草业学报 ›› 2023, Vol. 32 ›› Issue (3): 152-162.DOI: 10.11686/cyxb2022272
• 研究论文 • 上一篇
收稿日期:
2022-06-27
修回日期:
2022-09-02
出版日期:
2023-03-20
发布日期:
2022-12-30
通讯作者:
毛培胜
作者简介:
E-mail: maops@cau.edu.cn基金资助:
Shou-jiang SUN(), Yi-han TANG, Wen MA, Man-li LI, Pei-sheng MAO()
Received:
2022-06-27
Revised:
2022-09-02
Online:
2023-03-20
Published:
2022-12-30
Contact:
Pei-sheng MAO
摘要:
为探究胚根线粒体抗坏血酸-谷胱甘肽(AsA-GSH)循环响应低温胁迫的抗氧化作用机制,以紫花苜蓿种子为材料,研究了不同温度(10和20 ℃)处理下发芽特性、不同吸胀时间(6、12和24 h)胚根线粒体AsA-GSH循环酶活性、抗氧化物以及过氧化氢(H2O2)含量的变化规律。结果表明,吸胀12和24 h后,10 ℃处理的胚根线粒体H2O2含量高于20 ℃。吸胀24 h期间,10 ℃处理的胚根线粒体谷胱甘肽还原酶(GR)活性均低于20 ℃。吸胀12和24 h后,10 ℃处理的胚根线粒体抗坏血酸(AsA)含量均低于20 ℃。10 ℃条件下吸胀24 h后,与20 ℃处理相比,胚根线粒体谷胱甘肽(GSH)含量显著降低(P<0.05)。苜蓿种子在10 ℃条件下吸胀萌发时,主要通过降低AsA-GSH循环中GR、单脱氢抗坏血酸还原酶(MDHAR)、过氧化物酶(POD)活性和AsA、GSH含量,使胚根线粒体内的H2O2积累,产生氧化损伤,继而影响种子萌发的正常进程。
孙守江, 唐艺涵, 马馼, 李曼莉, 毛培胜. 紫花苜蓿种子吸胀期胚根线粒体AsA-GSH循环对低温胁迫的响应[J]. 草业学报, 2023, 32(3): 152-162.
Shou-jiang SUN, Yi-han TANG, Wen MA, Man-li LI, Pei-sheng MAO. Response of the mitochondrial AsA-GSH cycle during alfalfa seed germination under low temperature stress[J]. Acta Prataculturae Sinica, 2023, 32(3): 152-162.
图2 不同温度下紫花苜蓿种子发芽特性变化*表示不同温度处理之间差异显著(P<0.05)。* indicate significant differences under different temperature at the 0.05 level.
Fig.2 Changes of germination characteristics of alfalfa seeds under different temperature
图3 紫花苜蓿种子吸胀期间胚根线粒体内H2O2含量的变化*表示同一吸胀时间不同温度处理之间差异显著(P<0.05),下同。* indicate significant differences under different temperature at the 0.05 level. The same below.
Fig.3 Changes of H2O2 content in radicle mitochondrial of alfalfa seeds during imbibition
图8 苜蓿种子胚根线粒体AsA-GSH循环对低温胁迫的响应示意图I、II、III、IV和 V分别表示NADH、琥珀酸氧化还原酶、细胞色素C氧化还原酶、细胞色素C还原酶和ATP合成酶;□表示10 ℃/20 ℃,红色代表上升,白色代表不变,蓝色代表下降,从左到右依次为吸胀6、12和24 h。I, II, III, IV and V represent NADH, succinic acid oxidoreductase, cytochrome C oxidoreductase, cytochrome C reductase and ATP synthase, respectively. Square represents 10 ℃/20 ℃, red square represents a significance increase, white square represents insignificance decrease, blue square represents a significance decrease, from left to right: Imbibition 6, 12 and 24 h. MDHAR、DHAR、GSSG和DHA分别表示单脱氢抗坏血酸还原酶、脱氢抗坏血酸还原酶、谷胱甘肽和氧化型抗坏血酸。MDHAR, DHAR, GSSG and DHA represent monodehydroascorbate reductase, dehydroascorbate reductase, glutathione and oxidized ascorbate, respectively.
