草业学报 ›› 2023, Vol. 32 ›› Issue (11): 93-105.DOI: 10.11686/cyxb2023020
收稿日期:
2023-01-06
修回日期:
2023-03-06
出版日期:
2023-11-20
发布日期:
2023-09-27
通讯作者:
王红梅
作者简介:
E-mail: whm_826@163.com基金资助:
Rong-xia SU(), Yan-ping MA, Hong-mei WANG(), Ya-nan ZHAO, Zhi-li LI
Received:
2023-01-06
Revised:
2023-03-06
Online:
2023-11-20
Published:
2023-09-27
Contact:
Hong-mei WANG
摘要:
为探究不同间距柠条锦鸡儿人工灌丛引入对宁夏东部荒漠草原土壤细菌群落功能多样性和土壤胞外酶活性的影响,利用Biolog-ECO法对封育草地(17 a)和不同间距 (40、6和2 m) 灌丛地土壤细菌碳源利用特征展开研究。结果表明:荒漠草原不同间距灌丛引入后土壤有机碳和微生物生物量碳较封育草地无显著增加,而土壤全碳显著增加26.65%~43.47%;除β-1,4-N-乙酰基氨基葡萄糖苷酶外的其他土壤胞外酶活性均在灌丛地低于封育草地,灌丛间无显著差异。各样地土壤微生物细菌平均颜色变化率和主成分分析显示出近30年不同间距灌丛地土壤细菌群落代谢功能明显变化,灌丛密度增加,碳源的相对利用率下降了49.2%,但灌丛地碳源利用率仍显著大于封育草地,特别是土壤细菌群落功能多样性。丰富度、均匀度、优势度指数随密度增加而增大,碳源利用类型也从草原以氨基酸类、聚合物类和其他类碳源为主利用转向随灌丛以聚合物类和氨基酸类稳定优先利用为主。
苏荣霞, 马彦平, 王红梅, 赵亚楠, 李志丽. 荒漠草原不同间距灌丛引入对土壤细菌碳源利用和胞外酶活性的影响[J]. 草业学报, 2023, 32(11): 93-105.
Rong-xia SU, Yan-ping MA, Hong-mei WANG, Ya-nan ZHAO, Zhi-li LI. Changes in soil bacterial carbon source utilization and soil extracellular enzyme activity after artificial planting of Caragana korshinskii at different densities on the desert steppe[J]. Acta Prataculturae Sinica, 2023, 32(11): 93-105.
样地类型 Sample type | 经纬度 Latitude and longitude | 灌木生物量 Shrubs biomass (g·m-2) | 灌木盖度 Shrubs coverage (%) | 草本生物量 Herbage biomass (g·m-2) | 草本盖度 Herbage coverage (%) | 主要植物 Major plant species |
---|---|---|---|---|---|---|
EG | 37°53′ E;107°14′ N | 0 | 0 | 102.62 | 79.0 | 猪毛蒿Artemisia scoparia、白草Pennisetum centrasiaticum、虫实Corispermum hyssopifolium、赖草Aneurolepidium dasystachys |
SI40 | 37°55′ E;107°21′ N | 1166.69 | 7.1 | 85.34 | 76.2 | 柠条锦鸡儿Caragana korshinskii、猪毛蒿A. scoparia、牛枝子Lespedeza potaninii |
SI6 | 37°51′ E;107°22′ N | 1199.97 | 29.7 | 93.11 | 42.2 | 柠条锦鸡儿C. korshinskii、牛枝子L. potaninii、沙生针茅Stipa breviflora、猪毛蒿A. scoparia |
SI2 | 37°50′ E;107°17′ N | 1753.45 | 48.9 | 82.70 | 24.0 | 柠条锦鸡儿C. korshinskii、猪毛蒿A. scoparia、白草P. centrasiaticum |
表1 样地概况
Table 1 Sites description
样地类型 Sample type | 经纬度 Latitude and longitude | 灌木生物量 Shrubs biomass (g·m-2) | 灌木盖度 Shrubs coverage (%) | 草本生物量 Herbage biomass (g·m-2) | 草本盖度 Herbage coverage (%) | 主要植物 Major plant species |
---|---|---|---|---|---|---|
EG | 37°53′ E;107°14′ N | 0 | 0 | 102.62 | 79.0 | 猪毛蒿Artemisia scoparia、白草Pennisetum centrasiaticum、虫实Corispermum hyssopifolium、赖草Aneurolepidium dasystachys |
SI40 | 37°55′ E;107°21′ N | 1166.69 | 7.1 | 85.34 | 76.2 | 柠条锦鸡儿Caragana korshinskii、猪毛蒿A. scoparia、牛枝子Lespedeza potaninii |
