草业学报 ›› 2024, Vol. 33 ›› Issue (9): 51-59.DOI: 10.11686/cyxb2023420
收稿日期:
2023-11-14
修回日期:
2023-12-22
出版日期:
2024-09-20
发布日期:
2024-06-20
通讯作者:
毛培胜
作者简介:
E-mail: maops@cau.edu.cn基金资助:
Chun-jiao MI(), Liu HONG, Wen MA, Pei-sheng MAO()
Received:
2023-11-14
Revised:
2023-12-22
Online:
2024-09-20
Published:
2024-06-20
Contact:
Pei-sheng MAO
摘要:
本研究探讨了谷胱甘肽(glutathione,GSH)引发对老化燕麦种胚线粒体抗氧化能力的影响,以期为种子合理贮藏与利用提供科学依据。试验以老化5 d种子为材料,研究了0.2 mmol·L-1 GSH引发24 h处理下种胚线粒体抗氧化酶活性、抗氧化物和过氧化氢(H2O2)含量的变化规律。结果表明,种子老化导致种胚线粒体内H2O2含量显著(P<0.05)升高,过氧化氢酶(CAT)、过氧化物酶(POD)、超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、单脱氢抗坏血酸还原酶(MDHAR)、谷胱甘肽还原酶(GR)和脱氢抗坏血酸还原酶(DHAR)活性均显著(P<0.05)降低,抗坏血酸(AsA)含量无显著变化,GSH含量、AsA/脱氢抗坏血酸(DHA)和GSH/氧化型谷胱甘肽(GSSG)显著(P<0.05)升高,DHA和GSSG含量显著(P<0.05)下降。而GSH引发处理使老化种子胚中线粒体的H2O2含量显著(P<0.05)降低,CAT和GR活性显著(P<0.05)升高,POD、SOD、MDHAR、APX、DHAR活性以及AsA、DHA含量和GSH/GSSG有所增加,GSH、GSSG含量和AsA/DHA有所降低,但差异均不显著。综上,GSH引发处理主要通过提高老化燕麦种胚线粒体抗氧化酶活性,降低H2O2含量,有效缓解了氧化损伤,维持种子活力。
米春娇, 洪流, 马馼, 毛培胜. 谷胱甘肽引发对老化燕麦种胚线粒体抗氧化特性的影响[J]. 草业学报, 2024, 33(9): 51-59.
Chun-jiao MI, Liu HONG, Wen MA, Pei-sheng MAO. Effects of glutathione priming on the mitochondrial antioxidant characteristics of aged oat seed embryos[J]. Acta Prataculturae Sinica, 2024, 33(9): 51-59.
图1 GSH引发处理对燕麦老化种胚线粒体H2O2含量的影响不同小写字母表示不同处理间差异显著(P<0.05),下同。Different lowercase letters indicate significant differences at 0.05 level among different treatments, the same below.
Fig.1 Effect of glutathione (GSH) priming treatment on the content of mitochondrial H2O2 of aged oat embryo
图2 GSH引发处理对燕麦老化种胚线粒体抗氧化酶活性的影响CAT: 过氧化氢酶Catalase; GR: 谷胱甘肽还原酶Glutathione reductase; MDHAR: 单脱氢抗坏血酸还原酶Monodehydroascorbate reductase; APX: 抗坏血酸过氧化物酶Ascorbate peroxidase; SOD: 超氧化物歧化酶Superoxide dismutase; DHAR: 脱氢抗坏血酸还原酶Dehydroascorbate reductase; POD: 过氧化物酶Peroxidase. 下同The same below.
Fig.2 Effect of glutathione (GSH) priming treatment on the activity of mitochondrial antioxidant enzymes of aged oat embryo
图3 GSH引发处理对燕麦老化种胚线粒体抗氧化物含量的影响AsA: 抗坏血酸Ascorbic acid; DHA: 脱氢抗坏血酸Dehydroascorbic acid; GSH: 谷胱甘肽Glutathione; GSSG: 氧化型谷胱甘肽Oxidized glutathione. 下同The same below.