Fig.8 Response diagram of mitochondrial AsA-GSH cycle in alfalfa seed radicle to low temperature stress
1 | Jian L C. Advances of the studies on the mechanism of plant cold hardiness. Chinese Bulletin of Botany, 1992, 9(3): 17-22. |
简令成. 植物抗寒机理研究的新进展. 植物学通报, 1992, 9(3): 17-22. | |
2 | Du C F, Liu C Q, Xian S S, et al. Mining and cluster analysis of rapeseed bZIP transcription factors induced by low temperature. Journal of Plant Genetic Resources, 2016, 17(1): 153-161. |
杜春芳, 刘春晴, 咸拴狮, 等. 甘蓝型油菜低温诱导下的bZIP转录因子挖掘及聚类分析. 植物遗传资源学报, 2016, 17(1): 153-161. | |
3 | Tang L H, Zhao X M, Zhu Y, et al. Comparison of the relationship between leaf structure and cold tolerance of different cultivars of Paeonia lactiflora. Jiangsu Agricultural Sciences, 2011, 39(6): 283-285. |
唐立红, 赵雪梅, 朱月, 等. 不同品种紫斑牡丹叶片结构与耐寒性的关系比较. 江苏农业科学, 2011, 39(6): 283-285. | |
4 | Wu C T, Morris J R. Genes genetics and epigenetics: A correspondence. Science, 2001, 29(3): 1103-1105. |
5 | Liu W Y. The study on seed dormancy and breaking mechanisms of Medicago truncatula. Lanzhou: Gansu Agricultural University, 2015. |
刘文瑜. 蒺藜苜蓿种子休眠及破除机制研究. 兰州: 甘肃农业大学, 2015. | |
6 | Liang R F, Wu Z N, Li Z Y, et al. Effects of low-temperature and light on seed germination of Leymus chinensis. Chinese Journal of Grassland, 2021, 43(12): 33-39. |
梁润芳, 武自念, 李志勇, 等. 低温和光照对羊草种子萌发的影响. 中国草地学报, 2021, 43(12): 33-39. | |
7 | Ma F M, Wang R, Shi Z. Effects of low temperature stress on some physiological indexes of maize seedlings. Crops, 2007(5): 41-45. |
马凤鸣, 王瑞, 石振. 低温胁迫对玉米幼苗某些生理指标的影响. 作物杂志, 2007(5): 41-45. | |
8 | Han R. Studies on physio-biochemical changes, DNA damages and invigoration in artificial aged rice seeds. Hangzhou: Zhejiang University, 2012. |
韩瑞. 人工老化水稻种子生理生化变化、DNA损伤及活力恢复的研究. 杭州: 浙江大学, 2012. | |
9 | Hao N. Effect of temperature on seed germination and physiological character of different maize hybrid. Beijing: Chinese Academy of Agricultural Sciences, 2011. |
郝楠. 温度对不同玉米种子萌发及生理特性的影响. 北京: 中国农业科学院, 2011. | |
10 | Zhang Y, Zhang Y H, Miao T L, et al. Effect of low temperature treatment on germination and activity of valerian officinalis seeds. Forest By-Product and Speciality in China, 2019(4): 14-16. |
张影, 张跃华, 缪天琳, 等. 低温处理对缬草种子萌发与生理活性的影响. 中国林副特产, 2019(4): 14-16. | |
11 | Cao D D, Chen H Y, Zhang Z L, et al. Influences of low temperature on seed germination and seedling formation of Brassica campestris L. Shandong Agricultural Sciences, 2013, 45(9): 56-58. |
曹栋栋, 陈合云, 张振兰, 等. 低温对油菜种子萌发和成苗的影响. 山东农业科学, 2013, 45(9): 56-58. | |
