草业学报 ›› 2024, Vol. 33 ›› Issue (2): 68-79.DOI: 10.11686/cyxb2023110
曲艳1(), 赵坤1, 韩子晨1, 吕世海2, 沃强3, 戎郁萍1()
收稿日期:
2023-04-10
修回日期:
2023-05-17
出版日期:
2024-02-20
发布日期:
2023-12-12
通讯作者:
戎郁萍
作者简介:
E-mail: rongyuping@cau.edu.cn基金资助:
Yan QU1(), Kun ZHAO1, Zi-chen HAN1, Shi-hai LV2, Qiang WO3, Yu-ping RONG1()
Received:
2023-04-10
Revised:
2023-05-17
Online:
2024-02-20
Published:
2023-12-12
Contact:
Yu-ping RONG
摘要:
养分添加会在很大程度上影响草地土壤温室气体排放,但不同水分条件草地土壤温室气体排放对养分添加的响应尚不明确。2021年在呼伦贝尔辉河流域利用裂区试验设计研究了季节淹水(PF)草地和河岸带边缘未曾淹没的干燥(NF)草地下氮(N)、磷(P)单独添加和氮磷共同添加(N+P)对土壤温室气体(CO2、CH4和N2O)通量的影响。结果显示:1) NF草地在P添加下土壤CO2排放量显著高于PF(P<0.05),NF草地在N+P添加下土壤CH4排放量极显著高于PF(P<0.01)。NF草地在3种养分添加下均会显著提高土壤N2O通量,分别提高了38.81%、90.09%、124.94%;2) 养分添加可提高不同水分草地土壤温室气体累积排放量,且PF和NF草地不同组分土壤温室气体累积排放量最高值在养分添加下表现一致,其中N添加下土壤CO2累积排放量最高,分别较CK提高了95.92%、49.01%。P添加下土壤CH4累积排放量最高,分别较CK提高了190.64%、32.62%。而土壤N2O累积排放量最大值出现在N+P添加下,均较CK提高了约3倍;3) 在养分添加下NF草地全球增温潜势(GWP)高于PF草地,且NF和PF草地均在P添加下GWP最高,分别较CK提高了32.66%、178.69%;4) 通过结构方程模型得出,水分条件对土壤CO2和CH4通量具有负效应,养分添加对其具有正效应,水分条件与养分添加对土壤N2O通量均具有正效应。水分条件和养分添加主要通过影响土壤物理性质和养分含量进而影响土壤CO2和CH4通量,而水分条件和养分添加通过影响土壤物理性质和养分含量从而改变植物地上生物量最终影响土壤N2O通量。
曲艳, 赵坤, 韩子晨, 吕世海, 沃强, 戎郁萍. 短期氮磷添加对呼伦贝尔辉河流域草地土壤温室气体排放的影响[J]. 草业学报, 2024, 33(2): 68-79.
Yan QU, Kun ZHAO, Zi-chen HAN, Shi-hai LV, Qiang WO, Yu-ping RONG. Effects of short-term nitrogen and phosphorus addition on soil greenhouse gas emissions under different moisture conditions in the Hui River Basin of Hulun Buir[J]. Acta Prataculturae Sinica, 2024, 33(2): 68-79.
