W, et al. Non-native species in urban environments: Patterns, processes, impacts and challenges. Biological Invasions, 2017, 19(12): 3461-3469. |
13 | Alvey A A. Promoting and preserving biodiversity in the urban forest. Urban Forestry & Urban Greening, 2006, 5(4): 195-201. |
14 | Geng Y P, Pan X Y, Xu C Y, et al. Phenotypic plasticity of invasive Alternanthera philoxeroides in relation to different water availability, compared to its native congener. Acta Oecologica, 2006, 30(3): 380-385. |
15 | Huang Y J, Ge Y Y, Wang Q L, et al. Allelopathic effects of aqueous extracts of Alternanthera philoxeroides on the growth of Zoysia matrella. Polish Journal of Environmental Studies, 2017, 26(1): 97-105. |
16 | Weng B Q, Lin S, Wang Y X. Discussion on adaptability and invasion mechanisms of Alternanthera philoxeroides in China. Acta Ecologica Sinica, 2006, 26(7): 2373-2381. |
翁伯琦, 林嵩, 王义祥. 空心莲子草在我国的适应性及入侵机制. 生态学报, 2006, 26(7): 2373-2381. | |
17 | Xu K Y, Ye W H, Cao H L, et al. An experimental study on the relationship between biodiversity and invasibility of plant communities. Chinese Journal of Plant Ecology, 2004, 28(3): 385-391. |
许凯扬, 叶万辉, 曹洪麟, 等. 植物群落的生物多样性及其可入侵性关系的实验研究. 植物生态学报, 2004, 28(3): 385-391. | |
18 | Zheng J, Arif M, Zhang S L, et al. The convergence of species composition along the drawdown zone of the Three Gorges Dam Reservoir, China: Implications for restoration. Environmental Science and Pollution Research, 2021, 28(31): 42609-42621. |
19 | Huang J X, Yi X M, Jia W T, et al. Relationship between alien plant invasion and landscape matrix in the water-level fluctuating zone of the Three Gorges Reservoir, China. Chinese Journal of Applied Ecology, 2022, 33(2): 477-488. |
黄金夏, 易雪梅, 贾伟涛, 等. 三峡库区消落带外来植物入侵与景观基质组成结构的关联性. 应用生态学报, 2022, 33(2): 477-488. | |
20 | Zhang A Y, Xie Z Q. C4 herbs dominate the reservoir flood area of the Three Gorges Reservoir. Science of the Total Environment, 2021, 755: 142479. |
21 | Aronson M F J, Patel M V, O’Neill K M, et al. Urban riparian systems function as corridors for both native and invasive plant species. Biological Invasions, 2017, 19(12): 3645-3657. |
22 | Ehrenfeld J G. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems, 2003, 6(6): 503-523. |
23 | Lazzaro L, Giuliani C, Fabiani A, et al. Soil and plant changing after invasion: The case of Acacia dealbata in a Mediterranean ecosystem. Science of the Total Environment, 2014, 497: 491-498. |
24 | Tererai F, Gaertner M, Jacobs S M, et al. Eucalyptus camaldulensis invasion in riparian zones reveals few significant effects on soil physico-chemical properties. River Research and Applications, 2015, 31(5): 590-601. |
25 | Li T T. Spatio temporal evolution of urban green space and its relevance to eco-environmental effects. Chongqing: Southwest University, 2018. |
李婷婷. 城市绿色空间时空演变及其对生态环境效应的关联性研究. 重庆: 西南大学, 2018. | |