SI6 | 37°51′ E;107°22′ N | 1199.97 | 29.7 | 93.11 | 42.2 | 柠条锦鸡儿C. korshinskii、牛枝子L. potaninii、沙生针茅Stipa breviflora、猪毛蒿A. scoparia |
SI2 | 37°50′ E;107°17′ N | 1753.45 | 48.9 | 82.70 | 24.0 | 柠条锦鸡儿C. korshinskii、猪毛蒿A. scoparia、白草P. centrasiaticum |
土壤特性 Soil properties | 封育草地 Enclosed grassland | 40 m灌丛地 Shrubland interval 40 m | 6 m灌丛地 Shrubland interval 6 m | 2 m灌丛地 Shrubland interval 2 m |
---|---|---|---|---|
pH | 7.85±0.01a | 7.79±0.00b | 7.84±0.01a | 7.81±0.00b |
TC (g·kg-1) | 5.59±0.07c | 7.64±0.21a | 8.02±0.08a | 7.08±0.06b |
SOC (g·kg-1) | 3.80±0.15ab | 3.69±0.17b | 4.25±0.16a | 4.22±0.05a |
TN (g·kg-1 ) | 0.15±0.01a | 0.15±0.01ab | 0.11±0.00c | 0.12±0.01bc |
TP (g·kg-1) | 0.13±0.01b | 0.16±0.01a | 0.16±0.00a | 0.17±0.00a |
C/N | 25.81±2.74b | 25.12±1.15b | 38.87±2.13a | 35.94±2.84a |
MBC (mg·kg-1) | 111.01±2.80b | 49.35±2.73c | 158.58±7.51a | 69.11±12.92c |
MBN (mg·kg-1) | 5.40±0.22a | 3.79±0.30a | 4.97±0.06a | 4.32±1.32a |
MBC/SOC | 29.36±1.34b | 13.38±0.29c | 37.51±2.96a | 16.44±3.26c |
MBN/TN | 35.89±2.82a | 26.43±3.38a | 44.84±2.28a | 38.26±14.34a |
表 2 不同间距灌丛引入过程各样地与土壤特性
Table 2 Various soil biochemical factors during shrub introduction with different intervals (mean±SE)
土壤特性 Soil properties | 封育草地 Enclosed grassland | 40 m灌丛地 Shrubland interval 40 m | 6 m灌丛地 Shrubland interval 6 m | 2 m灌丛地 Shrubland interval 2 m |
---|---|---|---|---|
pH | 7.85±0.01a | 7.79±0.00b | 7.84±0.01a | 7.81±0.00b |
TC (g·kg-1) | 5.59±0.07c | 7.64±0.21a | 8.02±0.08a | 7.08±0.06b |
SOC (g·kg-1) | 3.80±0.15ab | 3.69±0.17b | 4.25±0.16a | 4.22±0.05a |
TN (g·kg-1 ) | 0.15±0.01a | 0.15±0.01ab | 0.11±0.00c | 0.12±0.01bc |
TP (g·kg-1) | 0.13±0.01b | 0.16±0.01a | 0.16±0.00a | 0.17±0.00a |
C/N | 25.81±2.74b | 25.12±1.15b | 38.87±2.13a | 35.94±2.84a |
MBC (mg·kg-1) | 111.01±2.80b | 49.35±2.73c | 158.58±7.51a | 69.11±12.92c |
MBN (mg·kg-1) | 5.40±0.22a | 3.79±0.30a | 4.97±0.06a | 4.32±1.32a |
MBC/SOC | 29.36±1.34b | 13.38±0.29c | 37.51±2.96a | 16.44±3.26c |
MBN/TN | 35.89±2.82a | 26.43±3.38a | 44.84±2.28a | 38.26±14.34a |
土壤胞外酶 Soil extracellular enzymes | 封育草地 Enclosed grassland | 40 m灌丛地 Shrubland interval 40 m | 6 m灌丛地 Shrubland interval 6 m | 2 m灌丛地 Shrubland interval 2 m |
---|---|---|---|---|
CBH | 38.30±0.12a | 21.62±0.84b | 20.95±0.35b | 18.56±0.28c |
BXYL | 20.32±2.95a | 13.19±1.88b | 11.08±0.77b | 10.51±0.67b |
BG | 62.00±3.30a | 38.75±3.12a | 30.66±1.70b | 31.84±0.76b |
LAP | 38.36±2.19a | 23.66±3.07a | 37.83±8.12a | 24.81±2.64a |
NAG | 29.47±9.62a | 41.41±1.22a | 32.82±3.91a | 31.60±3.72a |
AKP | 189.26±5.28a | 99.28±6.11b | 89.01±9.78b | 66.82±1.56c |
