草业学报 ›› 2023, Vol. 32 ›› Issue (5): 83-93.DOI: 10.11686/cyxb2022349
郭鑫1(), 罗欢2, 许雪梅1, 马爱霞3, 尚振艳1, 韩天虎3, 牛得草1, 文海燕1, 李旭东1()
收稿日期:
2022-08-30
修回日期:
2022-10-31
出版日期:
2023-05-20
发布日期:
2023-03-20
通讯作者:
李旭东
作者简介:
E-mail: lixudong@lzu.edu.cn基金资助:
Xin GUO1(), Huan LUO2, Xue-mei XU1, Ai-xia MA3, Zhen-yan SHANG1, Tian-hu HAN3, De-cao NIU1, Hai-yan WEN1, Xu-dong LI1()
Received:
2022-08-30
Revised:
2022-10-31
Online:
2023-05-20
Published:
2023-03-20
Contact:
Xu-dong LI
摘要:
植物凋落物是土壤有机碳(SOC)最重要的来源,凋落物的品质决定新碳(C)进入到土壤中形成SOC的数量和稳定性。本研究选取陇中黄土高原典型草原不同品质的凋落物(AS:铁杆蒿茎秆、SR:长芒草根、SL:长芒草叶片和SAL:苦豆子叶片),将凋落物与土壤共同培养,研究不同品质凋落物分解过程及其对SOC含量和稳定性的影响。结果表明:与低品质凋落物(AS和SR)相比,高品质凋落物(SL和SAL)因其较高的易分解可溶物含量和较低的碳氮比而具有相对较高的分解速率。分解2年后,各处理SOC含量均显著增加,高品质凋落物处理下SOC的增幅和新C形成效率均显著高于低品质凋落物,说明高品质凋落物分解后对SOC固存有较高的贡献。各处理对不同粒径土壤团聚体质量无显著影响。分解2年后,<0.053 mm土壤团聚体SOC含量在各处理下均显著升高,高品质凋落物处理较低品质凋落物处理下<0.053 mm土壤团聚体具有更高的SOC含量和新C形成效率;说明与低品质凋落物相比,高品质凋落物分解后更容易形成稳定的矿质结合态SOC。
郭鑫, 罗欢, 许雪梅, 马爱霞, 尚振艳, 韩天虎, 牛得草, 文海燕, 李旭东. 不同品质凋落物分解对黄土高原草地土壤有机碳及其稳定性的影响[J]. 草业学报, 2023, 32(5): 83-93.
Xin GUO, Huan LUO, Xue-mei XU, Ai-xia MA, Zhen-yan SHANG, Tian-hu HAN, De-cao NIU, Hai-yan WEN, Xu-dong LI. Effects of litter decomposition with different qualities on soil organic carbon content and its stability in grassland on the Loess Plateau[J]. Acta Prataculturae Sinica, 2023, 32(5): 83-93.