Fig.3 Effect of glutathione (GSH) priming treatment on the content of mitochondrial antioxidant of aged oat embryo
图6 GSH引发处理对老化燕麦种胚线粒体抗氧化特性的影响红色方框表示升高,绿色方框表示降低,*表示差异显著(P<0.05),正方形从左到右表示DS/CK和GSH/DS。Red boxes indicate an increase, green boxes indicate a decrease, * indicate significant difference (P<0.05), and squares from left to right indicate DS/CK and GSH/DS. MDHA: 单脱氢抗坏血酸Monodehydroasorbate.
Fig.6 Effects of GSH priming treatment on the mitochondrial antioxidant characteristics in aged oat seed embryos
1 | Murthy U M N, Kumar P P, Sun W Q. Mechanisms of seed ageing under different storage conditions for Vigna radiata (L.) Wilczek: lipid peroxidation, sugar hydrolysis, Maillard reactions and their relationship to glass state transition. Journal of Experimental Botany, 2003, 54(384): 1057-1067. |
2 | Xia F S, Chen L L, Sun Y, et al. Relationships between ultrastructure of embryo cells and biochemical variations during ageing of oat (Avena sativa L.) seeds with different moisture content. Acta Physiologiae Plantarum, 2015, 37(4): 89. |
3 | McDonald M B. Seed deterioration: physiology, repair and assessment. Seed Science and Technology, 1999, 27(1): 177-237. |
4 | Cheng H, Ma X Q, Jia S G, et al. Transcriptomic analysis reveals the changes of energy production and AsA-GSH cycle in oat embryos during seed ageing. Plant Physiology and Biochemistry, 2020, 153: 40-52. |
5 | Gill S S, Anjum N A, Hasanuzzaman M, et al. Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiology and Biochemistry, 2013, 70(1): 204-212. |
6 | Shan C J, Zhang S L, Ou X Q. The roles of H2S and H2O2 in regulating AsA-GSH cycle in the leaves of wheat seedlings under drought stress. Protoplasma, 2018, 255(4): 1257-1262. |
7 | Jia T, Zhao G, Peng L X, et al. Effect of PEG-6000 priming on seed germination and seedling growth of tartary buckwheat. Journal of Chengdu University (Natural Science Edition), 2012, 31(1): 1-3. |
贾婷, 赵钢, 彭镰心, 等. PEG-6000引发对苦荞种子萌发及幼苗生长的影响. 成都大学学报(自然科学版), 2012, 31(1): 1-3. | |
8 | Jisha K C, Vijayakumari K, Puthur J T. Seed priming for abiotic stress tolerance: an overview. Acta Physiologiae Plantarum, 2013, 35(5): 1381-1396. |
9 | Wang W Q. Mechanisms underlying the effect of seed priming on the establishment of direct-seeded early season rice under chilling stress. Wuhan: Huazhong Agricultural University, 2020. |
王慰亲. 种子引发促进直播早稻低温胁迫下萌发出苗的机理研究. 武汉: 华中农业大学, 2020. | |
10 | Rouhier N, Cerveau D, Couturier J, et al. Involvement of thiol-based mechanisms in plant development. Biochimica et Biophysica Acta-General Subjects, 2015, 1850(8): 1479-1496. |