表 3 不同间距灌丛引入过程土壤酶活性
Table 3 Soil enzyme activity during shrub introduction with different intervals (nmol·g-1·h-1)
土壤胞外酶 Soil extracellular enzymes | 封育草地 Enclosed grassland | 40 m灌丛地 Shrubland interval 40 m | 6 m灌丛地 Shrubland interval 6 m | 2 m灌丛地 Shrubland interval 2 m |
---|---|---|---|---|
CBH | 38.30±0.12a | 21.62±0.84b | 20.95±0.35b | 18.56±0.28c |
BXYL | 20.32±2.95a | 13.19±1.88b | 11.08±0.77b | 10.51±0.67b |
BG | 62.00±3.30a | 38.75±3.12a | 30.66±1.70b | 31.84±0.76b |
LAP | 38.36±2.19a | 23.66±3.07a | 37.83±8.12a | 24.81±2.64a |
NAG | 29.47±9.62a | 41.41±1.22a | 32.82±3.91a | 31.60±3.72a |
AKP | 189.26±5.28a | 99.28±6.11b | 89.01±9.78b | 66.82±1.56c |
图1 不同间距灌丛引入过程土壤细菌群落的平均颜色变化率
Fig.1 Variation in the average well color development change of soil microbial communities during introduction with different intervals
图2 不同间距灌丛引入过程土壤细菌对6类平均颜色变化率不同字母表示差异显著(P<0.05),下同。 Different letters indicate significant differences (P<0.05). The same below.
Fig.2 Six types average well color development by soil bacteria during shrub introduction with different intervals
处理 Treatment | Shannon-Wiener指数 Shannon-Wiener index (H) | Shannon指数 Shannon index (E) | Simpson指数 Simpson index (D) | McIntosh指数 McIntosh index (U) |
---|---|---|---|---|
EG | 2.33±0.04a | 0.73±0.02b | 0.73±0.02b | 2.04±0.01d |
SI40 | 2.63±0.21a | 0.80±0.06ab | 0.85±0.06ab | 11.58±0.12a |
SI6 | 2.91±0.01a | 0.87±0.00a | 0.93±0.00a | 3.37±0.01c |
SI2 | 2.48±0.29a | 0.79±0.05ab | 0.81±0.07ab | 7.90±0.03b |
表4 不同间距灌丛引入过程土壤细菌多样性指数
Table 4 Diversity index of soil bacterial during shrub introduction with different intervals
处理 Treatment | Shannon-Wiener指数 Shannon-Wiener index (H) | Shannon指数 Shannon index (E) | Simpson指数 Simpson index (D) | McIntosh指数 McIntosh index (U) |
---|---|---|---|---|
EG | 2.33±0.04a | 0.73±0.02b | 0.73±0.02b | 2.04±0.01d |
SI40 | 2.63±0.21a | 0.80±0.06ab | 0.85±0.06ab | 11.58±0.12a |
SI6 | 2.91±0.01a | 0.87±0.00a | 0.93±0.00a | 3.37±0.01c |
SI2 | 2.48±0.29a | 0.79±0.05ab | 0.81±0.07ab | 7.90±0.03b |
主成分 Principal components | 碳源种类 Categry of carbon source | 底物 Substrate | 载荷数 Number of loads |
---|---|---|---|
PC1 | 糖类Carbohydrates | β-甲基-D-葡萄糖苷β-Methyl-D-glucoside | 0.681 |
D-甘露醇D-mannitol | 0.693 | ||
D-纤维二糖D-cellobiose | 0.990 | ||
葡萄糖-1-磷酸盐Glucose-1-phosphate | 0.900 | ||
羧酸类Carboxylic acids | 4-羟基苯甲酸4-hydroxy benzoic acid | 0.957 | |
γ-羟基丁酸γ-hydroxybutyric acid | 0.875 | ||
衣康酸Itaconic acid | 0.726 | ||
D-苹果酸D-malic acid | 0.883 | ||
氨基酸类Amino acids | L-精氨酸L-arginine | 0.869 | |