凋落物 Litter | 可溶物 Soluble component (%) | 半纤维素 Hemicellulose (%) | 纤维素 Cellulose (%) | 木质素 Lignin (%) | 有机碳 Soil organic carbon (%) | 全氮 Total nitrogen (%) | 碳氮比Carbon/nitrogen (C/N) |
---|---|---|---|---|---|---|---|
AS | 25.57±1.64c | 17.76±0.32c | 37.70±1.13a | 17.16±0.37a | 48.99±0.09a | 0.70±0.01c | 70.05±1.12a |
SR | 20.56±1.34d | 25.53±0.98b | 33.51±0.67a | 15.26±0.14b | 40.47±0.22d | 0.71±0.01c | 55.05±1.48b |
SL | 30.99±0.77b | 33.06±0.29a | 29.67±0.74b | 3.28±0.27d | 45.86±0.08b | 1.22±0.01b | 37.37±0.22c |
SAL | 66.40±0.99a | 10.37±0.31d | 17.23±0.78c | 4.44±0.22c | 43.56±0.38c | 3.93±0.01a | 11.08±0.05d |
表1 4种凋落物的初始化学组成
Table 1 Initial chemical characteristics of the four litters
凋落物 Litter | 可溶物 Soluble component (%) | 半纤维素 Hemicellulose (%) | 纤维素 Cellulose (%) | 木质素 Lignin (%) | 有机碳 Soil organic carbon (%) | 全氮 Total nitrogen (%) | 碳氮比Carbon/nitrogen (C/N) |
---|---|---|---|---|---|---|---|
AS | 25.57±1.64c | 17.76±0.32c | 37.70±1.13a | 17.16±0.37a | 48.99±0.09a | 0.70±0.01c | 70.05±1.12a |
SR | 20.56±1.34d | 25.53±0.98b | 33.51±0.67a | 15.26±0.14b | 40.47±0.22d | 0.71±0.01c | 55.05±1.48b |
SL | 30.99±0.77b | 33.06±0.29a | 29.67±0.74b | 3.28±0.27d | 45.86±0.08b | 1.22±0.01b | 37.37±0.22c |
SAL | 66.40±0.99a | 10.37±0.31d | 17.23±0.78c | 4.44±0.22c | 43.56±0.38c | 3.93±0.01a | 11.08±0.05d |
图1 凋落物分解过程中的干物质残留率AS:铁杆蒿茎秆;SR:长芒草根;SL:长芒草叶片;SAL:苦豆子叶片。不同小写字母表示同一处理在不同取样时间差异显著(P<0.05),不同大写字母表示不同处理在同一取样时间差异显著(P<0.05)。下同。AS: T. vulgare stem; SR: S. bungeana root; SL: S. bungeana leaf; SAL: S. alopecuroides leaf. Different lowercase letters indicate that the same treatment has significant difference at different sampling times (P<0.05), and different uppercase letters indicate that different treatments have significant difference at the same sampling time (P<0.05). The same below.
Fig.1 Dry matter residue rates of litters during incubation
凋落物 Litter | 分解时间 Decomposition time (d) | Olson 拟合方程 Olson fitting equation | 分解系数 Decomposition coefficient (k) | 凋落物 Litter | 分解时间 Decomposition time (d) | Olson 拟合方程 Olson fitting equation | 分解系数 Decomposition coefficient (k) |
---|---|---|---|---|---|---|---|
AS | 60 | y=4.0804e-0.0701t | 0.0701 | SL | 60 | y=4.3742e-0.1003t | 0.1003 |
365 | y=4.0804e-0.0151t | 0.0151 | 365 | y=4.3742e-0.0295t | 0.0295 | ||
730 | y=4.0804e-0.0270t | 0.0270 | 730 | y=4.3742e-0.0442t | 0.0442 | ||
SR | 60 | y=4.9423e-0.0955t | 0.0955 | SAL | 60 | y=4.5816e-0.1104t | 0.1104 |
365 | y=4.9423e-0.0207t | 0.0207 | 365 | y=4.5816e-0.0356t | 0.0356 | ||
730 | y=4.9423e-0.0249t | 0.0249 | 730 | y=4.5816e-0.0697t | 0.0697 |
表2 凋落物分解系数
Table 2 Decomposition coefficient of litters
凋落物 Litter | 分解时间 Decomposition time (d) | Olson 拟合方程 Olson fitting equation | 分解系数 Decomposition coefficient (k) | 凋落物 Litter | 分解时间 Decomposition time (d) | Olson 拟合方程 Olson fitting equation | 分解系数 Decomposition coefficient (k) |
---|---|---|---|---|---|---|---|
AS | 60 | y=4.0804e-0.0701t | 0.0701 | SL | 60 | y=4.3742e-0.1003t | 0.1003 |
365 | y=4.0804e-0.0151t | 0.0151 | 365 | y=4.3742e-0.0295t | 0.0295 | ||
730 | y=4.0804e-0.0270t | 0.0270 | 730 | y=4.3742e-0.0442t | 0.0442 | ||
SR | 60 | y=4.9423e-0.0955t | 0.0955 | SAL | 60 | y=4.5816e-0.1104t | 0.1104 |
365 | y=4.9423e-0.0207t | 0.0207 | 365 | y=4.5816e-0.0356t | 0.0356 | ||
730 | y=4.9423e-0.0249t | 0.0249 | 730 | y=4.5816e-0.0697t | 0.0697 |
指标 Index | 可溶物 Soluble component | 半纤维素 Hemicellulose | 纤维素 Cellulose | 木质素 Lignin | C/N |
---|---|---|---|---|---|
分解系数Decomposition coefficient (k, 730 d) |
表3 初始凋落物品质与凋落物分解速率之间的相关性
Table 3 Correlation coefficients between initial litter quality and litter decomposition rate
指标 Index | 可溶物 Soluble component | 半纤维素 Hemicellulose | 纤维素 Cellulose | 木质素 Lignin | C/N |
---|---|---|---|---|---|
分解系数Decomposition coefficient (k, 730 d) |
图2 凋落物分解过程中化学组成的变化各组分质量为全部培养凋落物在不同取样时间所含某组分的质量(g)。The mass of each component is the mass of a component contained in all litters for incubation at different sampling times.