26 | Wu X. Species composition and distribution pattern of the weed communities in Chongqing metropolis. Chongqing: Chongqing University, 2019. |
吴雪. 重庆主城区杂草物种组成特征及其多样性格局. 重庆: 重庆大学, 2019. | |
27 | Pétillon J, Erfanzadeh R, Garbutt A, et al. Inundation frequency determines the post-pioneer successional pathway in a newly created salt marsh. Wetlands, 2010, 30(6): 1097-1105. |
28 | Zheng J, Arif M, Zhang S L, et al. Dam inundation simplifies the plant community composition. Science of the Total Environment, 2021, 801: 149827. |
29 | The National Agro-Tech Extension and Service Center. Soil analysis technology standard (the second edition). Beijing: China Agriculture Press, 2009. |
全国农业技术推广服务中心. 土壤分析技术规范(第二版). 北京: 中国农业出版社, 2009. | |
30 | Ye C, Butler O M, Chen C R, et al. Shifts in characteristics of the plant-soil system associated with flooding and revegetation in the riparian zone of Three Gorges Reservoir, China. Geoderma, 2020, 361: 114015. |
31 | Wu H, Carrillo J, Ding J Q. Species diversity and environmental determinants of aquatic and terrestrial communities invaded by Alternanthera philoxeroides. Science of the Total Environment, 2017, 581: 666-675. |
32 | Zhang J T. Quantitative ecology. Beijing: Science Press, 2018. |
张金屯. 数量生态学. 北京: 科学出版社, 2018. | |
33 | Chatterjee A, Dewanji A. Effect of varying Alternanthera philoxeroides (alligator weed) cover on the macrophyte species diversity of pond ecosystems: A quadrat-based study. Aquatic Invasions, 2014, 9(3): 343-355. |
34 | Luo C, Guo X P, Feng C D, et al. The characteristics of the soil seed bank in Wuhai and surrounding areas and the relationship with vegetation and soil factors. Acta Prataculturae Sinica, 2021, 30(11): 13-28. |
罗超, 郭小平, 冯昶栋, 等. 乌海周边土壤种子库特征及其与地上植被和土壤因子的关系. 草业学报, 2021, 30(11): 13-28. | |
35 | Hulvey K B, Zavaleta E S. Abundance declines of a native forb have nonlinear impacts on grassland invasion resistance. Ecology, 2012, 93(2): 378-388. |
36 | Wu H, Carrillo J, Ding J Q. Invasion by alligator weed, Alternanthera philoxeroides, is associated with decreased species diversity across the latitudinal gradient in China. Journal of Plant Ecology, 2016, 9(3): 311-319. |
37 | Winder M, Jassby A D, Nally R M. Synergies between climate anomalies and hydrological modifications facilitate estuarine biotic invasions. Ecology Letters, 2011, 14(8): 749-757. |
38 | Säumel I, Kowarik I. Urban rivers as dispersal corridors for primarily wind-dispersed invasive tree species. Landscape and Urban Planning, 2010, 94(3/4): 244-249. |
39 | Merritt D M, Scott M L, Poff N L, et al. Theory, methods and tools for determining environmental flows for riparian vegetation: Riparian vegetation-flow response guilds. Freshwater Biology, 2010, 55(1): 206-225. |
40 | Stromberg J C, Merritt D M. Riparian plant guilds of ephemeral, intermittent and perennial rivers. Freshwater Biology, 2016, 61(8): 1259-1275. |