L-天冬酰胺酸L-asparagine | 0.947 | ||
L-苯基丙氨酸L-phenylalanine | 0.995 | ||
L-丝氨酸L-serine | 0.867 | ||
胺类Amines | 苯乙基胺Phenylethylamine | 0.951 | |
腐胺Putrescine | 0.963 | ||
聚合物类Polymer | 吐温80 Tween 80 | 0.962 | |
肝糖Glycogen | -0.683 | ||
其他混合物Others | 丙酮酸甲酯Pyruvic acid methyl ester | 0.707 | |
PC2 | 糖类Carbohydrates | D-甘露醇D-mannitol | 0.702 |
N-乙酰基-D-葡萄胺N-acetyl-D-glucosamine | -0.977 | ||
羧酸类Carboxylic acids | D-半乳糖醛酸D-galacturonic acid | -0.958 | |
氨基酸类Amino acids | L-苏氨酸L-threonine | -0.855 | |
甘氨酰-L-谷氨酸Glycyl-L-glutamic acid | 0.933 | ||
聚合物类Polymer | 吐温40 Tween 40 | -0.633 | |
PC3 | 糖类Carbohydrates | β-甲基-D-葡萄糖苷β-methyl-D-glucoside | 0.711 |
羧酸类Carboxylic acids | 2-羟苯甲酸2-hydroxy benzoic acid | 0.938 | |
D-氨基葡萄糖酸D-glucosaminic acid | -0.674 | ||
衣康酸Itaconic acid | 0.649 | ||
聚合物类Polymer | α-环状糊精α-cyclodextrin | 0.945 |
表5 Biolog-ECO板中碳基质利用与前3个主成分(PC1、PC2和PC3)之间的相关性
Table 5 Correlations between carbon substrate utilization in Biolog-ECO and the first three principal components (PC1, PC2 and PC3)
主成分 Principal components | 碳源种类 Categry of carbon source | 底物 Substrate | 载荷数 Number of loads |
---|---|---|---|
PC1 | 糖类Carbohydrates | β-甲基-D-葡萄糖苷β-Methyl-D-glucoside | 0.681 |
D-甘露醇D-mannitol | 0.693 | ||
D-纤维二糖D-cellobiose | 0.990 | ||
葡萄糖-1-磷酸盐Glucose-1-phosphate | 0.900 | ||
羧酸类Carboxylic acids | 4-羟基苯甲酸4-hydroxy benzoic acid | 0.957 | |
γ-羟基丁酸γ-hydroxybutyric acid | 0.875 | ||
衣康酸Itaconic acid | 0.726 | ||
D-苹果酸D-malic acid | 0.883 | ||
氨基酸类Amino acids | L-精氨酸L-arginine | 0.869 | |
L-天冬酰胺酸L-asparagine | 0.947 | ||
L-苯基丙氨酸L-phenylalanine | 0.995 | ||
L-丝氨酸L-serine | 0.867 | ||
胺类Amines | 苯乙基胺Phenylethylamine | 0.951 | |
腐胺Putrescine | 0.963 | ||
聚合物类Polymer | 吐温80 Tween 80 | 0.962 | |
肝糖Glycogen | -0.683 | ||
其他混合物Others | 丙酮酸甲酯Pyruvic acid methyl ester | 0.707 | |
PC2 | 糖类Carbohydrates | D-甘露醇D-mannitol | 0.702 |
N-乙酰基-D-葡萄胺N-acetyl-D-glucosamine | -0.977 | ||
羧酸类Carboxylic acids | D-半乳糖醛酸D-galacturonic acid | -0.958 | |
氨基酸类Amino acids | L-苏氨酸L-threonine | -0.855 | |
甘氨酰-L-谷氨酸Glycyl-L-glutamic acid | 0.933 | ||
聚合物类Polymer | 吐温40 Tween 40 | -0.633 | |
PC3 | 糖类Carbohydrates | β-甲基-D-葡萄糖苷β-methyl-D-glucoside | 0.711 |
羧酸类Carboxylic acids | 2-羟苯甲酸2-hydroxy benzoic acid | 0.938 | |
D-氨基葡萄糖酸D-glucosaminic acid | -0.674 | ||
衣康酸Itaconic acid | 0.649 | ||
聚合物类Polymer | α-环状糊精α-cyclodextrin | 0.945 |
图4 不同间距灌丛引入过程土壤因子与土壤细菌多样性指数的RDA分析H: Shannon-Wiener指数Shannon-Wiener index; E: Shannon指数Shannon index; D: Simpson指数Simpson index; U: McIntosh指数McIntosh index.
