草业学报 ›› 2023, Vol. 32 ›› Issue (5): 94-105.DOI: 10.11686/cyxb2022228
收稿日期:
2022-05-24
修回日期:
2022-07-08
出版日期:
2023-05-20
发布日期:
2023-03-20
通讯作者:
周正朝
作者简介:
E-mail: zczhou@snnu.edu.cn基金资助:
Yu-ying CAO(), Xue-meng SU, Zheng-chao ZHOU(), Qun-wei ZHENG, Jia-hui YUE
Received:
2022-05-24
Revised:
2022-07-08
Online:
2023-05-20
Published:
2023-03-20
Contact:
Zheng-chao ZHOU
摘要:
为探究黄土高原草本植物根-土复合体抗剪性能的空间差异性,由北至南分别以神木六道沟(砂壤土)、安塞坊塔(粉壤土)和永寿墚(粘壤土)3个不同土壤质地带的土壤为对象,采用盆栽的方式分别种植须根系的黑麦草和直根系的紫花苜蓿,并以裸地为对照。在种植4个月后,测定0~10 cm、10~20 cm和20~30 cm土层根-土复合体的土壤理化性质、根系特征和抗剪强度(粘聚力和内摩擦角)。结果表明:1)与裸地相比,种植黑麦草和紫花苜蓿后,有机质(SOM)、平均重量直径(MWD)和粘聚力(c)均得到增加,但内摩擦角(φ)变化较小,植物对土壤理化性质和抗剪强度的影响效应随土层深度的增加逐渐减小,黑麦草对改善土壤理化性质和抗剪强度的效果优于紫花苜蓿;2)在砂壤土、粉壤土和粘壤土质地下c呈现增加的趋势,根系参数和容重(BD)呈现减小的趋势,SOM和MWD表现为粘壤土>砂壤土>粉壤土,SOM、MWD和c增加值最大的为粘壤土;3)主成分分析显示砂壤土的根系特征指标对根-土复合体抗剪强度的贡献度比较高,粉壤土和粘壤土则是土壤特征指标对根-土复合体抗剪强度的贡献度比较高。研究结果综合评价了黄土高原草本植物根-土复合体的抗剪性能,为黄土高原水土保持研究提供了基础数据和理论参考。
曹玉莹, 苏雪萌, 周正朝, 郑群威, 岳佳辉. 黄土高原典型草本植物根-土复合体抗剪性能的空间差异性及其影响因素研究[J]. 草业学报, 2023, 32(5): 94-105.
Yu-ying CAO, Xue-meng SU, Zheng-chao ZHOU, Qun-wei ZHENG, Jia-hui YUE. Spatial differences in, and factors influencing, the shear strength of typical herb root-soil complexes in the Loess Plateau of China[J]. Acta Prataculturae Sinica, 2023, 32(5): 94-105.
图3 土壤含水量、容重、有机质和平均重量直径的变化特征不同大写字母表示同一土层,同种植被,不同土壤质地之间在P<0.05水平上差异显著;不同小写字母表示同一土层,同种土壤质地,不同植被之间在P<0.05水平上差异显著。S:砂壤土;A:粉壤土;Y:粘壤土;CK:裸地;H:黑麦草;Z:紫花苜蓿。下同。Different capital letters represent the same soil layer and the same vegetation, and there are significant differences among different soil textures (P<0.05). Different lowercase letters represent the same soil layer and the same soil textures, and there are significant differences among different vegetation (P<0.05). S: Sandy loam; A: Silty loam; Y: Clay loam; CK: Bare soil; H: L. perenne; Z: M. sativa. The same below.