项目 Item | TLU | NA | TLU * NA | |||
---|---|---|---|---|---|---|
P | F | P | F | P | F | |
土壤全碳 Soil total carbon (TC, g·kg-1) | ** | 54.78 | ** | 15.25 | ** | 7.40 |
土壤全氮 Soil total nitrogen (TN, g·kg-1) | ** | 166.91 | ns | 0.70 | ns | 0.95 |
土壤全磷 Soil total phosphorus (TP, g·kg-1) | ** | 102.58 | ns | 0.15 | ns | 0.14 |
土壤有机碳 Soil organic carbon (SOC, mg·kg-1) | ** | 179.73 | ns | 0.32 | ns | 0.28 |
土壤铵态氮 Ammonium nitrogen (NH4+-N, mg·kg-1) | ** | 39.97 | ** | 9.07 | ** | 11.39 |
土壤硝态氮 Nitrate nitrogen (NO3--N, mg·kg-1) | ** | 16.79 | ns | 0.21 | ns | 0.56 |
土壤速效磷 Available phosphorus (AP, mg·kg-1) | ** | 10.20 | ** | 29.30 | ** | 30.77 |
土壤温度 Soil temperature (ST, ℃) | ** | 21.63 | ns | 0.09 | ns | 0.17 |
土壤水分 Soil water content (SW, %) | ** | 1478.15 | * | 2.86 | ** | 5.41 |
土壤pH值 Soil pH value (pH) | ** | 197.49 | ns | 0.47 | ns | 0.51 |
表1 氮磷添加对不同水分草地土壤理化性质的影响
Table 1 Effects of nitrogen and phosphorus supplementation on soil physical and chemical properties in grassland with different moisture contents
项目 Item | TLU | NA | TLU * NA | |||
---|---|---|---|---|---|---|
P | F | P | F | P | F | |
土壤全碳 Soil total carbon (TC, g·kg-1) | ** | 54.78 | ** | 15.25 | ** | 7.40 |
土壤全氮 Soil total nitrogen (TN, g·kg-1) | ** | 166.91 | ns | 0.70 | ns | 0.95 |
土壤全磷 Soil total phosphorus (TP, g·kg-1) | ** | 102.58 | ns | 0.15 | ns | 0.14 |
土壤有机碳 Soil organic carbon (SOC, mg·kg-1) | ** | 179.73 | ns | 0.32 | ns | 0.28 |
土壤铵态氮 Ammonium nitrogen (NH4+-N, mg·kg-1) | ** | 39.97 | ** | 9.07 | ** | 11.39 |
土壤硝态氮 Nitrate nitrogen (NO3--N, mg·kg-1) | ** | 16.79 | ns | 0.21 | ns | 0.56 |
土壤速效磷 Available phosphorus (AP, mg·kg-1) | ** | 10.20 | ** | 29.30 | ** | 30.77 |
土壤温度 Soil temperature (ST, ℃) | ** | 21.63 | ns | 0.09 | ns | 0.17 |
土壤水分 Soil water content (SW, %) | ** | 1478.15 | * | 2.86 | ** | 5.41 |
土壤pH值 Soil pH value (pH) | ** | 197.49 | ns | 0.47 | ns | 0.51 |
处理 Treatment | 地上生物量 Above ground biomass (AB, g·m-2) | 根系生物量 Root biomass (RB, g·m-2) | 凋落物生物量 Litter biomass (LB, g·m-2) | |||
---|---|---|---|---|---|---|
P | F | P | F | P | F | |
TLU | ** | 11.63 | ns | 0.02 | ** | 66.97 |
NA | ns | 2.76 | ns | 0.76 | ns | 1.48 |
TLU * NA | ns | 0.18 | ns | 0.61 | ns | 1.60 |
表2 氮磷添加对不同水分草地地上生物量、地下生物量、凋落物生物量的影响
Table 2 Effects of nitrogen and phosphorus supplementation on aboveground biomass, belowground biomass, and litter biomass in grasslands with different moisture contents
处理 Treatment | 地上生物量 Above ground biomass (AB, g·m-2) | 根系生物量 Root biomass (RB, g·m-2) | 凋落物生物量 Litter biomass (LB, g·m-2) | |||
---|---|---|---|---|---|---|
P | F | P | F | P | F | |
TLU | ** | 11.63 | ns | 0.02 | ** | 66.97 |
NA | ns | 2.76 | ns | 0.76 | ns | 1.48 |
TLU * NA | ns | 0.18 | ns | 0.61 | ns | 1.60 |
图1 氮磷添加对不同水分含量草地土壤温室气体通量的影响*:小写字母表示差异性显著(P<0.05);**表示差异极显著(P<0.01);ns表示差异不显著(P>0.05)。TLU:草地类型;NA:养分添加。PF:季节淹水草地;NF:河岸带边缘多年未淹没的干燥草地。下同。* lowercase letters indicate significant difference (P<0.05); ** means the difference is very significant (P<0.01); ns indicates no significant difference (P>0.05). TLU: Land use type; NA: Nutrient addition. PF: Seasonal flooded grassland;NF: Dry grassland at the edge of a riparian zone that has not been flooded for many years. The same below.