Fig.4 RDA analysis of soil factors and soil bacterial diversity indexes during shrub introduction with different intervals
1 | Eduardo P V, Marta G, Miguel V. Fire modulates ecosystem functioning through the phylogenetic structure of soil bacterial communities. Soil Biology and Biochemistry, 2019, 129: 80-89. |
2 | Sokol N W, Slessarev E, Marschmann G L, et al. Life and death in the soil microbiome: How ecological processes influence biogeochemistry. Nature Reviews Microbiology, 2022, 20(7): 415-430. |
3 | Avitia M, Barrón S A, Hernández T A, et al. Soil microbial composition and carbon mineralization are associated with vegetation type and temperature regime in mesocosms of a semiarid ecosystem. FEMS Microbiology Letters, 2021, 368(4): Doi: 10.1093/femsle/fnab012. |
4 | Zhao Y N, Zhao Y F, Wang H M, et al. Response of spatial heterogeneity and threshold value for soil water and aboveground biomass of desert grassland-shrubland anthropogenic transition in desert steppe of Ningxia, China. Scientia Silvae Sinicae, 2021, 57(12): 1-12. |
赵亚楠, 赵亚峰, 王红梅, 等. 荒漠草原灌丛转变土壤水分与地上生物量空间异质性及阈值响应. 林业科学, 2021, 57(12): 1-12. | |
5 | Sorensen P L, Michelsen A, Jonasson S. Ecosystem partitioning of 15N-glycine after long-term climate and nutrient manipulations, plant clipping and addition of labile carbon in a subarctic heath tundra. Soil Biology and Biochemistry, 2008, 40(9): 2344-2350. |
6 | Archer S R, Peters D P C, Burruss N D, et al. Mechanisms and drivers of alternative shrubland states. Ecosphere, 2022, 13(4): e3987. |
7 | Collins C G, Spasojevic M J, Alados C L, et al. Belowground impacts of alpine woody encroachment are determined by plant traits, local climate, and soil conditions. Global Change Biology, 2020, 26(12): 7112-7127. |
8 | Collins C G, Carey C J, Aronson E L, et al. Direct and indirect effects of native range expansion on soil microbial community structure and function. Journal of Ecology, 2016, 104(5): 1271-1283. |
9 | Camenzind T, Hättenschwiler S, Treseder K K, et al. Nutrient limitation of soil microbial processes in tropical forests. Ecological Monographs, 2018, 88(1): 4-21. |
10 | Yu L, Wang H M, Guo T D, et al. Bistable-state of vegetation shift in the desert grassland-shrubland anthropogenic Mosaic area. Acta Ecologica Sinica, 2021, 41(24): 9773-9783. |
于露, 王红梅, 郭天斗, 等. 荒漠草原灌丛镶嵌体的植被稳态转变特征. 生态学报, 2021, 41(24): 9773-9783. | |
11 | Yannarell A C, Menning S E, Beck A M. Influence of shrub encroachment on the soil microbial community composition of remnant hill prairies. Microbial Ecology, 2014, 67(4): 897-906. |
12 | Montané F, Romanyà J, Rovira P, et al. Aboveground litter quality changes may drive soil organic carbon increase after shrub encroachment into mountain grasslands. Plant and Soil, 2010, 337(1/2): 151-165. |
13 | Mcculley R L, Archer S R, Boutton T W, et al. Soil respiration and nutrient cycling in wooded communities developing in grassland. Ecology, 2004, 85(10): 2804-2817. |
14 | Fischer T. Substantial rewetting phenomena on soil respiration can be observed at low water availability. Soil Biology and Biochemistry, 2009, 41(7): 1577-1579. |
15 | Cao X, Liu Y, Cui X H, et al. Mechanisms, monitoring and modeling of shrub encroachment into grassland: A review. International Journal of Digital Earth, 2019, 12(6): 625-641. |
16 | Zhou L, Li H, Shen H, et al. Shrub-encroachment induced alterations in input chemistry and soil microbial community affect topsoil organic carbon in an Inner Mongolian grassland. Biogeochemistry, 2017, 136(3): 311-324. |