Fig.3 Variation characteristics of soil moisture content, bulk density, organic matter and mean weight diameter
土壤质地 Soil texture | 植物类型 Plant type | 土层 Soil layer (cm) | 根长密度 RLD (×10-2 cm·cm-3) | 根表面积密度 RSAD (×10-2 cm2·cm-3) | 根体积密度 RVD (×10-3 cm3·cm-3) |
---|---|---|---|---|---|
S | H | 0~10 | 423.87±163.41Aa | 60.56±32.19Aa | 10.73±6.53Aa |
10~20 | 245.62±68.19Ab | 36.63±13.07Aa | 6.46±2.94Aa | ||
20~30 | 99.48±56.06Ac | 11.86±8.41Ab | 1.77±1.51Ab | ||
Z | 0~10 | 22.36±14.51Ab | 7.65±7.34Ab | 5.27±7.26Aa | |
10~20 | 76.59±25.76Aa | 10.67±4.77Aab | 2.45±1.17Aa | ||
20~30 | 117.91±44.24Aa | 16.48±7.09Aa | 2.74±1.28Aa | ||
A | H | 0~10 | 295.56±121.61ABa | 21.11±11.34Ba | 2.74±2.03Ba |
10~20 | 367.83±244.30Aa | 24.70±11.82Aa | 3.24±3.32ABa | ||
20~30 | 88.80±70.06Ab | 6.97±4.93Ab | 1.00±0.58Aa | ||
Z | 0~10 | 10.42±6.43Aa | 1.08±0.74Ab | 0.16±0.11Aa | |
10~20 | 17.49±10.82Ba | 2.36±1.09Ba | 0.72±0.70Ba | ||
20~30 | 16.72±12.49Ba | 2.09±1.00Ba | 1.04±1.14Ba | ||
Y | H | 0~10 | 167.67±138.46Ba | 21.19±13.89Ba | 3.61±1.56Ba |
10~20 | 19.09±13.92Bb | 2.12±1.95Bb | 0.34±0.32Bb | ||
20~30 | 6.07±3.39Bb | 0.61±0.46Bb | 0.08±0.07Bb | ||
Z | 0~10 | 9.50±5.17Aa | 2.44±1.35Aa | 0.77±0.52Aa | |
10~20 | 3.94±2.88Cb | 1.07±1.12Bab | 0.36±0.48Bab | ||
20~30 | 4.56±3.93Bb | 0.73±0.59Cb | 0.20±0.16Bb |
表1 黄土高原不同土壤质地下草本植物根系变化特征
Table 1 Root changes characteristics of herbaceous plants under different soil textures in Loess Plateau
土壤质地 Soil texture | 植物类型 Plant type | 土层 Soil layer (cm) | 根长密度 RLD (×10-2 cm·cm-3) | 根表面积密度 RSAD (×10-2 cm2·cm-3) | 根体积密度 RVD (×10-3 cm3·cm-3) |
---|---|---|---|---|---|
S | H | 0~10 | 423.87±163.41Aa | 60.56±32.19Aa | 10.73±6.53Aa |
10~20 | 245.62±68.19Ab | 36.63±13.07Aa | 6.46±2.94Aa | ||
20~30 | 99.48±56.06Ac | 11.86±8.41Ab | 1.77±1.51Ab | ||
Z | 0~10 | 22.36±14.51Ab | 7.65±7.34Ab | 5.27±7.26Aa | |
10~20 | 76.59±25.76Aa | 10.67±4.77Aab | 2.45±1.17Aa | ||
20~30 | 117.91±44.24Aa | 16.48±7.09Aa | 2.74±1.28Aa | ||
A | H | 0~10 | 295.56±121.61ABa | 21.11±11.34Ba | 2.74±2.03Ba |
10~20 | 367.83±244.30Aa | 24.70±11.82Aa | 3.24±3.32ABa | ||
20~30 | 88.80±70.06Ab | 6.97±4.93Ab | 1.00±0.58Aa | ||
Z | 0~10 | 10.42±6.43Aa | 1.08±0.74Ab | 0.16±0.11Aa | |
10~20 | 17.49±10.82Ba | 2.36±1.09Ba | 0.72±0.70Ba | ||
20~30 | 16.72±12.49Ba | 2.09±1.00Ba | 1.04±1.14Ba | ||
Y | H | 0~10 | 167.67±138.46Ba | 21.19±13.89Ba | 3.61±1.56Ba |
10~20 | 19.09±13.92Bb | 2.12±1.95Bb | 0.34±0.32Bb | ||
20~30 | 6.07±3.39Bb | 0.61±0.46Bb | 0.08±0.07Bb | ||
Z | 0~10 | 9.50±5.17Aa | 2.44±1.35Aa | 0.77±0.52Aa | |
10~20 | 3.94±2.88Cb | 1.07±1.12Bab | 0.36±0.48Bab | ||
20~30 | 4.56±3.93Bb | 0.73±0.59Cb | 0.20±0.16Bb |
图5 黄土高原草本植物根-土复合体粘聚力和内摩擦角变化特征
Fig.5 Change characteristics of cohesion and internal friction angle of root-soil complex of herbaceous plants on Loess Plateau
图6 抗剪性能、土壤理化性质和根系特征相关性*: P<0.05, **: P<0.01. ω: 土壤含水量Soil moisture content; BD: 容重Bulk density; SOM: 土壤有机质Soil organic matter; MWD: 平均重量直径Mean weight diameter; RLD: 根长密度Root length density; RSAD: 根表面积密度Root surface area density; RVD: 根体积密度Root volume density; c: 粘聚力Cohesion; φ: 内摩擦角Internal friction angle.
