草业学报 ›› 2023, Vol. 32 ›› Issue (9): 93-103.DOI: 10.11686/cyxb2022410
宫珂(), 靳瑰丽(), 刘文昊, 马建, 刘智彪, 李嘉欣, 李莹
收稿日期:
2022-10-17
修回日期:
2023-01-04
出版日期:
2023-09-20
发布日期:
2023-07-12
通讯作者:
靳瑰丽
作者简介:
E-mail: jguili@126.com基金资助:
Ke GONG(), Gui-li JIN(), Wen-hao LIU, Jian MA, Zhi-biao LIU, Jia-xin LI, Ying LI
Received:
2022-10-17
Revised:
2023-01-04
Online:
2023-09-20
Published:
2023-07-12
Contact:
Gui-li JIN
摘要:
在全球气温升高以及极端气候出现频率加剧的背景下,野生牧草不同生长阶段展示出的生长特性,是探究牧草对增温应对模式的重要内容。本研究以新疆野生无芒雀麦为研究对象,通过野外模拟装置(OTC)对3个生长阶段(发芽期、幼苗期、繁殖期)进行3个增温处理(CK、W1、W2),分别测定发芽指标、幼苗生长指标、性状指标和生物量。结果表明:W2增温处理显著提高了发芽势和发芽速率,分别为CK的1.38和1.49倍(P<0.05);W1和W2增温抑制了幼苗叶长和根长,平均减小9.9%和43.3%,其中W1增温处理对叶长和根长的抑制作用更明显;W1增温对无芒雀麦生殖生长起到抑制作用,加强了对营养器官的投入,而W2增温下生殖生长更占优势;幼苗期地上和地下生物量生长模式从异速生长逐渐转变为等速生长,繁殖期则始终保持等速生长模式。综上,无芒雀麦3个生长阶段对增温响应具有差异,种子发芽和生殖生长得到促进,但幼苗生长被抑制;并从无芒雀麦植株个体生根开始保证了地下部分的积累,以此来实现其在增温环境下的存活和有性繁殖。研究结果可为摸清无芒雀麦不同生长阶段应对增温的适应性表现提供参考依据。
宫珂, 靳瑰丽, 刘文昊, 马建, 刘智彪, 李嘉欣, 李莹. 模拟增温对无芒雀麦生长特性的影响[J]. 草业学报, 2023, 32(9): 93-103.
Ke GONG, Gui-li JIN, Wen-hao LIU, Jian MA, Zhi-biao LIU, Jia-xin LI, Ying LI. Effects of simulated warming on growth characteristics of Bromus inermis[J]. Acta Prataculturae Sinica, 2023, 32(9): 93-103.
处理 Treatment | 顶边长度 The length of the top side (m) | 底边长度 The length of the bottom side (m) | 高度 Height (m) | 增温效果Effect of warming (℃) | |
---|---|---|---|---|---|
5 cm土层5 cm soil layer | 10 cm土层10 cm soil layer | ||||
W1 | 0.65 | 0.90 | 0.80 | 2.09 | 1.46 |
W2 | 0.40 | 0.65 | 0.45 | 2.63 | 1.84 |
表1 增温设置规格及增温效果
Table 1 Temperature increase specifications and effect
处理 Treatment | 顶边长度 The length of the top side (m) | 底边长度 The length of the bottom side (m) | 高度 Height (m) | 增温效果Effect of warming (℃) | |
---|---|---|---|---|---|
5 cm土层5 cm soil layer | 10 cm土层10 cm soil layer | ||||
W1 | 0.65 | 0.90 | 0.80 | 2.09 | 1.46 |
W2 | 0.40 | 0.65 | 0.45 | 2.63 | 1.84 |
图2 野外模拟增温对种子发芽特征的影响不同小写字母表示处理间具有显著差异(P<0.05)。下同。Different lowercase letters represent the significant differences among treatments (P<0.05). The same below.