17 | Imberger K T, Chiu C Y. Spatial changes of soil fungal and bacterial biomass from a sub-alpine coniferous forest to grassland in a humid, sub-tropical region. Biology and Fertility of Soils, 2002, 33(2): 105-110. |
18 | Preusser S, Poll C, Marhan S, et al. Fungi and bacteria respond differently to changing environmental conditions within a soil profile. Soil Biology and Biochemistry, 2019, 137: 107543. |
19 | Yin Y, Wang Y, Li S, et al. Soil microbial character response to plant community variation after grazing prohibition for 10 years in a Qinghai-Tibetan alpine meadow. Plant and Soil, 2021, 458(1/2): 175-189. |
20 | Rodríguez Z S, González R T, González L E, et al. Vertical distribution of microbial communities under the canopy of two legume bushes in the Tehuacán Desert, Mexico. European Journal of Soil Biology, 2008, 44(4): 373-380. |
21 | Ortiz C, Fernández A M J, Kitzler B, et al. Variations in soil aggregation, microbial community structure and soil organic matter cycling associated to long-term afforestation and woody encroachment in a Mediterranean alpine ecotone. Geoderma, 2022, 405: 115450. |
22 | Malinich E, Lynn B N, Kourtev P S. The effect of the invasive Elaeagnus umbellata on soil microbial communities depends on proximity of soils to plants. Ecosphere, 2017, 8(5): 18-27. |
23 | Sun Z C, Zhou Y R, Zhao Y N, et al. Response of soil microbial mineralization to the anthropogenic introduced shrub encroachment and water gradients in the desert steppe. Acta Ecologica Sinica, 2021, 41(4): 1537-1550. |
孙忠超, 周玉蓉, 赵亚楠, 等. 荒漠草原土壤微生物矿化对灌丛引入过程及水分的响应. 生态学报, 2021, 41(4): 1537-1550. | |
24 | Guo T D, Yu L, Sun Z C, et al. Responses of soil extracellular enzyme activities to the anthropogenic transition from desert grassland to shrubland in eastern Ningxia, China. Chinese Journal of Applied Ecology, 2020, 31(8): 2541-2548. |
郭天斗, 于露, 孙忠超, 等. 宁夏东部荒漠草原向灌丛地人为转变过程中土壤胞外酶活性响应. 应用生态学报, 2020, 31(8): 2541-2548. | |
25 | Bestelmeyer B T, Peters D P C, Archer S R, et al. The grassland-shrubland regime shift in the southwestern united states: Misconceptions and their implications for management. BioScience, 2018, 68(9): 678-690. |
26 | Hewins D B, Fatemi F, Adams B, et al. Grazing, regional climate and soil biophysical impacts on microbial enzyme activity in grassland soil of western Canada. Pedobiologia, 2015, 58(5): 201-209. |
27 | Bao S D. Analysis of soil and agricultural chemistry (The Third Edition). Beijing: China Agricultural Press, 2000: 268-272. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000: 268-272. | |
28 | Liu Z F, Liu G H, Fu B J, et al. Dynamics of soil microbial biomass C, N along restoration chronosequences in pine plantations. Acta Ecologica Sinica, 2007(3): 1011-1018. |
刘占锋, 刘国华, 傅伯杰, 等. 人工油松林(Pinus tabulaeformis)恢复过程中土壤微生物生物量C、N的变化特征. 生态学报, 2007(3): 1011-1018. | |
29 | Akinyemi D S, Zhu Y, Zhao M, et al. Response of soil extracellular enzyme activity to experimental precipitation in a shrub-encroached grassland in Inner Mongolia. Global Ecology and Conservation, 2020, 23: 11-75. |
30 | Hu K, Wang L B. Application of BIOLOG microplate technique to the study of soil microbial ecology. Chinese Journal of Soil Science, 2007, 138(4): 819-821. |
胡可, 王利宾. BIOLOG微平板技术在土壤微生态研究中的应用. 土壤通报, 2007, 138(4): 819-821. | |
31 | Yang Y, Dou Y, Wang B, et al. Increasing contribution of microbial residues to soil organic carbon in grassland restoration chronosequence. Soil Biology and Biochemistry, 2022, 170: 108688. |