Fig.6 Correlation between shear properties, soil physicochemical properties and root characteristics
指标 Index | S | A | Y | |||
---|---|---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | PC1 | PC2 | |
土壤含水量ω | -0.17 | 0.94 | -0.86 | 0.46 | 0.95 | -0.10 |
容重Bulk density | -0.36 | 0.92 | -0.98 | 0.04 | -0.89 | 0.25 |
土壤有机质Soil organic matter | 0.89 | 0.34 | 0.71 | -0.59 | 0.01 | 0.70 |
平均重量直径MWD | 0.21 | 0.69 | 0.86 | -0.34 | 0.57 | 0.68 |
根长密度RLD | 0.94 | -0.26 | -0.21 | 0.97 | -0.37 | 0.90 |
根表面积密度RSAD | 0.95 | -0.27 | -0.19 | 0.97 | -0.42 | 0.88 |
根体积密度RVD | 0.89 | -0.23 | -0.13 | 0.98 | -0.50 | 0.82 |
特征值Eigenvalue | 4.58 | 2.47 | 5.48 | 2.04 | 4.64 | 2.09 |
方差贡献率Variance contribution rate (%) | 57.21 | 30.87 | 68.52 | 25.55 | 58.00 | 26.08 |
累计方差贡献率Cumulative variance contribution rate (%) | 57.21 | 88.08 | 68.52 | 94.07 | 58.00 | 84.08 |
表2 根-土复合体抗剪性能与根系参数和土壤性质的主成分方差贡献率和旋转后的因子载荷矩阵
Table 2 Principal component variance contribution rate and rotated factor loading matrix of root parameters and soil properties of root-soil complex
指标 Index | S | A | Y | |||
---|---|---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | PC1 | PC2 | |
土壤含水量ω | -0.17 | 0.94 | -0.86 | 0.46 | 0.95 | -0.10 |
容重Bulk density | -0.36 | 0.92 | -0.98 | 0.04 | -0.89 | 0.25 |
土壤有机质Soil organic matter | 0.89 | 0.34 | 0.71 | -0.59 | 0.01 | 0.70 |
平均重量直径MWD | 0.21 | 0.69 | 0.86 | -0.34 | 0.57 | 0.68 |
根长密度RLD | 0.94 | -0.26 | -0.21 | 0.97 | -0.37 | 0.90 |
根表面积密度RSAD | 0.95 | -0.27 | -0.19 | 0.97 | -0.42 | 0.88 |
根体积密度RVD | 0.89 | -0.23 | -0.13 | 0.98 | -0.50 | 0.82 |
特征值Eigenvalue | 4.58 | 2.47 | 5.48 | 2.04 | 4.64 | 2.09 |
方差贡献率Variance contribution rate (%) | 57.21 | 30.87 | 68.52 | 25.55 | 58.00 | 26.08 |
累计方差贡献率Cumulative variance contribution rate (%) | 57.21 | 88.08 | 68.52 | 94.07 | 58.00 | 84.08 |
土壤质地Soil texture | 指标Index | 多元线性回归方程Multiple linear regression equation | R2 |
---|---|---|---|
S | c | c =1.205PC1+1.618PC2+8.883 | 0.873 |
φ | φ=-0.112PC1-0.135PC2+27.339 | 0.791 | |
A | c | c =-0.377PC1+1.541PC2+9.055 | 0.605 |
φ | φ=-0.340PC1-0.716PC2+27.028 | 0.805 | |
Y | c | c=1.685PC1-1.236PC2+14.298 | 0.891 |
φ | φ=0.291PC1-0.118PC2+25.705 | 0.666 |
表3 粘聚力和内摩擦角的多元回归方程
Table 3 Multiple regression equations for cohesion and internal friction angles
土壤质地Soil texture | 指标Index | 多元线性回归方程Multiple linear regression equation | R2 |
---|---|---|---|
S | c | c =1.205PC1+1.618PC2+8.883 | 0.873 |
φ | φ=-0.112PC1-0.135PC2+27.339 | 0.791 | |
A | c | c =-0.377PC1+1.541PC2+9.055 | 0.605 |
φ | φ=-0.340PC1-0.716PC2+27.028 | 0.805 | |
Y | c | c=1.685PC1-1.236PC2+14.298 | 0.891 |
φ | φ=0.291PC1-0.118PC2+25.705 | 0.666 |