41 | Kong W J, Xia H J, Zhang Y, et al. Characteristics of riparian herbaceous vegetation and the relationship with environmental factors in the West Liao river, China. Acta Hydrobiologica Sinica, 2015, 39(6): 1266-1274. |
孔维静, 夏会娟, 张远, 等. 西辽河河岸草本植物物种特征及其与环境因子的关系. 水生生物学报, 2015, 39(6): 1266-1274. | |
42 | D’Antonio C M, Hughes R F, Tunison J T. Long-term impacts of invasive grasses and subsequent fire in seasonally dry Hawaiian woodlands. Ecological Applications, 2011, 21(5): 1617-1628. |
43 | Timsina B, Shrestha B B, Rokaya M B, et al. Impact of Parthenium hysterophorus L. invasion on plant species composition and soil properties of grassland communities in Nepal. Flora-Morphology, Distribution, Functional Ecology of Plants, 2011, 206(3): 233-240. |
44 | Dimitrakopoulos P G, Koukoulas S, Galanidis A, et al. Factors shaping alien plant species richness spatial patterns across Natura 2000 Special Areas of Conservation of Greece. Science of the Total Environment, 2017, 601: 461-468. |
45 | White L F, Shurin J B. Density dependent effects of an exotic marine macroalga on native community diversity. Journal of Experimental Marine Biology and Ecology, 2011, 405(1/2): 111-119. |
46 | Wang C, Cheng H, Wu B, et al. The functional diversity of native ecosystems increases during the major invasion by the invasive alien species, Conyza canadensis. Ecological Engineering, 2021, 159: 106093. |
47 | Lin J C, Qiang S. Influence of Alternanthera philoxeroides on the species composition and diversity of weed community in spring in Nanjing. Chinese Journal of Plant Ecology, 2006, 30(4): 585. |
林金成, 强胜. 空心莲子草对南京春季杂草群落组成和物种多样性的影响. 植物生态学报, 2006, 30(4): 585. | |
48 | Wang T, Hu J T, Wang R Q, et al. Tolerance and resistance facilitate the invasion success of Alternanthera philoxeroides in disturbed habitats: A reconsideration of the disturbance hypothesis in the light of phenotypic variation. Environmental and Experimental Botany, 2018, 153: 135-142. |
49 | Hejda M, Pyšek P, Jarošík V. Impact of invasive plants on the species richness, diversity and composition of invaded communities. Journal of Ecology, 2009, 97(3): 393-403. |
50 | Smith S D, Devitt D A, Sala A, et al. Water relations of riparian plants from warm desert regions. Wetlands, 1998, 18(4): 687-696. |
51 | Friedman J M, Auble G T. Mortality of riparian box elder from sediment mobilization and extended inundation. Regulated Rivers: Research & Management, 1999, 15(5): 463-476. |
52 | Chen X, Wang R, Cao Q, et al. The relationship between the distribution of invasive plant Alternanthera philoxeroides and soil properties is scale-dependent. Polish Journal of Environmental Studies, 2015, 24(5): 1931-1938. |
53 | Wang J H, Xu Z X, Chen W, et al. The stoichiometric characteristics of Alternanthera philoxeroides with different invasive degrees and their comparison with the coexisting species Gomphrena celosioides. Acta Prataculturae Sinica, 2021, 30(2): 115-123. |