Fig.1 Effects of nitrogen and phosphorus supplementation on soil greenhouse gas fluxes in grassland with different moisture contents
图2 氮磷添加对不同水分含量草地土壤温室气体累积排放量的影响
Fig.2 Effects of nitrogen and phosphorus supplementation on cumulative greenhouse gas emissions in grassland soils with different moisture contents
图3 氮磷添加对不同水分含量草地全球增温潜势(GWP)的影响
Fig.3 Effects of nitrogen and phosphorus supplementation on global warming potential (GWP) of grassland with different moisture contents
图4 养分添加和水分条件调控下影响土壤温室气体排放的环境因子ST: Soil temperature; SWC: Soil water content; TC: Total carbon; TN: Total nitrogen; TP: Total phosphorus; SOC: Soil organic carbon; AP: Available phosphorus. AB: Aboveground biomass, LB: Litter biomass. CO2 flux:土壤CO2通量Soil CO2 flux,CH4 flux:土壤CH4通量 Soil CH4 flux,N2O flux:土壤N2O通量 Soil N2O flux.
Fig.4 Environmental factors of influencing soil greenhouse gas emission under nutrient addition regulation
1 | Tang Y, Zhang X, Li D, et al. Impacts of nitrogen and phosphorus additions on the abundance and community structure of ammonia oxidizers and denitrifying bacteria in Chinese fir plantations. Soil Biology and Biochemistry, 2016, 103: 284-293. |
2 | Tian J, Dungait J A J, Lu X, et al. Long-term nitrogen addition modifies microbial composition and functions for slow carbon cycling and increased sequestration in tropical forest soil. Global Change Biology, 2019, 25(10): 3267-3281. |
3 | van Paassen J G, Britton A J, Mitchell R J, et al. Legacy effects of nitrogen and phosphorus additions on vegetation and carbon stocks of upland heaths. New Phytologist, 2020, 228(1): 226-237. |
4 | Zhang W, Li H, Xiao Q, et al. Urban rivers are hotspots of riverine greenhouse gas (N2O, CH4, CO2) emissions in the mixed-landscape Chaohu lake basin. Water Research, 2021, 189: 116624. |
5 | Wang G S, Liang Y P, Ren F, et al. Greenhouse gas emissions from the Tibetan alpine grassland: effects of nitrogen and phosphorus addition. Sustainability, 2018, 10: 4454. |
6 | Zhang Y, Wang C, Li Y. Contrasting effects of nitrogen and phosphorus additions on soil nitrous oxide fluxes and enzyme activities in an alpine wetland of the Tibetan Plateau. PLoS One, 2019, 14(5): e0216244. |
7 | Jiang Y, Gan X L, Cao F F, et al. Effects of short-term nitrogen and phosphorus addition on soil respiration components in a subalpine grassland of Qilian Mountains. Environmental Science, 2022, 44(4): 2283-2292. |
江原, 甘小玲, 曹丰丰, 等. 短期氮磷添加对祁连山亚高山草地土壤呼吸组分的影响. 环境科学, 2022, 44(4): 2283-2292. | |
8 | Zhao X C, Xu Z W, Liu S E, et al. Effects of nitrogen addition on soil microbial respiration and its temperature sensitivity in a Duolun grassland ecosystem. Acta Ecoloica Sinica, 2020, 40(5): 1551-1561. |
赵学超, 徐柱文, 刘圣恩, 等. 氮添加对多伦草原土壤微生物呼吸及其温度敏感性的影响. 生态学报, 2020, 40(5): 1551-1561. | |
9 | Shi W, Du M, Ye C, et al. Divergent effects of hydrological alteration and nutrient addition on greenhouse gas emissions in the water level fluctuation zone of the Three Gorges Reservoir, China. Water Research, 2021, 201(6): 117308. |