12 | Wang G J, Wang J Y, Miao W, et al. Responses of antioxidant system to long-term cold water stress in new rice line J07-23 with strong cold tolerance. Acta Agronomica Sinica, 2013, 39(4): 753-759. |
王国骄, 王嘉宇, 苗微, 等. 强耐冷性水稻新品系J07-23抗氧化系统对长期冷水胁迫的响应. 作物学报, 2013, 39(4): 753-759. | |
13 | Shen W, Nada K, Tachibana S. Effect of cold treatment on enzymic and nonenzymic antioxidant activities in leaves of chilling-tolerant and chilling-sensitive cucumber (Cucumis sativus L.) cultivars. Journal of the Japanese Society for Horticultural Science, 1999, 68(5): 967-973. |
14 | Wu H, Hou L L, Zhou Y F, et al. Analysis of chilling-tolerance and determination of chilling-tolerance evaluation indicators in cotton of different genotypes. Scientia Agricultura Sinica, 2012, 45(9): 1703-1713. |
武辉, 侯丽丽, 周艳飞, 等. 不同棉花基因型幼苗耐寒性分析及其鉴定指标筛选. 中国农业科学, 2012, 45(9): 1703-1713. | |
15 | Tian H, Liu Y, Zhang H S, et al. Study on the character water absorption and germination temperature of Bromus cartharticus seeds. Chinese Journal of Grassland, 2009, 31(2): 53-58. |
田宏, 刘洋, 张鹤山, 等. 扁穗雀麦种子萌发吸水特性与萌发温度的研究. 中国草地学报, 2009, 31(2): 53-58. | |
16 | Zhang S X, Nima P C, Xu Y M, et al. Physiological response to low temperature stress and cold tolerance evaluation in three Elymus species. Pratacultural Science, 2016, 33(6): 1154-1163. |
张尚雄, 尼玛平措, 徐雅梅, 等. 3个披碱草属牧草对低温胁迫的生理响应及苗期抗寒性评价. 草业科学, 2016, 33(6): 1154-1163. | |
17 | Association I S T. International rules for seed testing. Switzerland: International Seed Testing Association, 2021. |
18 | Lyu W, Selinski J, Li L, et al. Isolation and respiratory measurements of mitochondria from Arabidopsis thaliana. Journal of Visualized Experiments Jove, 2018(131): 996-1125. |
19 | Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology, 1984, 98(4): 1222-1227. |
20 | Pu F, Ren X. Ascorbate levels and activities of enzymes related to the glutathione-ascorbate cycle in fruits of Chinese persimmon cultivars. Horticulture Environment and Biotechnology, 2014, 55(4): 315-321. |
21 | Woo S Y, Lee D K, Lee Y K. Net photosynthetic rate, ascorbate peroxidase and glutathione reductase activities of Erythrina orientalisin polluted and non-polluted areas. Photosynthetica, 2007, 45(2): 293-295. |
22 | Baker M A, Cerniglia G J, Zaman A. Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Analytical Biochemistry, 1990, 190(2): 360-365. |
23 | Turcsanyi E. Does ascorbate in the mesophyll cell walls form the first line of defence against ozone? Testing the concept using broad bean (Vicia faba L.). Journal of Experimental Botany, 2000, 51(346): 901-910. |