Fig.2 Effects of field simulated warming on seed emergence characteristics
图3 野外模拟增温对发芽率与发芽势、发芽速率关系的影响
Fig.3 Effect of field simulated warming on the relationship between emergence percent, emergence energy and emergence rate
处理 Treatment | 生殖生长Reproductive growth | 营养生长Vegetative growth | ||||
---|---|---|---|---|---|---|
生殖投入 Reproductive investment (%) | 生殖生长比率 Reproductive growth ratio (%) | 千粒重 Thousand seed weight (g) | 根冠比 Radicle biomass/seedling biomass | 营养投入 Nutrient investment (%) | 株高 Plant height (cm) | |
CK | 5.39±0.48a | 26.63±3.06b | 0.378±0.013a | 1.20±0.12ab | 94.61±0.49a | 69.60±3.49ab |
W1 | 5.44±0.61a | 15.12±0.71a | 0.371±0.064a | 0.70±0.09a | 94.56±0.61a | 75.80±4.44b |
W2 | 7.65±1.17a | 27.53±2.57b | 0.455±0.023a | 1.25±0.22b | 92.34±1.17a | 65.59±3.42a |
表2 繁殖生长指标在模拟增温处理下的差异
Table 2 Differences of reproductive growth indexes under simulated warming treatment
处理 Treatment | 生殖生长Reproductive growth | 营养生长Vegetative growth | ||||
---|---|---|---|---|---|---|
生殖投入 Reproductive investment (%) | 生殖生长比率 Reproductive growth ratio (%) | 千粒重 Thousand seed weight (g) | 根冠比 Radicle biomass/seedling biomass | 营养投入 Nutrient investment (%) | 株高 Plant height (cm) | |
CK | 5.39±0.48a | 26.63±3.06b | 0.378±0.013a | 1.20±0.12ab | 94.61±0.49a | 69.60±3.49ab |
W1 | 5.44±0.61a | 15.12±0.71a | 0.371±0.064a | 0.70±0.09a | 94.56±0.61a | 75.80±4.44b |
W2 | 7.65±1.17a | 27.53±2.57b | 0.455±0.023a | 1.25±0.22b | 92.34±1.17a | 65.59±3.42a |
图6 增温影响无芒雀麦不同生长阶段生长指标的通径分析数字为因变量与自变量间的回归系数,实线代表正效应影响,虚线代表负效应影响;*代表P<0.05;**代表P<0.01;线段粗细代表系数大小。The number is the regression coefficient between the dependent and independent variables, the solid line represents significant impact, and the dotted line represents insignificant impact. * represents P<0.05; ** represents P<0.01; The thickness of the line segment represents the size of the coefficient. RL/SL: 根苗比Radicle length/seedling length; RB/SB: 根冠比Radicle biomass/seedling biomass.
Fig.6 Path analysis of the influence of warming on growth indexes of B. inermis at different growth stages
1 | Mansour A, Alessandro D, William J, et al. Linking Global to Regional Climate Change//Valérie Masson-D, Panmao Z, Anna P, et al. Climate change 2021: the physical science basis. New York: Cambridge University Press, 2021: 1363-1512. |
2 | Weiher E, Werf A, Thompson K, et al. Challenging theophrastus: A common core list of plant traits for functional ecology. Journal of Vegetation Science, 1999, 10(5): 609-620. |
3 | Du J, Zhou K S, Gao J J, et al. Influence of climate warming in future on the green grass season for alpine grassland in Qiangtang Nature Reserve of Tibet. Chinese Journal of Agrometeorology, 2021, 42(10): 845-858. |