1 | Wang S, Fu B J, Wu X T, et al. Dynamics and sustainability of social-ecological systems in the Loess Plateau. Resources Science, 2020, 42(1): 96-103. |
王帅, 傅伯杰, 武旭同, 等. 黄土高原社会-生态系统变化及其可持续性. 资源科学, 2020, 42(1): 96-103. | |
2 | Wang C, Wu X, Fu B J, et al. Ecological restoration in the key ecologically vulnerable regions: Current situation and development direction. Acta Ecologica Sinica, 2019, 39(20): 7333-7343. |
王聪, 伍星, 傅伯杰, 等. 重点脆弱生态区生态恢复模式现状与发展方向. 生态学报, 2019, 39(20): 7333-7343. | |
3 | Shao Y M, Gao G Y, Liu J B, et al. Effects of vertical cover structure of grass and shrub on reducing runoff and soil loss under natural rainfall in the loess hilly region. Acta Ecologica Sinica, 2022, 42(1): 322-331. |
邵奕铭, 高光耀, 刘见波, 等. 自然降雨下黄土丘陵区草灌植物垂直覆盖结构的减流减沙效应. 生态学报, 2022, 42(1): 322-331. | |
4 | Cheng L, Zhan H G, Guo Z L. Root system responses of three herbs to soil anti-erodibility. Pratacultural Science, 2019, 36(2): 284-294. |
程谅, 占海歌, 郭忠录. 3种草本植物根系对土壤抗蚀特性的响应. 草业科学, 2019, 36(2): 284-294. | |
5 | Marston R A. Geomorphology and vegetation on hillslopes: Interactions, dependencies, and feedback loops. Geomorphology, 2010, 116(3/4): 206-217. |
6 | Baets S D, Poesen J, Gyssels G, et al. Effects of grass roots on the erodibility of topsoils during concentrated flow. Geomorphology, 2006, 76(1/2): 54-67. |
7 | Lin J H, Huang M Y, Zhang L T, et al. Effects of Dicranopteris dichotoma roots on soil shear strength of red soil layer in Benggang. Journal of Soil and Water Conservation, 2020, 34(6): 159-165. |
林嘉辉, 黄梦元, 张莉婷, 等. 芒萁根系对崩岗红土层土壤抗剪强度的影响. 水土保持学报, 2020, 34(6): 159-165. | |
8 | Cazzuffi D, Cardile G, Gioffrè D. Geosynthetic engineering and vegetation growth in soil reinforcement applications. Transportation Infrastructure Geotechnology, 2014, 1(3): 262-300. |
9 | Fan C C, Tsai M H. Spatial distribution of plant root forces in root-permeated soils subject to shear. Soil and Tillage Research, 2016, 156: 1-15. |
10 | Liu C Y, Hu X S, Dou Z N, et al. Shear strength tests of the root-soil composite system of alpine grassland vegetation at different stages of degradation and the determination of thresholds in the Yellow River source region. Acta Prataculturae Sinica, 2017, 26(9): 14-26. |
刘昌义, 胡夏嵩, 窦增宁, 等. 黄河源区高寒草地植被根-土复合体抗剪强度试验及退化程度阈值确定. 草业学报, 2017, 26(9): 14-26. | |
11 | Zhou T, Chen Y, Wang R Z, et al. Effect of planting grasses and adding polyacrylamide on the shear performance and erodibility-resistance of purple soil in barren hillsides. Acta Prataculturae Sinica, 2019, 28(3): 62-73. |
周涛, 谌芸, 王润泽, 等. 种草和施用聚丙烯酰胺对荒坡紫色土抗剪和抗蚀性能的影响研究. 草业学报, 2019, 28(3): 62-73. | |