10 | Intergovernmental Panel on Climate Change 2013: The physical science basis//Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK and New York, USA: Cambridge University Press, 2013. |
11 | Jiang Q, Xu Z, Hao Y, et al. Dynamics of soil labile carbon and nitrogen pools in riparian zone of Wyaralong Dam in Southeast Queensland, Australia. Journal of Soils and Sediments, 2017, 17(4): 1030-1044. |
12 | Poblador S, Lupon A, Sabat’e S, et al. Soil water content drives spatiotemporal patterns of CO2 and N2O emissions from a Mediterranean riparian forest soil. Biogeosciences, 2017, 14(18): 4195-4208. |
13 | Ullah B, Shaaban M, Hu R G. Assessing soil nitrous oxide emission as affected by phosphorus and nitrogen addition under two moisture levels. Journal of Integrative Agriculture, 2016, 15(12): 2865-2872. |
14 | Jia X X, Shao M A, Wei X R, et al. Response of soil CO2 efflux to water addition in temperate semiarid grassland in northern China: the importance of water availability and species composition. Biology and Fertility of Soils, 2014, 50(5): 839-850. |
15 | Gao Y, Chen H, Schumann M, et al. Short-time responses of nitrous oxide fluxes to nitrogen and phosphorus addition in a peatland on the Tibetan plateau. Environmental Engineering and Management Journal, 2015, 14(1): 121-127. |
16 | Schmidt M W I, Torn M S, Abiven S, et al. Persistence of soil organic matter as an ecosystem property. Nature, 2011, 478(7367): 49-56. |
17 | Zhang K, Dang H, Zhang Q, et al. Soil carbon dynamics following land-use change varied with temperature and precipitation gradients: evidence from stable isotopes. Global Change Biology, 2015, 21(7): 2762-2772. |
18 | Zhou Z, Wang C, Zheng M, et al. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biology and Biochemistry, 2017, 115: 433-441. |
19 | Wang L, Yan B, Prasher S O, et al. The response of microbial composition and enzyme activities to hydrological gradients in a riparian wetland. Journal of Soils and Sediments, 2019, 19(12): 4031-4041. |
20 | Zhang R. Study on the dynamic changes of Huihe wetland and its landscape connectivity. Hohhot: Inner Mongolia University,2019. |
张瑞. 辉河湿地及其景观连接度动态变化研究. 呼和浩特: 内蒙古大学, 2019. | |
21 | Luo Y. The relationship between plant composition and diversity and soil characteristics in the riparian zone of Huihe Wetland. Beijing: Beijing Forestry University, 2019. |
罗琰. 辉河湿地河岸带植物组成和多样性与土壤特征的相互关系. 北京: 北京林业大学, 2019. | |
22 | Hong X A, Hy A, Mz B, et al. Soil extracellular enzyme activities and the abundance of nitrogen-cycling functional genes responded more to N addition than P addition in an Inner Mongolian meadow steppe. Science of the Total Environment, 2020, 759: 143541. |