杜军, 周刊社, 高佳佳, 等. 未来气候变暖对羌塘自然保护区高寒草地牧草青草期的影响. 中国农业气象, 2021, 42(10): 845-858. | |
4 | He Z H, Yang C H, Wang P, et al. Effect of low-temperature stress on the physiological responses of six gramineous forages in alpine regions and evaluation of their cold resistance. Pratacultural Science, 2021, 38(10): 2019-2028. |
何子华, 杨成行, 王沛, 等. 高寒地区6种禾本科牧草对低温胁迫的生理响应及耐寒性评价. 草业科学, 2021, 38(10): 2019-2028. | |
5 | Yang X Y, Ma L, Zhang Z H, et al. Relationship between the characteristics of plant community growth and climate factors in alpine meadow. Acta Ecologica Sinica, 2021, 41(9): 3689-3700. |
杨晓渊, 马丽, 张中华, 等. 高寒草甸植物群落生长发育特征与气候因子的关系. 生态学报, 2021, 41(9): 3689-3700. | |
6 | Chen H, Zhu Q A, Peng C H, et al. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology, 2013, 19(10): 2940-2955. |
7 | Li N, Wang G X, Yang Y, et al. Short-term effects of temperature enhancement on community structure and biomass of alpine meadow in the Qinghai-Tibet Plateau.Acta Ecologica Sinica. 2011, 31(4): 895-905. |
李娜, 王根绪, 杨燕, 等. 短期增温对青藏高原高寒草甸植物群落结构和生物量的影响. 生态学报, 2011, 31(4): 895-905. | |
8 | Zhang D, Chao R, Wan Z Q, et al. Effect of simulated warming and precipitation enhancement on plant functional traits of Leymus chinensis. Pratacultural Science, 2018, 35(8): 1919-1928. |
张东, 钞然, 万志强, 等. 模拟增温增雨对典型草原优势种羊草功能性状的影响. 草业科学, 2018, 35(8): 1919-1928. | |
9 | Zhou Z B, Zhang Y M, Robert S N, et al. Effects of temperature and light on seed germination of three Bromus species. Journal of Desert Research, 2013, 33(4): 1048-1053. |
周志彬, 张元明, Robert S N, 等. 温度和光照对3种雀麦属(Bromus)植物种子萌发的影响. 中国沙漠, 2013, 33(4): 1048-1053. | |
10 | Ooi M K J, Auld T D, Denham A J. Climate change and bet-hedging: interactions between increased soil temperatures and seed bank persistence. Global Change Biology, 2010, 15(10): 2375-2386. |
11 | Xu M H, Yang X H, Du R, et al. Effects of simulated warming on the allometric growth patterns of an alpine meadow community on the Qinghai-Tibet Plateau. Pratacultural Science, 2021, 38(4): 618-629. |
徐满厚, 杨晓辉, 杜荣, 等. 增温改变高寒草甸植物群落异速生长关系. 草业科学, 2021, 38(4): 618-629. | |
12 | Pumpanen J, Heinonsalo J, Rasilo T, et al. The effects of soil and air temperature on CO2 exchange and net biomass accumulation in Norway spruce, Scots pine and silver birch seedlings. Tree Physiology, 2012, 16(32): 724-736. |
13 | Xu X L. Effects of different day/night warming on the seeds germination and seedlings growth of Sinocalycanthus chinensis. Chongqing: Southwest University, 2012. |
徐兴利. 不同增温处理对夏蜡梅(Sinocalycanthus chinensis)种子萌发和幼苗生长的影响. 重庆: 西南大学, 2012. | |
14 | Smaill S J, Clinton P W, Allen R B, et al. Climate cues and resources interact to determine seed production of masting species. Journal of Ecology, 2011, 99(3): 870-877. |