24 | Qu F, Shan X Q. Determination of active oxygen species and their basic principles. Chinese Journal of Analytical Chemistry, 2002(12): 1507-1514. |
屈锋, 单孝全. 活性氧测定的基本原理与方法. 分析化学, 2002(12): 1507-1514. | |
25 | Apel K, Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 2004, 55: 373-399. |
26 | Li J S, Geng G D, Cheng Z Z. Effects of chilling stress on chill-resistance physiological and biochemical indexes of eggplant seedlings. Journal of Northwest A & F University (Natural Science), 2003(1): 90-92. |
李建设, 耿广东, 程智慧. 低温胁迫对茄子幼苗抗寒性生理生化指标的影响. 西北农林科技大学学报, 2003(1): 90-92. | |
27 | Li J Y, Feng G J, Liu D J, et al. Low temperature stress: Effects on physiological characteristics and germination ability of common bean seeds during imbibition. Chinese Agricultural Science Bulletin, 2020, 36(1): 24-29. |
李佳荫, 冯国军, 刘大军, 等. 低温胁迫对菜豆种子吸胀期间生理特性和发芽能力的影响. 中国农学通报, 2020, 36(1):24-29. | |
28 | Zhao W J. Effects of high and low temperature stress on photosynthesis and photoprotection mechanism of Medicago sativa at seedlings period. Urumqi: Xinjiang Agricultural University, 2021. |
赵文静. 高、低温胁迫对紫花苜蓿幼苗光合作用和光保护机制的影响. 乌鲁木齐: 新疆农业大学, 2021. | |
29 | Gao Q, Xu H Y, Li Z S, et al. Effects of chilling stress on the germination of alfalfa seeds. Grassland and Turf, 2020, 40(4): 34-46. |
高茜, 徐洪雨, 李振松, 等. 低温胁迫对紫花苜蓿种子萌发的影响. 草原与草坪, 2020, 40(4): 34-46. | |
30 | Wang L J. Herbage seed germination responses to temperature and drought stress. Hohhot: Inner Mongolia Agricultural University, 2008. |
王丽娟. 牧草种子萌发对温度和水分胁迫的反应. 呼和浩特: 内蒙古农业大学, 2008. | |
31 | Dutilleul C, Garmier M, Noctor G, et al. Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation. The Plant Cell, 2003, 15(5): 1212-1226. |
32 | Neill S, Desikan R, Hancock J. Hydrogen peroxide signaling. Current Opinion in Plant Biology, 2002, 5(5): 388-395. |
33 | Lou H, Zhao Z Q, Zhu J C, et al. Melatonin under low temperature stress: Effects on germination characteristics of cotton seeds. China Agricultural Science Bulletin, 2021, 37(35): 13-19. |
娄慧, 赵曾强, 朱金成, 等. 褪黑素对低温胁迫下棉花种子萌发特性的影响. 中国农学通报, 2021, 37(35): 13-19. | |
34 | Hao J, Zhang L J, Xie F T. Effects of the low temperature on defense enzymes activities of different chilling-tolerant soybean cultivars during the germination. Soybean Science, 2007(2): 171-175. |
郝晶, 张立军, 谢甫绨. 低温对大豆不同耐冷性中萌发期保护酶活性的影响. 大豆科学, 2007(2): 171-175. | |
35 | Zhao B L, Liu P, Wang W J, et al. Effects of 5-aminolevulinic acid on the AsA-GSH cycle in grape leaves under salt stress. Plant Physiology Journal, 2015, 51(3): 385-390. |
赵宝龙, 刘鹏, 王文静, 等. 5-氨基乙酰丙酸(ALA)对盐胁迫下葡萄叶片中AsA-GSH循环的影响. 植物生理学报, 2015, 51(3): 385-390. | |