23 | Chang Y H, Mu C C, Peng W H, et al. Characteristics of greenhouse gas emissions from seven swamp types in the permafrost region of Daxing’ an Mountains, northeast China. Acta Ecologica Sinica, 2020, 40(7): 2333-2346. |
常怡慧, 牟长城, 彭文宏, 等. 大兴安岭永久冻土区7种沼泽类型土壤温室气体排放特征. 生态学报, 2020, 40(7): 2333-2346. | |
24 | Mosier A, Halvorson A, Reule C, et al. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in Northeastern Colorado. Journal of Environmental Quality, 2006, 35: 1584-1598. |
25 | Bao S D. Analysis of soil agrochemistry (Third Edition). Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2020. | |
26 | Wang H, Yu L, Zhang Z, et al. Molecular mechanisms of water table lowering and nitrogen deposition in affecting greenhouse gas emissions from a Tibetan alpine wetland. Global Change Biology, 2017, 23(2): 815-829. |
27 | Shingubara R, Sugimoto A, Murase J, et al. Multi-year effect of wetting on CH4 flux at taiga-tundra boundary in northeastern Siberia deduced from stable isotope ratios of CH4. Biogeosciences, 2019, 16(3): 755-768. |
28 | Hou C C. Effects of hydrological changes on soil carbon sequestration of marsh in the Sanjiang Plain. Changchun: Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology), 2012. |
侯翠翠. 水文条件变化对三江平原沼泽湿地土壤碳蓄积的影响. 长春: 中国科学院(东北地理与农业生态研究所), 2012. | |
29 | Cui M, Caldwell M M. A large ephemeral release of nitrogen upon wetting of dry soil and corresponding root responses in the field. Plant and Soil, 1977, 191(2): 291-299. |
30 | Manzoni S, Schaeffer S M, Katul G, et al. A theoretical analysis of microbial eco-physiological and diffusion limitations to carbon cycling in drying soils. Soil Biology and Biochemistry, 2014, 73: 69-83. |
31 | Shi A, Marschner P. Drying and rewetting frequency influences cumulative respiration and its distribution over time in two soils with contrasting management. Soil Biology and Biochemistry, 2014, 72(72): 172-179. |
32 | Zhang X L, Zhou J H, Lai L M, et al. Spatial characterization of soil water-salt and nutrient in a desert riparian area along the lower reaches of Heihe River, China. Ecology and Environmental Sciences, 2019, 28(9): 1739-1747. |
张晓龙, 周继华, 来利明, 等. 黑河下游荒漠河岸地带土壤水盐和养分的空间分布特征. 生态环境学报, 2019, 28(9): 1739-1747. | |
33 | Hahn-Schöfl M, Zak D, Minke M, et al. Organic sediment formed during inundation of a degraded fen grassland emits large fluxes of CH4 and CO2. Biogeosciences, 2011, 8(6): 1539-1550. |
34 | Chen W, Zheng X, Wolf B, et al. Long-term grazing effects on soil-atmosphere exchanges of CO2, CH4 and N2O at different grasslands in Inner Mongolia: A soil core study. Ecological Indicators, 2017, 105: 316-328. |
35 | Gao J, Feng J, Zhang X, et al. Drying-rewetting cycles alter carbon and nitrogen mineralization in litter-amended alpine wetland soil. Catena, 2016, 145: 285-290. |
36 | Huygens D, Schouppe J, Roobroeck D. Drying-rewetting effects on N cycling in grassland soils of varing microbial community composition and management intensity in south central Chile. Applied Soil Ecology, 2011, 48(3): 270-279. |