11 | Ding S H, Lei M, Lu Q T, et al. Enhanced sensitivity and characterization of photosystem Ⅱ in transgenic tobacco plants with decreased chloroplast glutathione reductase under chilling stress. Biochimica et Biophysica Acta-Bioenergetics, 2012, 1817(11): 1979-1991. |
12 | Zhou Y, Liu H Y, Wang S, et al. Effects of exogenous GSH on tomato seedlings growth and physiological indexes of resistance stress under salt stress. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(3): 515-520. |
周艳, 刘慧英, 王松, 等. 外源GSH对盐胁迫下番茄幼苗生长及抗逆生理指标的影响. 西北植物学报, 2016, 36(3): 515-520. | |
13 | Niu X G, Song L C, Xiao Y N, et al. Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Frontiers in Microbiology, 2018, 8(1): 2580. |
14 | Nakamura S, Wongkaew A, Nakai Y, et al. Foliar-applied glutathione activates zinc transport from roots to shoots in oilseed rape. Plant Science, 2019, 283: 424-434. |
15 | Yan H F, Mao C L, Zhu Y Q, et al. Exogenous glutathione pre-treatment improves germination and resistance Elymus sibiricus seeds subjected to different ageing conditions. Seed Science and Technology, 2017, 45(3): 607-621. |
16 | Sun M, Wang S Q, Aierken·Dawuti, et al. Effects of antioxidant priming on germination and seedling growth of aged seeds of smooth bromegrass. Acta Prataculturae Sinica, 2019, 28(11): 105-113. |
孙铭, 王思琪, 艾尔肯·达吾提, 等. 抗氧化剂引发对无芒雀麦老化种子发芽及幼苗生长的影响. 草业学报, 2019, 28(11): 105-113. | |
17 | Kaya C, Ugular F, Ashraf M, et al. Nitric oxide and hydrogen sulfide work together to improve tolerance to salinity stress in wheat plants by upraising the AsA-GSH cycle. Plant Physiology and Biochemistry, 2023, 194: 651-663. |
18 | Li J, Lei B, Zhai M H, et al. Study on the response mechanism of the AsA-GSH cycle in cotton seedling under low temperature stress. Journal of Nuclear Agricultural Sciences, 2021, 35(1): 221-228. |
李进, 雷斌, 翟梦华, 等. 棉花幼苗AsA-GSH循环对低温胁迫的响应机制研究. 核农学报, 2021, 35(1): 221-228. | |
19 | Chen F, Yang S L, Zhang L, et al. Effects of exogenous methyl jasmonate on ascorbate-glutathione cycle in Zea mays seedlings under salt stress. Bulletin of Biology, 2021, 56(11): 44-48. |
陈芳, 杨双龙, 张莉, 等. 外源茉莉酸甲酯对盐胁迫下玉米幼苗AsA-GSH循环的影响. 生物学通报, 2021, 56(11): 44-48. | |
20 | Wang Z Y, Luo J K. Exploring the nutritional function and special industry development of oats in Huining county, Gansu province. China Seed Industry, 2023(7): 11-15, 19. |
王泽宇, 罗健科. 甘肃会宁县燕麦营养功能及特色产业发展探索. 中国种业, 2023(7): 11-15, 19. | |
21 | Welch R W. Oats: chemistry and technology. Saint Paul: American Association of Cereal Chemists, 2011. |
22 | Qi X Y, Cao S Q, Liu H S, et al. Studies on the lipid composition of different oat varieties and its relationship with the other nutrients. Journal of Chinese Institute of Food Science and Technology, 2014, 14(5): 63-71. |
戚向阳, 曹少谦, 刘合生, 等. 不同品种燕麦的油脂组成及与其它营养物质相关性研究. 中国食品学报, 2014, 14(5): 63-71. | |