12 | Wang Y, Du F, Zhou M, et al. Research on shear strength of root-soil composite in a forest and grass standing site in Northern Shaanxi. Research of Soil and Water Conservation, 2018, 25(2): 213-219. |
王月, 杜峰, 周敏, 等. 陕北林草混交根土复合体抗剪强度研究. 水土保持研究, 2018, 25(2): 213-219. | |
13 | Feng S Y, Wang J G, Wen H, et al. Soil shear strength of collapsing erosion area in south Jiangxi of China relative to position of the soil and its influencing factors. Acta Pedologica Sinica, 2020, 57(1): 71-83. |
冯舒悦, 王军光, 文慧, 等. 赣南崩岗侵蚀区不同部位土壤抗剪强度及影响因素研究. 土壤学报, 2020, 57(1): 71-83. | |
14 | Yan Z H, Chen Y, Liu X H, et al. Comprehensive evaluation of shear strength and anti-scourability of root-soil complex of two grass hedgerows in karst slope land. Acta Ecologica Sinica, 2022, 42(5): 1811-1820. |
颜哲豪, 谌芸, 刘枭宏, 等. 喀斯特坡地2种地埂篱根-土复合体抗剪和抗冲性能综合评价. 生态学报, 2022, 42(5): 1811-1820. | |
15 | Ge N N, Shi Y, Yang X L, et al. Distribution of soil organic carbon, total nitrogen, total phosphorus and water stable aggregates of cropland with different soil textures on the Loess Plateau, Northwest China. Chinese Journal of Applied Ecology, 2017, 28(5): 1626-1632. |
葛楠楠, 石芸, 杨宪龙, 等. 黄土高原不同土壤质地农田土壤碳、氮、磷及团聚体分布特征. 应用生态学报, 2017, 28(5): 1626-1632. | |
16 | Shen N. Study on rill water separation and sediment transport process in loess region. Xianyang: Northwest A&F University, 2018. |
申楠. 黄土地区细沟水流分离输沙过程研究. 咸阳: 西北农林科技大学, 2018. | |
17 | Laboratory of Soil Physics, Nanjing Institute of Soil Sciences, Chinese Academy of Sciences. Determination of physical properties of soil. Beijing: Science Press, 1978. |
中国科学院南京土壤研究所土壤物理研究室. 土壤物理性质测定法. 北京: 科学出版社, 1978. | |
18 | Liu J Y, Zhou Z C, Su X M. Review of the mechanism of root system on the formation of soil aggregates. Journal of Soil and Water Conservation, 2020, 34(3): 267-273. |
刘均阳, 周正朝, 苏雪萌. 植物根系对土壤团聚体形成作用机制研究回顾. 水土保持学报, 2020, 34(3): 267-273. | |
19 | Bao G S, Wang Y Q, Song M L, et al. Effects of Stellera chamaejasme patches on the surrounding grassland community and on soil physical-chemical properties in degraded grasslands susceptible to S. chamaejasme invasion. Acta Prataculturae Sinica, 2019, 28(3): 51-61. |
鲍根生, 王玉琴, 宋梅玲, 等. 狼毒斑块对狼毒型退化草地植被和土壤理化性质影响的研究. 草业学报, 2019, 28(3): 51-61. | |
20 | Liu H Y, Zhou Z C, Wang N, et al. Soil anti-scourability at early growth stage of grasses and its influencing factors in loess region. Science of Soil and Water Conservation, 2018, 16(2): 55-61. |
刘红岩, 周正朝, 王宁, 等. 黄土区草被生长初期土壤抗冲性及其影响因素. 中国水土保持科学, 2018, 16(2): 55-61. | |
21 | Liu Y B, Hu X S, Yu D M, et al. Distribution characteristics of combined herb and shrub roots in loess area of Xining basin and their effect on enhancing soil shear strength. Journal of Engineering Geology, 2020, 28(3): 471-481. |