王桔红, 许泽璇, 陈文, 等. 不同入侵程度喜旱莲子草化学计量特征及其与共存种银花苋的比较. 草业学报, 2021, 30(2): 115-123. | |
54 | Daehler C C. Performance comparisons of co-occurring native and alien invasive plants: Implications for conservation and restoration. Annual Review of Ecology, Evolution, and Systematics, 2003, 34(1): 183-211. |
55 | Hough-Snee N, Laub B G, Merritt D M, et al. Multi‐scale environmental filters and niche partitioning govern the distributions of riparian vegetation guilds. Ecosphere, 2015, 6(10): 1-22. |
56 | Richardson D M, Holmes P M, Esler K J, et al. Riparian vegetation: Degradation, alien plant invasions, and restoration prospects. Diversity and Distributions, 2007, 13(1): 126-139. |
57 | Ehrenfeld J G. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems, 2003, 6(6): 503-523. |
58 | Zhang Z Y. Differences and their influencing factors in soil and vegetation characteristics between water-level-fluctuation zone and riparian zone in the Three Gorges Reservoir. Wuhan: Huazhong Agricultural University, 2018. |
张志永. 三峡水库消落区、河岸带土壤和植被特征差异及其影响因素分析. 武汉: 华中农业大学, 2018. | |
59 | Gui D W, Lei J Q, Zeng F J, et al. Effect of ecological factors on plant communities of the Cele River Basin on the north slope of the middle Kunlun mountains. Acta Prataculturae Sinica, 2010, 19(3): 38-46. |
桂东伟, 雷加强, 曾凡江, 等. 中昆仑山北坡策勒河流域生态因素对植物群落的影响. 草业学报, 2010, 19(3): 38-46. |
[1] | 高瑞, 艾宁, 刘广全, 刘长海, 强方方. 煤矿复垦区不同修复年限林下草本群落特征及其与土壤耦合关系[J]. 草业学报, 2022, 31(6): 61-68. |
[2] | 金玲, 陆颖, 马红彬, 谢应忠, 沈艳. 内蒙古鄂托克前旗荒漠草原植物群落的数量分类与排序[J]. 草业学报, 2022, 31(4): 12-21. |
[3] | 卢俊艳, 红梅, 赵巴音那木拉null, 赵乌英嘎, 王文东, 马尚飞, 杨殿林. 贝加尔针茅草原植物群落结构及生物量对长期养分添加的响应[J]. 草业学报, 2022, 31(4): 22-31. |
[4] | 罗巧玉, 王彦龙, 杜雷, 刘念, 李丽, 马玉寿. 黄河源区发草适生地植物群落特征及其土壤因子解释[J]. 草业学报, 2021, 30(4): 80-89. |
[5] | 王桔红, 许泽璇, 陈文, 朱慧, 黄龙军, 李佳维. 不同入侵程度喜旱莲子草化学计量特征及其与共存种银花苋的比较[J]. 草业学报, 2021, 30(2): 115-123. |
[6] | 贺国宝. 祁连山北坡植物群落空间分布格局与多样性研究[J]. 草业学报, 2021, 30(12): 194-201. |
[7] | 罗超, 郭小平, 冯昶栋, 叶金鹏, 薛东明. 乌海周边土壤种子库特征及其与地上植被和土壤因子的关系[J]. 草业学报, 2021, 30(11): 13-28. |
[8] | 聂莹莹, 陈金强, 辛晓平, 徐丽君, 杨桂霞, 王旭. 呼伦贝尔草甸草原区主要植物种群生态位特征与物种多样性对封育年限响应[J]. 草业学报, 2021, 30(10): 15-25. |
[9] | 韩福贵, 满多清, 郑庆钟, 赵艳丽, 张裕年, 肖斌, 付贵全, 杜娟. 青土湖典型湿地白刺灌丛沙堆群落物种多样性及土壤养分变化特征研究[J]. 草业学报, 2021, 30(1): 36-45. |
[10] | 车力木格, 刘新平, 何玉惠, 孙姗姗, 王明明. 半干旱沙地草本植物群落特征对短期降水变化的响应[J]. 草业学报, 2020, 29(4): 19-28. |
[11] | 吴昊, 张辰, 代文魁. 气候变暖和物种多样性交互效应对空心莲子草入侵的影响[J]. 草业学报, 2020, 29(3): 38-48. |
[12] | 杨鼎, 齐昊昊, 王倩, 徐海鹏, 张静, 张红艳, 郭正刚. 青藏高原高原鼢鼠鼠丘植被恢复过程中植物群落特征的变化[J]. 草业学报, 2020, 29(2): 114-122. |
[13] | 崔雨萱, 孙宗玖, 刘慧霞, 董乙强. 短期封育对蒿类荒漠草地现存生物量及植物群落多样性的影响[J]. 草业学报, 2020, 29(12): 17-26. |
[14] | 马倩倩, 刘彤, 董合干, 王寒月, 赵文轩, 王瑞丽, 刘延, 陈乐. 气候变化下三裂叶豚草在新疆的潜在地理分布[J]. 草业学报, 2020, 29(12): 73-85. |
[15] | 聂莹莹, 徐丽君, 辛晓平, 陈宝瑞, 张保辉. 围栏封育对温性草甸草原植物群落构成及生态位特征的影响[J]. 草业学报, 2020, 29(11): 11-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||