23 | Lehtinen P, Kiiliainen K, Lehtomaki I, et al. Effect of heat treatment on lipid stability in processed oats. Journal of Cereal Science, 2003, 37(2): 215-221. |
24 | Liu B, Song Y M, Sun M, et al. Physiological responses of mitochondrial AsA-GSH cycle to imbibition of deteriorated oat seeds. Acta Agrestia Sinica, 2021, 29(2): 211-219. |
刘备, 宋玉梅, 孙铭, 等. 燕麦劣变种子吸胀过程中线粒体AsA-GSH循环的生理响应. 草地学报, 2021, 29(2): 211-219. | |
25 | Delouche J C, Baskin C C. Accelerated aging techniques for predicting the relative storability of seed lots. Seed Science and Technology, 1973, 1(2): 427-452. |
26 | Mao C L, Zhu Y Q, Cheng H, et al. Nitric oxide regulates seedling growth and mitochondrial responses in aged oat seeds. International Journal of Molecular Sciences, 2018, 19(4): 1052. |
27 | Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 1981, 22(5): 867-880. |
28 | Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology, 1992, 98(4): 1222-1227. |
29 | Kar M, Mishra D. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiology, 1976, 57(2): 315-319. |
30 | Wang Z, Zhang Y X, Huang Z B, et al. Antioxidative response of metal-accumulator and non-accumulator plants under cadmium stress. Plant and Soil, 2008, 310(1/2): 137-149. |
31 | Arrigoni O, Dipierro S, Borraccino G. Ascorbate free radical reductase, a key enzyme of the ascorbic acid system. FEBS Letters, 1981, 125(2): 242-244. |
32 | Madamanchi N R, Alscher R G. Metabolic bases for differences in sensitivity of two pea cultivars to sulfur dioxide. Plant Physiology, 1991, 97(1): 88-93. |
33 | Gomes M P, Cruz F V D, Bicalho E M, et al. Effects of glyphosate acid and the glyphosate-commercial formulation (Roundup) on Dimorphandra wilsonii seed germination: Interference of seed respiratory metabolism. Environmental Pollution, 2017, 220: 452-459. |
34 | Rajjou L, Debeaujon I. Seed longevity: survival and maintenance of high germination ability of dry seeds. Comptes Rendus Biologies, 2008, 331(10): 796-805. |
35 | McDonald A E. Alternative oxidase: an inter-kingdom perspective on the function and regulation of this broadly distributed ‘cyanide-resistant’ terminal oxidase. Functional Plant Biology, 2008, 35(7): 535-552. |
36 | Xia F S, Cheng H, Chen L L, et al. Influence of exogenous ascorbic acid and glutathione priming on mitochondrial structural and functional systems to alleviate aging damage in oat seeds. BMC Plant Biology, 2020, 20(1): 104. |
37 | Wang W Q, Xu D Y, Sui Y P, et al. A multiomic study uncovers a bZIP23-PER1A-mediated detoxification pathway to enhance seed vigor in rice. Proceedings of the National Academy of Sciences, 2022, 119(9): e2026355119. |