刘亚斌, 胡夏嵩, 余冬梅, 等. 西宁盆地黄土区草本和灌木组合根系分布特征及其增强土体抗剪强度效应. 工程地质学报, 2020, 28(3): 471-481. | |
22 | Chen Y, He B H, Lian C X, et al. Root-soil system anti-scourability on steep slopes in the Three Gorges Reservoir Area. Acta Ecologica Sinica, 2016, 36(16): 5173-5181. |
谌芸, 何丙辉, 练彩霞, 等. 三峡库区陡坡根-土复合体抗冲性能. 生态学报, 2016, 36(16): 5173-5181. | |
23 | Su Y Z, Liu W J, Yang R, et al. Changes in soil aggregate, carbon, and nitrogen storages following the conversion of cropland to alfalfa forage land in the marginal oasis of northwest China. Environmental Management, 2009, 43(6): 1061-1070. |
24 | Jia Q M, Chen Y Y, Yang Y, et al. Effect of different artificial grassland on soil physicochemical properties and microbial quantities of abandoned land in arid area. Journal of Soil and Water Conservation, 2014, 28(1): 178-182, 220. |
贾倩民, 陈彦云, 杨阳, 等. 不同人工草地对干旱区弃耕地土壤理化性质及微生物数量的影响. 水土保持学报, 2014, 28(1): 178-182, 220. | |
25 | Hao H X, Qin J H, Sun Z X, et al. Erosion-reducing effects of plant roots during concentrated flow under contrasting textured soils. Catena, 2021, 203(9): 105378. |
26 | Ge N, Wei X, Wang X, et al. Soil texture and phosphorous under two contrasting land use types in the Loess Plateau. Catena, 2019, 172: 148-157. |
27 | Schweizer S A, Bucka F B, Graf-Rosenfellner M, et al. Soil microaggregate size composition and organic matter distribution as affected by clay content. Geoderma, 2019, 355: 113901. |
28 | Zhu A N, Zhang J B, Cheng Z H. A simple method to estimate water retention curves of light-textured soil. Chinese Journal of Soil Science, 2003, 34(4): 253-258. |
朱安宁, 张佳宝, 程竹华. 轻质土壤水分特征曲线估计的简便方法. 土壤通报, 2003, 34(4): 253-258. | |
29 | Borden K A, Anglaaere L, Owusu S, et al. Soil texture moderates root functional traits in agroforestry systems across a climatic gradient. Agriculture Ecosystems and Environment, 2020, 295: 106915. |
30 | Bouma T J, Nielsen K L, Van Hal J, et al. Root system topology and diameter distribution of species from habitats differing in inundation frequency. Functional Ecology, 2001, 15(3): 360-369. |
31 | Wang J, Zhao W W, Liu Y, et al. Effects of plant functional traits on soil conservation: A review. Acta Ecologica Sinica, 2019, 39(9): 3355-3364. |
王晶, 赵文武, 刘月, 等. 植物功能性状对土壤保持的影响研究述评. 生态学报, 2019, 39(9): 3355-3364. | |
32 | Shen Z Y, Liu C Y, Hu X S, et al. Relationships between the physical and chemical properties of soil and the shear strength of root-soil composite systems at different soil depths in alpine grassland in the source region of the Yellow River. Arid Zone Research, 2021, 38(2): 392-401. |