Fig.2 Chemical composition changes of litters during incubation
凋落物 Litter | 分解时间 Decomposition time (d) | 0.25~2.00 mm | 0.053~0.250 mm | <0.053 mm | |||
---|---|---|---|---|---|---|---|
团聚体质量 Mass fraction of aggregation (g) | SOC (g·kg-1) | 团聚体质量 Mass fraction of aggregation (g) | SOC (g·kg-1) | 团聚体质量 Mass fraction of aggregation (g) | SOC (g·kg-1) | ||
AS | 730 | 13.04±0.32a | 5.59±0.05c | 21.43±0.26a | 5.51±0.11b | 14.73±0.21a | 6.36±0.27b |
SR | 730 | 13.08±0.06a | 6.07±0.15b | 22.10±0.09a | 5.26±0.12c | 14.82±0.13a | 6.42±0.09b |
SL | 730 | 12.64±0.04a | 6.05±0.09b | 21.65±0.68a | 5.03±0.13c | 14.70±0.22a | 6.72±0.02a |
SAL | 730 | 13.43±0.10a | 6.40±0.08a | 21.18±0.19a | 6.12±0.11a | 15.30±0.22a | 7.01±0.14a |
CK | 730 | 13.79±0.13a | 5.27±0.10c | 21.09±0.30a | 5.17±0.02c | 15.12±0.12a | 5.22±0.09c |
表4 不同粒径土壤团聚体的质量和SOC含量
Table 4 Weights and SOC contents of soil aggregates with different sizes
凋落物 Litter | 分解时间 Decomposition time (d) | 0.25~2.00 mm | 0.053~0.250 mm | <0.053 mm | |||
---|---|---|---|---|---|---|---|
团聚体质量 Mass fraction of aggregation (g) | SOC (g·kg-1) | 团聚体质量 Mass fraction of aggregation (g) | SOC (g·kg-1) | 团聚体质量 Mass fraction of aggregation (g) | SOC (g·kg-1) | ||
AS | 730 | 13.04±0.32a | 5.59±0.05c | 21.43±0.26a | 5.51±0.11b | 14.73±0.21a | 6.36±0.27b |
SR | 730 | 13.08±0.06a | 6.07±0.15b | 22.10±0.09a | 5.26±0.12c | 14.82±0.13a | 6.42±0.09b |
SL | 730 | 12.64±0.04a | 6.05±0.09b | 21.65±0.68a | 5.03±0.13c | 14.70±0.22a | 6.72±0.02a |
SAL | 730 | 13.43±0.10a | 6.40±0.08a | 21.18±0.19a | 6.12±0.11a | 15.30±0.22a | 7.01±0.14a |
CK | 730 | 13.79±0.13a | 5.27±0.10c | 21.09±0.30a | 5.17±0.02c | 15.12±0.12a | 5.22±0.09c |
图4 全土及不同粒径土壤团聚体的新C形成效率(730 d)不同小写字母表示不同处理间差异显著(P<0.05),不同大写字母表示同一处理在不同土壤及团聚体组分间差异显著(P<0.05)。Different lowercase letters indicate that the different treatment has significant difference (P<0.05), and different uppercase letters indicate that the same treatment has significant difference of whole soil and soil aggregates with different sizes (P<0.05).