38 | Xin X, Tian Q, Yin G K, et al. Reduced mitochondrial and ascorbate-glutathione activity after artificial ageing in soybean seed. Journal of Plant Physiology, 2014, 171(2): 140-147. |
39 | Sun S J, Mao P S, Dou L R, et al. Studies on the regulation of seed aging by reactive oxygen species and telomeres. Acta Prataculturae Sinica, 2023, 32(8): 202-213. |
孙守江, 毛培胜, 豆丽茹, 等. 活性氧及染色体端粒调控种子老化研究. 草业学报, 2023, 32(8): 202-213. | |
40 | Zhang R D, Liang X H, Liu J, et al. Effects of seed priming on germination and physiological characteristics of sorghum seeds under drought stress. Crops, 2022, 138(6): 234-240. |
张瑞栋, 梁晓红, 刘静, 等. 种子引发对干旱胁迫下高粱种子发芽及生理特性的影响. 作物杂志, 2022, 138(6): 234-240. | |
41 | Paparella S, Araujo S S, Rossi G, et al. Seed priming: state of the art and new perspectives. Plant Cell Reports, 2015, 34(8): 1281-1293. |
42 | Zeng F R, Qiu B Y, Wu X J, et al. Glutathione-mediated alleviation of chromium toxicity in rice plants. Biological Trace Element Research, 2012, 148(2): 255-263. |
43 | Sun S J, Tang Y H, Ma W, et al. Response of the mitochondrial AsA-GSH cycle during alfalfa seed germination under low temperature stress. Acta Prataculturae Sinica, 2023, 32(3): 152-162. |
孙守江, 唐艺涵, 马馼, 等. 紫花苜蓿种子吸胀期胚根线粒体AsA-GSH循环对低温胁迫的响应. 草业学报, 2023, 32(3): 152-162. |
[1] | 王宝, 谢占玲, 郭璟, 唐永鹏, 孟清, 彭清青, 杨家宝, 董德誉, 徐鸿雁, 高太侦, 张凡, 段迎珠. 真菌发酵液浸种燕麦对其抗旱性及根际真菌群落结构的影响[J]. 草业学报, 2024, 33(9): 126-139. |
[2] | 关皓, 许多, 李海萍, 贾志锋, 马祥, 刘文辉, 陈有军, 李欣洋, 黄艳玲, 周青平, 陈仕勇. 高寒地区17个燕麦品种营养品质及瘤胃降解特性研究[J]. 草业学报, 2024, 33(9): 185-198. |
[3] | 马圆, 刘欢, 赵桂琴, 王敬龙, 张然, 姚瑞瑞. 燕麦sHSP基因家族的鉴定及其响应高温及老化的表达分析[J]. 草业学报, 2024, 33(8): 145-158. |
[4] | 杜文盼, 赵桂琴, 柴继宽, 杨莉, 张建贵, 史怡超, 张官禄. 根系分隔方式对燕麦/豌豆间作地上生物量、土壤养分及根系性状的影响[J]. 草业学报, 2024, 33(8): 25-36. |
[5] | 桑瑞娟, 崔超杰, 何云, 张晓霞, 姚晋, 董春阳, 孙浩, 史莹华, 朱晓艳, 李德锋. 豫北地区18个秋播饲用燕麦品种抗倒伏特性及生产性能评价[J]. 草业学报, 2024, 33(8): 74-85. |
[6] | 张昭, 伏莹莹, 孙浩文, 孙逢雪, 闫慧芳. 不同品种燕麦种子活力鉴定与耐贮藏性评价[J]. 草业学报, 2024, 33(6): 165-174. |
[7] | 李鸿飞, 周帮伟, 张淼, 施树楠, 李志坚. 不同燕麦品种在呼伦贝尔地区的引种适应性评价[J]. 草业学报, 2024, 33(4): 60-72. |
[8] | 慕平, 柴继宽, 苏玮娟, 章海龙, 赵桂琴. 燕麦不同组合正、反交杂种后代的表型及遗传参数分析[J]. 草业学报, 2024, 33(4): 73-86. |
[9] | 冯琴, 何小莉, 王斌, 王腾飞, 倪旺, 马霞, 明雪花, 邓建强, 兰剑. 宁夏引黄灌区燕麦与箭筈豌豆的混播效果研究[J]. 草业学报, 2024, 33(3): 107-119. |
[10] | 鲍根生, 李媛, 冯晓云, 张鹏, 孟思宇. 高寒区氮添加和间作种植互作对燕麦和豌豆根系构型影响的研究[J]. 草业学报, 2024, 33(3): 73-84. |
[11] | 汪雪, 刘晓静, 王静, 吴勇, 童长春. 连续间作下的紫花苜蓿/燕麦根系与碳氮代谢特性研究[J]. 草业学报, 2024, 33(3): 85-96. |
[12] | 姚瑞瑞, 刘欢, 赵桂琴, 王敬龙, 王绮玉, 董凯, 张然. 贮藏时间对皮、裸燕麦种子萌发及细胞学结构的影响[J]. 草业学报, 2024, 33(2): 154-163. |
[13] | 罗颖, 李聪, 王沛, 田莉华, 汪辉, 周青平, 雷映霞. 低氮胁迫下不同皮燕麦品种早期的响应研究及耐低氮性综合评价[J]. 草业学报, 2024, 33(2): 164-184. |
[14] | 黄丽娟, 孙镕基, 高文婧, 张志飞, 陈桂华. 全株水稻表面优势乳酸菌的筛选与鉴定[J]. 草业学报, 2024, 33(1): 117-125. |
[15] | 李文龙, 李峰, 张仲鹃, 王殿清, 王欢, 靳慧卿, 特木热, 胡志玲, 陶雅. 鄂尔多斯高原北部一年两季燕麦种植模式生产性能评价[J]. 草业学报, 2024, 33(1): 159-168. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||