32 | Chen Y, Li W, You Y, et al. Soil properties and substrate quality determine the priming of soil organic carbon during vegetation succession. Plant and Soil, 2022, 471(112): 559-575. |
33 | Yu H L, Fan J, Niu Y B, et al. Review on the influence of bushwood stem flow and root-induced preferential flow on the “soil fertile island effect” of Nebkha. Acta Agrestia Sinica, 2019, 27(1): 1-7. |
余海龙, 樊瑾, 牛玉斌, 等. 灌丛树干茎流与根区优先流对灌丛沙堆“土壤沃岛效应”的影响研究. 草地学报, 2019, 27(1): 1-7. | |
34 | An S S, Huang Y M. Study on the ameliorate benefits of Caragana korshinskii shrubwood to soil properties in loess hilly area. Scientia Silvae Sinicae, 2006, 42(1): 70-74. |
安韶山, 黄懿梅. 黄土丘陵区柠条林改良土壤作用的研究. 林业科学, 2006, 42(1): 70-74. | |
35 | Mcculley R L, Jackson R B. Conversion of tallgrass prairie to woodland: Consequences for carbon and nitrogen cycling. The American Midland Naturalist, 2012, 167(2): 307-321. |
36 | Crofts A L, Drury D O, McLaren J R. Changes in the understory plant community and ecosystem properties along a shrub density gradient. Arctic Science, 2018, 4(4): 485-498. |
37 | Li W, Zhang C, Gao G, et al. Relationship between Mikania micrantha invasion and soil microbial biomass, respiration and functional diversity. Plant and Soil, 2007, 296(1/2): 197-207. |
38 | Li Q, Feng J, Wu J, et al. Spatial variation in soil microbial community structure and its relation to plant distribution and local environments following afforestation in central China. Soil and Tillage Research, 2019, 193: 8-16. |
39 | Qi Y, Chen T, Pu J, et al. Response of soil physical, chemical and microbial biomass properties to land use changes in fixed desertified land. Catena, 2018, 160: 339-344. |
40 | Liu J L, Wang G H, Xu D M, et al. Soil organic carbon mineralization response to litter addition in desert steppe grasslands sites with differences in number of years grazing exclusion by fencing. Acta Prataculturae Sinica, 2019, 28(4): 47-57. |
刘金龙, 王国会, 许冬梅, 等. 不同封育年限荒漠草原土壤有机碳矿化对枯落物添加的响应. 草业学报, 2019, 28(4): 47-57. | |
41 | Ayala N F, Maya D Y, García C N E, et al. Spatial distribution of soil carbon storage in desert shrubland ecosystems of northwest Mexico. Journal of Arid Environments, 2020, 183: 104251. |
42 | Ladwig L M, Bell-Dereske L P, Bell K C, et al. Soil fungal composition changes with shrub encroachment in the northern Chihuahuan Desert. Fungal Ecology, 2021, 53: 101096. |
43 | Ladwig L M, Sinsabaugh R L, Collins S L, et al. Soil enzyme responses to varying rainfall regimes in Chihuahuan Desert soils. Ecosphere, 2015, 6(3): 1-10. |
44 | Chen H, Luo P, Wen L, et al. Determinants of soil extracellular enzyme activity in a karst region, Southwest China. European Journal of Soil Biology, 2017, 80: 69-76. |
45 | Cui Y, Fang L, Guo X, et al. Natural grassland as the optimal pattern of vegetation restoration in arid and semi-arid regions: Evidence from nutrient limitation of soil microbes. Science of the Total Environment, 2019, 648: 388-397. |
46 | Fan L, Chen Y, Yuan J, et al. The effect of Lantana camara Linn. invasion on soil chemical and microbiological properties and plant biomass accumulation in southern China. Geoderma, 2010, 154(3): 370-378. |
47 | Deng J, Chong Y J, Zhang D, et al. Temporal variations in soil enzyme activities and responses to land-use change in the loess plateau, China. Applied Sciences, 2019, 9(15): 3129. |