Fig.4 New carbon formation efficiency of whole soil and soil aggregates with different sizes (730 d)
1 | Li S S. Review on effect of drought on soil aggregates stability and its biological regulation mechanism. Grassland and Prataclture, 2020, 32(3): 12-14, 33. |
李耸耸. 干旱对土壤团聚体稳定性的影响及其调控机制. 草原与草业, 2020, 32(3): 12-14, 33. | |
2 | Su Z X, Su B Q, Shangguan Z P, et al. Advances in effects of plant litter decomposition on the stability of soil organic carbon. Research of Soil and Water Conservation, 2022, 29(2): 406-413. |
苏卓侠, 苏冰倩, 上官周平. 植物凋落物分解对土壤有机碳稳定性影响的研究进展. 水土保持研究, 2022, 29(2): 406-413. | |
3 | Li L J, Zeng D H, Yu Z Y, et al. Impact of litter quality and soil nutrient availability on leaf decomposition rate in a semi-arid grassland of Northeast China. Journal of Arid Environments, 2011, 75(9): 787-792. |
4 | Soong J L, Parton W J, Calderon F, et al. A new conceptual model on the fate and controls of fresh and pyrolized plant litter decomposition. Biogeochemistry, 2015, 124(1/2/3): 27-44. |
5 | Haddix M L, Paul E A, Cotrufo M F. Dual, differential isotope labeling shows the preferential movement of labile plant constituents into mineral-bonded soil organic matter. Global Change Biology, 2016, 22(6): 2301-2312. |
6 | Song M L, Wang Y Q, Wang H S, et al. Effect of Epichloë endophyte on the litter decomposition of Stipa purpurea in alpine grassland. Acta Prataculturae Sinica, 2021, 30(9): 150-158. |
宋梅玲, 王玉琴, 王宏生, 等. 内生真菌对高寒草地紫花针茅凋落物分解的影响. 草业学报, 2021, 30(9): 150-158. | |
7 | Abiven S, Menasseri-Aubry S, Chenu C. The effects of organic inputs over time on soil aggregate stability-A literature analysis. Soil Biology & Biochemistry, 2009, 41(1): 1-12. |
8 | Prescott C E. Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry, 2010, 101(1/2/3): 133-149. |
9 | Wei C F, Shao J A, Ni J P, et al. Soil aggregation and its relationship with organic carbon of purple soils in the Sichuan Basin, China. Agricultural Sciences in China, 2008, 7(8): 987-998. |
10 | Ji B, Shi L, Xu J P, et al. Distribution characteristics of soil aggregates and its organic carbon in typical natural grassland of Ningxia. Acta Ecologica Sinica, 2021, 41(19): 7669-7678. |
季波, 时龙, 徐金鹏, 等. 宁夏典型天然草地土壤团聚体稳定性及其有机碳分布特征. 生态学报, 2021, 41(19): 7669-7678. | |
11 | Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biology & Biochemistry, 2000, 32(14): 2099-2103. |
12 | Cotrufo M F, Wallenstein M D, Boot C M, et al. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 2013, 19(4): 988-995. |
13 | Cai W T, Lai L M, Li H Y, et al. Progress of research on shrub encroachment in grassland. Chinese Journal of Applied and Environmental Biology, 2016, 22(4): 531-537. |
蔡文涛, 来利明, 李贺祎, 等. 草地灌丛化研究进展. 应用与环境生物学报, 2016, 22(4): 531-537. | |
14 | Six J, Conant R T, Paul E A, et al. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant & Soil, 2002, 241(2): 155-176. |