37 | Schindlbacher A, Heinzle J, Gollobich G, et al. Soil greenhouse gas fluxes in floodplain forests of the Danube National Park: effects of flooding and soil microclimate. Biogeochemistry, 2022, 159(2): 193-213. |
38 | Kim S Y, Veraart A J, Meima-Franke M, et al. Combined effects of carbon, nitrogen and phosphorus on CH4 production and denitrification in wetland sediments. Geoderma, 2015, 259: 354-361. |
39 | Liu W, Lv X, Xu W, et al. Effects of water and nitrogen addition on ecosystem respiration across three types of steppe: the role of plant and microbial biomass. Science of the Total Environment, 2018, 619: 103-111. |
40 | Martinson G O, Müller A K, Matson A L, et al. Nitrogen and phosphorus control soil methane uptake in tropical montane forests. Biogeosciences, 2021, 126: e2020JG005970. |
41 | Wu X, Wang F, Li T, et al. Nitrogen additions increase N2O emissions but reduce soil respiration and CH4 uptake during freeze-thaw cycles in an alpine meadow. Geoderma, 2020, 363: 114157. |
42 | Jia J, Bai J, Wang W, et al. Salt stress alters the short-term responses of nitrous oxide emissions to the nitrogen addition in salt-affected coastal soils. Science of the Total Environment, 2020, 742: 140124. |
43 | Mori T, Ohta S, Ishizuka S, et al. Soil greenhouse gas fluxes and C stocks as affected by phosphorus addition in a newly established Acacia mangium plantation in Indonesia. Forest Ecology and Management, 2013, 310: 634-651. |
[1] | 宫珂, 靳瑰丽, 刘文昊, 马建, 刘智彪, 李嘉欣, 李莹. 模拟增温对无芒雀麦生长特性的影响[J]. 草业学报, 2023, 32(9): 93-103. |
[2] | 苏乐乐, 秦燕, 王瞾敏, 张永超, 刘文辉. 氮磷添加对燕麦与箭筈豌豆不同种植方式草地土壤微生物-胞外酶化学计量特征的影响[J]. 草业学报, 2023, 32(3): 56-66. |
[3] | 杜鹏冲, 潘昱臻, 侯双利, 王智慧, 王洪义. 氮磷添加对呼伦贝尔草地凋落物分解的影响[J]. 草业学报, 2023, 32(2): 44-53. |
[4] | 周娟娟, 刘云飞, 王敬龙, 魏巍. 短期养分添加对西藏沼泽化高寒草甸地上生物量、植物多样性和功能性状的影响[J]. 草业学报, 2023, 32(11): 17-29. |
[5] | 李鑫, 魏雪, 王长庭, 任晓, 吴鹏飞. 外源性养分添加对高寒草甸土壤节肢动物群落的影响[J]. 草业学报, 2022, 31(4): 155-164. |
[6] | 汪梦寒, 董利利, 李富翠, 韩烈保, 王祥. 不同有机/无机氮添加对草原土壤氮素分配和转化特征的影响[J]. 草业学报, 2022, 31(1): 36-46. |
[7] | 唐立涛, 毛睿, 王长庭, 李洁, 胡雷, 字洪标. 氮磷添加对高寒草甸植物群落根系特征的影响[J]. 草业学报, 2021, 30(9): 105-116. |
[8] | 彭艳, 孙晶远, 马素洁, 王向涛, 孙磊, 魏学红. 氮磷添加对藏北人工牧草生产性能和品质的评价[J]. 草业学报, 2021, 30(5): 52-64. |
[9] | 张静静, 刘尊驰, 鄢创, 王云霞, 刘凯, 时新荣, 袁志友. 土壤pH值变化对3种草原类型土壤碳氮磷生态化学计量特征的影响[J]. 草业学报, 2021, 30(2): 69-81. |
[10] | 聂莹莹, 陈金强, 辛晓平, 徐丽君, 杨桂霞, 王旭. 呼伦贝尔草甸草原区主要植物种群生态位特征与物种多样性对封育年限响应[J]. 草业学报, 2021, 30(10): 15-25. |
[11] | 郭剑波, 赵国强, 贾书刚, 董俊夫, 陈龙, 王淑平. 施肥对高寒草原草地质量指数及土壤性质影响的综合评价[J]. 草业学报, 2020, 29(9): 85-93. |
[12] | 聂莹莹, 徐丽君, 辛晓平, 陈宝瑞, 张保辉. 围栏封育对温性草甸草原植物群落构成及生态位特征的影响[J]. 草业学报, 2020, 29(11): 11-22. |
[13] | 那亚, 孙启忠, 王红梅. 呼伦贝尔草甸草原牧草青贮饲料脂肪酸成分研究[J]. 草业学报, 2017, 26(2): 215-223. |
[14] | 李小龙, 曹文侠, 李文, 张晓燕, 徐长林, 韦应莉, 师尚礼. 划破草皮对不同地形高寒草甸草原土壤特征及地下生物量的影响[J]. 草业学报, 2016, 25(6): 26-33. |
[15] | 胡飞龙, 闫妍, 卢晓强, 吴军, 丁晖, 刘志民. 内蒙古草甸草原生物量碳分配格局[J]. 草业学报, 2016, 25(4): 36-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||