48 | Wang J, Li G, Xiu W M, et al. Responses of soil microbial functional diversity to nitrogen and water input in Stipa baicalensis steppe, Inner Mongolia, Northern China. Acta Prataculturae Sinica, 2014, 23(4): 343-350. |
王杰, 李刚, 修伟明, 等. 贝加尔针茅草原土壤微生物功能多样性对氮素和水分添加的响应. 草业学报, 2014, 23(4): 343-350. | |
49 | Jing J, Zhang M Y, Gao Y H. Effects of enclosure on soil microbial carbon utilization in an alpine steppe. Ecological Science, 2021, 40(3): 25-32. |
敬洁, 张梦瑶, 高永恒. 围栏禁牧对高寒草原土壤微生物碳源利用的影响. 生态科学, 2021, 40(3): 25-32. | |
50 | Nie G, Chen W M, Wei G H. Genetic diversity of rhizobia isolated from shrubby and herbaceous legumes in Shenmu arid area, Shaanxi, China. Chinese Journal of Applied Ecology, 2014, 25(6): 1674-1680. |
聂刚, 陈卫民, 韦革宏. 神木地区耐旱灌木和草本豆科植物根瘤菌遗传多样性. 应用生态学报, 2014, 25(6): 1674-1680. | |
51 | Zhang Y Y, Qu L Y, Chen L D. An amendment on information extraction of Biolog EcoPlateTM. Microbiology China, 2009, 36(7): 1083-1091. |
张燕燕, 曲来叶, 陈利顶. Biolog EcoPlateTM实验信息提取方法改进. 微生物学通报, 2009, 36(7): 1083-1091. | |
52 | Zhu X M, Liu M, Kou Y P, et al. Differential effects of N addition on the stoichiometry of microbes and extracellular enzymes in the rhizosphere and bulk soils of an alpine shrubland. Plant and Soil, 2020, 449(1/2): 285-301. |
53 | Throop H L, Reichmann L G, Sala O E, et al. Response of dominant grass and shrub species to water manipulation: An ecophysiological basis for shrub invasion in a Chihuahuan Desert Grassland. Oecologia, 2012, 169: 373-383. |
54 | Gelfand I, Grünzweig J M, Yakir D. Slowing of nitrogen cycling and increasing nitrogen use efficiency following afforestation of semi-arid shrubland. Oecologia, 2012, 168(2): 563-575. |
55 | Wickings K, Grandy A S, Reed S C, et al. The origin of litter chemical complexity during decomposition. Ecology Letters, 2012, 15: 1180-1188. |
56 | Sun T, Dong L L, Wang Z W, et al. Effects of long-term nitrogen deposition on fine root decomposition and its extracellular enzyme activities in temperate forests. Soil Biology and Biochemistry, 2016, 93: 50-59. |
[1] | 赵敏, 赵坤, 王赟博, 殷国梅, 刘思博, 闫宝龙, 孟卫军, 吕世杰, 韩国栋. 长期放牧干扰降低了短花针茅荒漠草原植物多样性[J]. 草业学报, 2023, 32(9): 39-49. |
[2] | 刘欣雷, 杜鹤强, 刘秀帆, 范亚伟. 内蒙古荒漠草原地表风沙活动对放牧强度的响应[J]. 草业学报, 2023, 32(7): 1-11. |
[3] | 陈彦硕, 马彦平, 王红梅, 赵亚楠, 李志丽, 张振杰. 荒漠草原不同年限灌丛引入过程土壤细菌碳源利用特征[J]. 草业学报, 2023, 32(6): 30-44. |
[4] | 胡宇霞, 龚吉蕊, 朱趁趁, 矢佳昱, 张子荷, 宋靓苑, 张魏圆. 基于生态系统服务簇的内蒙古荒漠草原生态系统服务的空间分布特征[J]. 草业学报, 2023, 32(4): 1-14. |
[5] | 史正军, 潘松, 冯世秀, 袁峰均. 园林废弃物地表覆盖处理对植物生长及土壤细菌群落的影响[J]. 草业学报, 2023, 32(4): 153-160. |
[6] | 李江文, 裴婧宏, 韩国栋, 何邦印, 李彩. 基于植物功能性状分析异常降水对不同载畜率下荒漠草原功能群多样性的影响[J]. 草业学报, 2023, 32(11): 212-222. |
[7] | 吴旭东, 蒋齐, 王占军, 季波, 任小玢. 降水对荒漠草原地上生物量稳定性的影响[J]. 草业学报, 2023, 32(11): 30-39. |
[8] | 米扬, 郭蓉, 王媛, 王占军, 蒋齐, 俞鸿千, 马琨. 宁夏荒漠草原土壤细菌与真菌群落对降水变化的响应[J]. 草业学报, 2023, 32(11): 81-92. |
[9] | 牛伟玲, 陈辉, 侯慧新, 郭晨睿, 马娇林, 武建双. 10年禁牧未改变藏西北高寒荒漠植物水氮利用效率[J]. 草业学报, 2022, 31(8): 35-48. |
[10] | 刘万龙, 许冬梅, 史佳梅, 许爱云. 不同群落生境蒙古冰草种群株丛结构和叶片功能性状的变化[J]. 草业学报, 2022, 31(8): 72-80. |
[11] | 郭文章, 井长青, 邓小进, 陈宸, 赵苇康, 侯志雄, 王公鑫. 新疆天山北坡荒漠草原碳通量特征及其对环境因子的响应[J]. 草业学报, 2022, 31(5): 1-12. |
[12] | 王亚妮, 胡宜刚, 王增如, 李以康, 张振华, 周华坤. 沙化和人工植被重建对高寒草地土壤细菌群落特征的影响[J]. 草业学报, 2022, 31(5): 26-39. |
[13] | 田英, 许喆, 朱丽珍, 王俊, 温学飞. 生长季不同月份平茬对柠条人工林地土壤细菌群落特性的影响[J]. 草业学报, 2022, 31(5): 40-50. |
[14] | 金玲, 陆颖, 马红彬, 谢应忠, 沈艳. 内蒙古鄂托克前旗荒漠草原植物群落的数量分类与排序[J]. 草业学报, 2022, 31(4): 12-21. |
[15] | 倪芳芳, 吕世杰, 屈志强, 白璐, 孟彪, 张博涵, 李治国. 不同载畜率下荒漠草原非生长季植物群落特征对近地面风沙通量的影响[J]. 草业学报, 2022, 31(3): 26-33. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||