15 | Li X D, Fu H, Li X D, et al. Effects of land-use regimes on carbon sequestration in the Loess Plateau, northern China. New Zealand Journal of Agricultural Research, 2008, 51(1): 45-52. |
16 | Chung H, Ngo K J, Plante A, et al. Indications for soil carbon saturation in a temperate agroecosystem. Soil Science Society of America Journal, 2009, 74: 130-138. |
17 | Ji S Y, Zhang Q, Jin D S, et al. Effects of planting maize on the stability of soil aggregates and organic carbon distribution in reclaimed soil. Journal of Shanxi Agricultural Sciences, 2020, 48(2): 228-232. |
籍晟煜, 张强, 靳东升, 等.种植玉米对矿区复垦土壤团聚体稳定性及有机碳分布的影响. 山西农业科学, 2020, 48(2): 228-232. | |
18 | Li X D, Fu H, Guo D, et al. Partitioning soil respiration and assessing the carbon balance in a Setaria italica (L.) Beauv. Cropland on the Loess Plateau, Northern China. Soil Biology & Biochemistry, 2010, 42(2): 337-346. |
19 | Singh L, Thakur D, Sharma M K, et al. Dynamics of leaf litter decomposition in the timberline zone of western Himalaya. Acta Oecologica, 2021, 111(2021): 103715. |
20 | Haddix M L, Gregorich E G, Helgason B L, et al. Climate, carbon content, and soil texture control the independent formation and persistence of particulate and mineral-associated organic matter in soil. Geoderma, 2020, 363(11): 114160. |
21 | Yue K X, Gong J R, Yu S Y, et al. Effects of litter quality and soil enzyme activity on litter decomposition rate in typical grassland subject to nitrogen addition. Acta Prataculturae Sinica, 2020, 29(6): 71-82. |
岳可欣, 龚吉蕊, 于上媛, 等. 氮添加下典型草原凋落物质量和土壤酶活性对凋落物分解速率的影响. 草业学报, 2020, 29(6): 71-82. | |
22 | Parton W, Silver W L. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 2007, 315(5814): 361-364. |
23 | Mckee G A, Soong J L, Caldéron F, et al. An integrated spectroscopic and wet chemical approach to investigate grass litter decomposition chemistry. Biogeochemistry, 2016, 128(1/2): 107-123. |
24 | Bray S R, Kitajima K, Mack M C. Temporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate. Soil Biology & Biochemistry, 2012, 44: 30-37. |
25 | Cotrufo M F, Ranalli M G, Michelle L, et al. Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience, 2019, 12(12): 989-994. |
26 | Potthoff M, Steenwerth K L, Jackson L E, et al. Soil microbial community composition as affected by restoration practices in California grassland. Soil Biology & Biochemistry, 2006, 38(7): 1851-1860. |
27 | Swift M J, Heal O W, Anderson J M. Decomposition in terrestrial ecosystems. Studies in Ecology, 1979, 5(14): 2772-2774. |
28 | Jin V L, Haney R L, Fay P A, et al. Soil type and moisture regime control microbial C and N mineralization in grassland soils more than atmospheric CO2-induced changes in litter quality. Soil Biology & Biochemistry, 2013, 58: 172-180. |