15 | Gao F G. Effect of warming and N addition to sexual reproduction of Stipa breviflora. Hohhot: Inner Mongolia Agricultural University, 2010. |
高福光. 增温和施氮对短花针茅有性繁殖的影响. 呼和浩特: 内蒙古农业大学, 2010. | |
16 | Cao S Z. Seed germination behavior and its response to environmental factors in an alpine meadow on the eastern edge of the Tibetan Plateau. Lanzhou: Lanzhou University, 2018. |
曹素珍. 青藏高原高寒草甸常见植物出苗及生长繁殖对增温的响应研究. 兰州: 兰州大学, 2018. | |
17 | Stotz G C, Gianoli E, Patchell M J, et al. Differential responses of native and exotic plant species to an invasive grass are driven by variation in biotic and abiotic factors.Journal of Vegetation Science, 2017, 28(2): 325-336. |
18 | Ott J P, Butler J L, Rong Y. Greater bud outgrowth of Bromus inermis than Pascopyrum smithii under multiple environmental conditions. Journal of Plant Ecology, 2017, 10(3): 518-527. |
19 | Ulrich E, Perkins L. Bromus inermis and Elymus canadensis but not Poa pratensis demonstrate strong competitive effects and all benefit from priority. Plant Ecology, 2014, 215(11): 1269-1275. |
20 | Sharif Z F, Murdoch A J. The effects of different maturation conditions on seed dormancy and germination of Cenchrus ciliaris. Seed Science Research, 2000, 10(4): 447-457. |
21 | Tong Q, Zhong Y, Li J, et al. Seed germination, seedling growth and physiological characteristics of Rhododendron agastum under different temperatures. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(3): 471-477. |
童琪, 钟雁, 李婧, 等. 不同温度对迷人杜鹃种子萌发与幼苗生长及生理特性的影响. 西北植物学报, 2020, 40(3): 471-477. | |
22 | Meulebrouck K, Ameloot E, Van A J A, et al. Germination ecology of the holoparasite Cuscuta epithymum. Seed Science Research, 2008, 18(1): 25-34. |
23 | Tahar T, Mustapha G, Mohamed N. Germination responses of Diplotaxis harra to temperature and salinity. Journal of Arid Environments, 2008, 203(1): 421-428. |
24 | Benech-Arnold R L, Snchez R A, Forcella F, et al. Environmental control of dormancy in weed seed banks in soil. Field Crops Research, 2000, 67: 105-122. |
25 | Valpine P D, Harte J. Plant responses to experimental warming in a montane meadow. Ecology, 2001, 82(1): 637-648. |
26 | Zhao J Z, Peng M, Liu W, et al. Correlation between growing characters of main species belonging to different functional groups and ground temperature in Kobresia meadow. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(3): 559-565. |
赵建中, 彭敏, 刘伟, 等. 矮嵩草草甸不同功能群主要植物种生长特征与地表温度的相关性分析. 西北植物学报, 2012, 32(3): 559-565. | |
27 | Lv X M, Wang Y H, Zhou G S, et al. Interactive effects of changing precipitation and elevated temperatures on plant biomass and its allocation of Stipa breviflora. Acta Ecologica Sinica, 2015, 35(3): 752-760. |