申紫雁, 刘昌义, 胡夏嵩, 等. 黄河源区高寒草地不同深度土壤理化性质与抗剪强度关系研究. 干旱区研究, 2021, 38(2): 392-401. | |
33 | Liao B, Liu J P, Zhou H Y. Effects of the influence of root content on the shear strength of rootsoil composite of Bischofia javanica. Journal of Soil and Water Conservation, 2021, 35(3): 104-110. |
廖博, 刘建平, 周花玉. 含根量对秋枫根-土复合体抗剪强度的影响. 水土保持学报, 2021, 35(3): 104-110. | |
34 | Comino E, Druetta A. The effect of Poaceae roots on the shear strength of soils in the Italian alpine environment. Soil and Tillage Research, 2010, 106(2): 194-201. |
35 | Xing S K, Zhang G H, Zhu P Z. Effects of vegetation restoration age on shear strength of root-soil system in hilly and gully region of the Loess Plateau. Journal of Soil and Water Conservation, 2021, 35(4): 41-48. |
邢书昆, 张光辉, 朱平宗. 黄土丘陵沟壑区退耕年限对根-土复合体抗剪强度的影响. 水土保持学报, 2021, 35(4): 41-48. | |
36 | Ge R L, Liu Y Q, Zuo Z Y, et al. Effect of soil moisture on the characteristics of root-soil interaction. Journal of Soil and Water Conservation, 2018, 32(1): 135-140. |
格日乐, 刘艳琦, 左志严, 等. 土壤水分对植物根-土界面相互作用特性的影响. 水土保持学报, 2018, 32(1): 135-140. |
[1] | 何伟鹏, 胡夏嵩, 刘昌义, 李璇, 李希来, 付江涛, 卢海静, 杨馥铖, 李国荣. 黄河源区不同禁牧年限对垂穗披碱草单根及其根-土复合体力学强度特征的影响[J]. 草业学报, 2023, 32(5): 106-117. |
[2] | 朱丽丽, 张业猛, 李万才, 赵亚利, 李想, 陈志国. 39个我国不同生态区培育的青贮玉米品种在青海高原适应性研究[J]. 草业学报, 2023, 32(4): 68-78. |
[3] | 李春艳, 王艳, 李欣瑞, 李英主, 李明峰, 陈丽丽, 雷雄, 闫利军, 游明鸿, 季晓菲, 张昌兵, 吴婍, 苟文龙, 李达旭, 鄢家俊, 白史且. 中国野生老芒麦形态多样性研究与种质利用潜力分析[J]. 草业学报, 2023, 32(3): 67-79. |
[4] | 李江文, 何邦印, 李彩, 回虹燕, 刘博, 张晓曦, 樊慧, 苏文钰. 不同恢复年限草地群落水平植物功能性状及功能多样性分析[J]. 草业学报, 2023, 32(1): 16-25. |
[5] | 王珊珊, 谷海涛, 谢慧芳, 何绍冬, 甘长波, 卫小勇, 孔广超. 113份饲草型六倍体小黑麦种质饲草产量与品质性状的评价[J]. 草业学报, 2023, 32(1): 192-202. |
[6] | 李瑞强, 王玉祥, 孙玉兰, 张磊, 陈爱萍. 盐胁迫对5份无芒雀麦苗期生长和生理生化的影响及综合性评价[J]. 草业学报, 2023, 32(1): 99-111. |
[7] | 潘占东, 马倩倩, 陈晓龙, 蔡立群, 蔡雪梅, 董博, 武均, 张仁陟. 添加生物质炭对黄土高原旱作农田土壤养分、腐殖质及其组分的影响[J]. 草业学报, 2022, 31(2): 14-24. |
[8] | 陈子英, 常单娜, 韩梅, 李正鹏, 严清彪, 张久东, 周国朋, 孙小凤, 曹卫东. 47份箭筈豌豆品种(系)在青海作秋绿肥的能力评价[J]. 草业学报, 2022, 31(2): 39-51. |
[9] | 吴廷美, 林慧龙, 范迪, 籍常婷, 赵玉婷, 魏靖琼. 冻原高山草地牧户家畜养殖规模影响因素分析——以青海省为例[J]. 草业学报, 2021, 30(9): 117-126. |
[10] | 王吉祥, 宫焕宇, 屠祥建, 郭侲洐, 赵嘉楠, 沈健, 栗振义, 孙娟. 耐亚磷酸盐紫花苜蓿品种筛选及评价指标的鉴定[J]. 草业学报, 2021, 30(5): 186-199. |
[11] | 侯金伟, 陈焘, 南志标. 不同埋藏方式及杀菌剂处理对黄土高原3种植物种子存活的影响[J]. 草业学报, 2021, 30(3): 129-136. |
[12] | 蔺豆豆, 赵桂琴, 琚泽亮, 宫文龙. 15份燕麦材料苗期抗旱性综合评价[J]. 草业学报, 2021, 30(11): 108-121. |
[13] | 郭剑波, 赵国强, 贾书刚, 董俊夫, 陈龙, 王淑平. 施肥对高寒草原草地质量指数及土壤性质影响的综合评价[J]. 草业学报, 2020, 29(9): 85-93. |
[14] | 张桐瑞, 李富翠, 李辉, 季双旋, 范志浩, 陈雨峰, 晁跃辉, 韩烈保. 草垫植入对混合草坪坪床稳定性和表观质量的影响[J]. 草业学报, 2020, 29(8): 27-36. |
[15] | 王苗苗, 周向睿, 梁国玲, 赵桂琴, 焦润安, 柴继宽, 高雪梅, 李娟宁. 5份燕麦材料苗期耐盐性综合评价[J]. 草业学报, 2020, 29(8): 143-154. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||