29 | Chen H, Ma W M, Zhou Q P, et al. Shrub encroachment effects on the stability of aggregates and the differentiation of Fe and Al oxides in Qinghai-Tibet alpine grassland. Acta Prataculturae Sinica, 2020, 29(9): 73-84. |
陈红, 马文明, 周青平, 等. 高寒草地灌丛化对土壤团聚体稳定性及其铁铝氧化物分异的研究. 草业学报, 2020, 29(9): 73-84. | |
30 | Cotrufo M F, Soong J, Horton A, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 2015, 8: 776-779. |
31 | Lützow M V, KögeIkgnabner I, Ekschmitt K, et al. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions-a review. European Journal of Soil Science, 2010, 57(4): 426-445. |
32 | Six J, Guggenberger G, Paustian K, et al. Sources and composition of soil organic matter fractions between and within soil aggregates. European Journal of Soil Science, 2001, 52(4): 607-618. |
33 | Castellano M J, Mueller K E, Olk D C, et al. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Global change biology, 2015, 21(9): 3200-3209. |
34 | Elaine M, Clemens S, David W, et al. The influence of above-ground residue input and incorporation on GHG fluxes and stable SOM formation in a sandy soil. Soil Biology & Biochemistry, 2016, 101: 104-113. |
35 | Margit von L, Ingrid K, Klemens E, et al. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biology & Biochemistry, 2007, 39(9): 2183-2207. |
36 | Sariyildiz T, Anderson J M. Interactions between litter quality, decomposition and soil fertility: A laboratory study. Soil Biology and Biochemistry, 2003, 35(3): 391-399. |
[1] | 江奥, 敬路淮, 泽让东科, 田黎明. 放牧影响草地凋落物分解研究进展[J]. 草业学报, 2023, 32(4): 208-220. |
[2] | 杜鹏冲, 潘昱臻, 侯双利, 王智慧, 王洪义. 氮磷添加对呼伦贝尔草地凋落物分解的影响[J]. 草业学报, 2023, 32(2): 44-53. |
[3] | 张勇, 王海娣, 高玉红, 吴兵, 剡斌, 王一帆, 崔政军, 文泽东. 多元胡麻轮作模式对土壤团聚体特征及氮素含量的影响[J]. 草业学报, 2023, 32(1): 75-88. |
[4] | 韩小雨, 郭宁, 李冬冬, 谢明阳, 焦峰. 氮添加对内蒙古不同草原生物量及土壤碳氮变化特征的影响[J]. 草业学报, 2022, 31(1): 13-25. |
[5] | 王星, 于双, 许冬梅, 宋珂辰. 不同恢复措施对退化荒漠草原土壤碳氮及其组分特征的影响[J]. 草业学报, 2022, 31(1): 26-35. |
[6] | 马文明, 刘超文, 周青平, 邓增卓玛, 唐思洪, 迪力亚尔·莫合塔尔null, 侯晨. 高寒草地灌丛化对土壤团聚体生态化学计量学及酶活性的影响[J]. 草业学报, 2022, 31(1): 57-68. |
[7] | 宋梅玲, 王玉琴, 王宏生, 鲍根生. 内生真菌对高寒草地紫花针茅凋落物分解的影响[J]. 草业学报, 2021, 30(9): 150-158. |
[8] | 刘慧霞, 董乙强, 崔雨萱, 刘星宏, 何盘星, 孙强, 孙宗玖. 新疆阿勒泰地区荒漠草地土壤有机碳特征及其环境影响因素分析[J]. 草业学报, 2021, 30(10): 41-52. |
[9] | 季波, 何建龙, 吴旭东, 王占军, 谢应忠, 蒋齐. 宁夏典型天然草地土壤有机碳及其活性组分变化特征[J]. 草业学报, 2021, 30(1): 24-35. |
[10] | 岳可欣, 龚吉蕊, 于上媛, 宝音陶格涛, 杨波, 王彪, 朱趁趁, 张子荷, 矢佳昱. 氮添加下典型草原凋落物质量和土壤酶活性对凋落物分解速率的影响[J]. 草业学报, 2020, 29(6): 71-82. |
[11] | 杨阳, 田莉华, 田浩琦, 孙怀恩, 赵景学, 周青平. 增温对川西北高寒草甸草场植物凋落物分解的影响[J]. 草业学报, 2020, 29(10): 35-46. |
[12] | 王晓娇, 齐鹏, 蔡立群, 陈晓龙, 谢军红, 甘慧炯, 张仁陟. 培肥措施对旱地农田产量可持续性及土壤有机碳库稳定性的影响[J]. 草业学报, 2020, 29(10): 58-69. |
[13] | 王鑫, 罗雪萍, 字洪标, 杨文高, 胡雷, 王长庭. 青海森林凋落物生态化学计量特征及其影响因子[J]. 草业学报, 2019, 28(8): 1-14. |
[14] | 王晓芳, 马红彬, 沈艳, 许冬梅, 谢应忠, 李建平, 李小伟. 不同轮牧方式对荒漠草原植物群落特征的影响[J]. 草业学报, 2019, 28(4): 23-33. |
[15] | 于双, 许冬梅, 许爱云, 刘金龙, 陶利波. 不同恢复措施对宁夏荒漠草原土壤碳氮储量的影响[J]. 草业学报, 2019, 28(3): 12-19. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||