吕晓敏, 王玉辉, 周广胜, 等. 温度与降水协同作用对短花针茅生物量及其分配的影响. 生态学报, 2015, 35(3): 752-760. | |
28 | Zhou H K, Zhou X M, Zhao X Q. A preliminary study of the influence of simulated greenhouse effect on a Kobresia humilis meadow. Chinese Journal of Plant Ecology, 2000, 24(5): 547-553. |
周华坤, 周兴民, 赵新全. 模拟增温效应对矮嵩草草甸影响的初步研究. 植物生态学报, 2000, 24(5): 547-553. | |
29 | Xu M H, Liu M, Xue X, et al. Effects of warming and clipping on the growth of aboveground vegetation in an alpine meadow. Ecology and Environmental Sciences, 2015, 24(2): 231-236. |
徐满厚, 刘敏, 薛娴, 等. 增温、刈割对高寒草甸地上植被生长的影响. 生态环境学报, 2015, 24(2): 231-236. | |
30 | Li J X, Zhang Y J, Zhu J T, et al. Responses of community characteristics and productivity to a warming gradient in a Kobresia pygmaea meadow of Tibetan Plateau. Acta Ecologica Sinica, 2019, 39(2): 474-485. |
李军祥, 张扬建, 朱军涛, 等. 藏北高山嵩草草甸群落特征及生产力对模拟增温幅度的响应. 生态学报, 2019, 39(2): 474-485. | |
31 | Zong N, Duan C, Geng S B, et al. Effects of warming and nitrogen addition on community production and biomass allocation in an alpine meadow. Chinese Journal of Applied Ecology, 2018, 29(1): 59-67. |
宗宁, 段呈, 耿守保, 等. 增温施氮对高寒草甸生产力及生物量分配的影响. 应用生态学报, 2018, 29(1): 59-67. | |
32 | Berkowitz A R. Competition for resources in weed-crop mixtures. Frorida: CRC Press, 1988. |
33 | Jin B. The effect of experimental warming on leaf functional traits, leaf structure and leaf biochemistry in Arabidopsis thaliana.BMC Plant Biology, 2011, 11(1): 1-10. |
34 | Campbell B D, Laing W A, Greer D H, et al. Variation in grassland populations and species and the implications for community responses to elevated CO2. Journal of Biogeography, 1995, 22(2/3): 315-322. |
35 | Reekie E G. An explanation for size-dependent reproductive allocation in Plantago major. Canadian Journal of Botany, 1998, 76(11): 43-50. |
36 | Ma X Y, Zhou G S. Maize biomass simulation based on dynamic photosynthate allocation. Chinese Journal of Applied Ecology, 2016, 27(7): 2292-2300. |
麻雪艳, 周广胜. 基于光合产物动态分配的玉米生物量模拟. 应用生态学报, 2016, 27(7): 2292-2300. | |
37 | Pedersen J K, Arndal M F, Schmidt I K. Above and belowground phenology in a heathland during future climate change. Iop Conference, 2009, 6(31): 312011. |
38 | Wan S Q, Xia J Y, Liu W X, et al. Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration. Ecology, 2009, 90: 2700-2710. |
39 | Zhang Q Y, Peng S L. Effects of warming on the biomass allocation and allometric growth of the invasive shrub Lantana camara. Acta Ecologica Sinica, 2018, 38(18): 6670-6676. |
张桥英, 彭少麟. 增温对入侵植物马缨丹生物量分配和异速生长的影响. 生态学报, 2018, 38(18): 6670-6676. | |
40 | Wang J F, Gao S, Lin J X, et al. Summer warming effects on biomass production and clonal growth of Leymus chinensis. Crop & Pasture Science, 2010, 61(8): 670-676. |