36 | Shan X, Qin W B, Zhang Z C, et al. Effects of low temperature stress on leaf AsA-GSH cycle metabolism in different varieties Brassica oleracea L. Journal of Southern Agriculture, 2018, 49(11): 2230-2235. |
山溪, 秦文斌, 张振超, 等. 低温胁迫对不同品系甘蓝幼叶AsA-GSH循环代谢的影响. 南方农业学报, 2018, 49(11): 2230-2235. | |
37 | Xie L, Li J P, Han D Z, et al. Comprehensive evaluation of cold tolerance of Northeast Spring soybean at germination stage and excellent germplasm screening. Heilongjiang Agricultural Sciences, 2022(7): 1-7. |
谢路, 李健平, 韩德志, 等. 东北春大豆萌发期耐冷性综合评价及优异种质筛选. 黑龙江农业科学, 2022(7): 1-7. | |
38 | Guo L H, Wang D K, Wang D B, et al. Changes of ascorbic acid and glutathione in cold-shock-induced chilling resistance in wheat seedlings. Journal of Kunming Teachers College, 2007(4): 66-68. |
郭丽红, 王定康, 王德斌, 等. 抗坏血酸和谷胱甘肽在小麦幼苗冷激诱导抗冷性中的变化. 昆明师范高等专科学校学报, 2007(4): 66-68. | |
39 | Du X M, Yin W X, Zhao Y X, et al. The production and scavenging of reactive oxygen species in plants. Chinese Journal of Biotechnology, 2001, 17(2): 121-125. |
杜秀敏, 殷文璇, 赵彦修, 等. 植物中活性氧的产生及清除机制. 生物工程学报, 2001, 17(2): 121-125. |
[1] | 王园, 王晶, 李淑霞. 紫花苜蓿MsBBX24基因的克隆及耐盐性分析[J]. 草业学报, 2023, 32(3): 107-117. |
[2] | 田政, 杨正禹, 陆忠杰, 罗奔, 张茂, 董瑞. 44个紫花苜蓿品种的酸铝适应性与耐受性评价[J]. 草业学报, 2023, 32(3): 142-151. |
[3] | 王晓龙, 杨曌, 来永才, 李红, 钟鹏, 徐艳霞, 柴华, 李莎莎, 吴玥, 宋敏超, 周景明. 不同秋眠等级苜蓿根系性状对越冬的影响[J]. 草业学报, 2023, 32(1): 144-153. |
[4] | 孙延亮, 赵俊威, 刘选帅, 李生仪, 马春晖, 王旭哲, 张前兵. 施氮对苜蓿初花期光合日变化、叶片形态及干物质产量的影响[J]. 草业学报, 2022, 31(9): 63-75. |
[5] | 王星, 黄薇, 余淑艳, 李小云, 高雪芹, 伏兵哲. 宁夏地区地下滴灌水肥耦合对紫花苜蓿种子产量及构成因素的影响[J]. 草业学报, 2022, 31(9): 76-85. |
[6] | 赵建涛, 岳亚飞, 张前兵, 马春晖. 不同秋眠级紫花苜蓿品种抗寒性对新疆北疆地区覆雪厚度的响应[J]. 草业学报, 2022, 31(8): 24-34. |
[7] | 刘彩婷, 毛丽萍, 阿依谢木, 于应文, 沈禹颖. 紫花苜蓿与垂穗披碱草混播比例对其抗寒生长生理特征的影响[J]. 草业学报, 2022, 31(7): 133-143. |
[8] | 王雪萌, 何欣, 张涵, 宋瑞, 毛培胜, 贾善刚. 基于多光谱成像技术快速无损检测紫花苜蓿人工老化种子[J]. 草业学报, 2022, 31(7): 197-208. |
[9] | 孙晓梵, 张一龙, 李培英, 孙宗玖. 不同施氮量对干旱下狗牙根抗氧化酶活性及渗透调节物质含量的影响[J]. 草业学报, 2022, 31(6): 69-78. |
[10] | 李满有, 李东宁, 王斌, 李小云, 沈笑天, 曹立娟, 倪旺, 王腾飞, 兰剑. 不同苜蓿品种混播和播种量对牧草产量及品质的影响[J]. 草业学报, 2022, 31(5): 61-75. |
[11] | 孙洪仁, 王显国, 卜耀军, 乔楠, 任波. 黄土高原紫花苜蓿土壤氮素丰缺指标和推荐施氮量初步研究[J]. 草业学报, 2022, 31(4): 32-42. |
[12] | 高丽敏, 陈春, 沈益新. 氮磷肥对季节性栽培紫花苜蓿生长及再生的影响[J]. 草业学报, 2022, 31(4): 43-52. |
[13] | 欧成明, 赵美琦, 孙铭, 毛培胜. 抗坏血酸和水杨酸丸衣对NaCl胁迫下紫花苜蓿种子发芽特性的影响[J]. 草业学报, 2022, 31(4): 93-101. |
[14] | 童长春, 刘晓静, 吴勇, 赵雅姣, 王静. 内源异黄酮对紫花苜蓿结瘤固氮及氮效率的调控研究[J]. 草业学报, 2022, 31(3): 124-135. |
[15] | 撖冬荣, 姚拓, 李海云, 黄书超, 杨琰珊, 高亚敏, 李昌宁, 张银翠. 微生物肥料与化肥减量配施对多年生黑麦草生长的影响[J]. 草业学报, 2022, 31(3): 136-143. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||