41 | Weine R J. Allocation, plasticity and allometry in plants. Perspectives in Plant Ecology. Evolution and Systematics, 2004, 6(4): 207-215. |
42 | Liang K L, Zhang H R, Zhang L J, et al. Response of phenotypic plasticity and plant resource allocation of Amorpha fruiticosa to alpine habitat. Pratacultural Science, 2012, 29(3): 440-446. |
梁坤伦, 张洪荣, 张丽静, 等. 紫穗槐表型可塑性及植株资源分配对高寒生境的响应. 草业科学, 2012, 29(3): 440-446. | |
43 | Weiner J, Campbell L G, Pino J, et al. The allometry of reproduction within plant populations. Journal of Ecology, 2009, 97(6): 1220-1233. |
44 | Hou Q Z, Ye G J, Ma X B, et al. Size-dependent reproductive allocation of Gentianopsis paludosa in different habitats of the Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 2016, 36(9): 2686-2694. |
侯勤正, 叶广继, 马小兵, 等. 青藏高原不同生境下湿生扁蕾(Gentianopsis paludosa)个体大小依赖的繁殖分配. 生态学报, 2016, 36(9): 2686-2694. | |
45 | Wang Y F, Jin J, Hou H H, et al. Changes in flowering resource allocation of Saussurea dzeurensis with elevations. Chinese Journal of Plant Ecology, 2015, 39(9): 901-908. |
王一峰, 靳洁, 侯宏红, 等. 川西风毛菊花期资源分配随海拔的变化. 植物生态学报, 2015, 39(9): 901-908. | |
46 | Bloom A J, Chapin F S, Mooney H A, et al. Resource limitation in plants-An economic analogy. Annual Review of Ecology, 1985, 16: 363-392. |
[1] | 叶婷, 吴晓娟, 芦奕晓, 刘生娟, 姜卓慧, 杨惠敏. 混播比例对两种苜蓿混播草地产量和种群密度稳定性的影响[J]. 草业学报, 2023, 32(5): 127-137. |
[2] | 杜鹏冲, 潘昱臻, 侯双利, 王智慧, 王洪义. 氮磷添加对呼伦贝尔草地凋落物分解的影响[J]. 草业学报, 2023, 32(2): 44-53. |
[3] | 陈映霞, 杜雨, 王玉祥, 张博, 阿迪莱·阿布都热合曼. 生境对无芒雀麦幼穗分化进程及生殖格局的影响[J]. 草业学报, 2023, 32(1): 112-121. |
[4] | 李瑞强, 王玉祥, 孙玉兰, 张磊, 陈爱萍. 盐胁迫对5份无芒雀麦苗期生长和生理生化的影响及综合性评价[J]. 草业学报, 2023, 32(1): 99-111. |
[5] | 郭文婷, 王国华, 缑倩倩, 刘婧. 河西走廊荒漠绿洲过渡带3种典型一年生藜科植物构件生长及生物量分配特征[J]. 草业学报, 2022, 31(2): 25-38. |
[6] | 姜渊博, 康燕霞, 齐广平, 银敏华, 马彦麟, 汪精海, 贾琼, 康瑶, 张宏斌, 唐仲霞, 汪爱霞. 基于产量与品质的无芒雀麦灌溉制度研究[J]. 草业学报, 2022, 31(11): 158-171. |
[7] | 汪梦寒, 董利利, 李富翠, 韩烈保, 王祥. 不同有机/无机氮添加对草原土壤氮素分配和转化特征的影响[J]. 草业学报, 2022, 31(1): 36-46. |
[8] | 张静静, 刘尊驰, 鄢创, 王云霞, 刘凯, 时新荣, 袁志友. 土壤pH值变化对3种草原类型土壤碳氮磷生态化学计量特征的影响[J]. 草业学报, 2021, 30(2): 69-81. |
[9] | 聂莹莹, 陈金强, 辛晓平, 徐丽君, 杨桂霞, 王旭. 呼伦贝尔草甸草原区主要植物种群生态位特征与物种多样性对封育年限响应[J]. 草业学报, 2021, 30(10): 15-25. |
[10] | 宋家兴, 唐凤, 谷丽丽, 张树振, 王玉祥, 张延辉, 张博. 新疆野生无芒雀麦染色体倍性的研究[J]. 草业学报, 2020, 29(4): 102-110. |
[11] | 吴昊, 张辰, 代文魁. 气候变暖和物种多样性交互效应对空心莲子草入侵的影响[J]. 草业学报, 2020, 29(3): 38-48. |
[12] | 聂莹莹, 徐丽君, 辛晓平, 陈宝瑞, 张保辉. 围栏封育对温性草甸草原植物群落构成及生态位特征的影响[J]. 草业学报, 2020, 29(11): 11-22. |
[13] | 张永亮, 于铁峰, 郝凤, 高凯. 施肥与混播比例对豆禾混播牧草产量及氮磷钾利用效率的影响[J]. 草业学报, 2020, 29(11): 91-101. |
[14] | 杨阳, 田莉华, 田浩琦, 孙怀恩, 赵景学, 周青平. 增温对川西北高寒草甸草场植物凋落物分解的影响[J]. 草业学报, 2020, 29(10): 35-46. |
[15] | 孙铭, 王思琪, 艾尔肯·达吾提, 毛培胜. 抗氧化剂引发对无芒雀麦老化种子发芽及幼苗生长的影响[J]. 草业学报, 2019, 28(11): 105-113. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||