草业学报 ›› 2024, Vol. 33 ›› Issue (3): 85-96.DOI: 10.11686/cyxb2023143
收稿日期:
2023-04-29
修回日期:
2023-06-05
出版日期:
2024-03-20
发布日期:
2023-12-27
通讯作者:
刘晓静
作者简介:
E-mail: liuxj@gsau.edu.cn基金资助:
Xue WANG(), Xiao-jing LIU(), Jing WANG, Yong WU, Chang-chun TONG
Received:
2023-04-29
Revised:
2023-06-05
Online:
2024-03-20
Published:
2023-12-27
Contact:
Xiao-jing LIU
摘要:
为探明豆/禾牧草连续间作下的根系生长特性、碳氮代谢特性及二者相互耦联机制的长期效应,通过田间框栽土培试验,以紫花苜蓿单作和燕麦单作为参照,对紫花苜蓿/燕麦间作种植后第2年、第3年(高产期)连续2年的根系特征、碳氮代谢特性及其相互协调关系开展研究。结果表明:燕麦的生物量表现为间作显著高于单作(P<0.05);燕麦的根表面积和根平均直径表现为间作显著高于单作(P<0.05);燕麦的蒸腾速率(Tr)、净光合速率(Pn)、气孔导度(Gs)、核酮糖-1,5-二磷酸羧化酶(RuBPCase)活性、4个氮代谢酶活性和碳水化合物积累量表现为间作显著高于单作(P<0.05),而紫花苜蓿与燕麦表现相反。通过相关性分析发现,生物量与光合气体交换参数、氮代谢酶活性、根系特性呈正相关;根表面积、根平均直径与Tr、Pn、Gs、硝酸还原酶(NR)活性、氮积累量、蛋白总量呈显著正相关(P<0.05);根体积、根表面积、根平均直径与亚硝酸还原酶(NiR)活性、谷氨酸合酶(GOGAT)活性呈极显著正相关(P<0.01)。由此可知,紫花苜蓿与燕麦间作更有利于燕麦优化其根系形态,同时也会显著提高燕麦净光合速率和蒸腾速率,增强燕麦RuBPCase、NR和谷氨酰胺合成酶(GS)等碳、氮代谢酶活性,进而促进其体内碳水化合物及蛋白质积累以改善燕麦生物量和品质,连续间作减弱了系统内燕麦对紫花苜蓿根表面积和根体积的抑制,拓展了紫花苜蓿总根长,但整体而言,间作抑制了紫花苜蓿根系生长和碳、氮代谢水平,不利于其代谢产物及生物量的积累;且总根长、根表面积和根体积对碳、氮代谢起显著促进作用,紫花苜蓿/燕麦间作体系内根系及碳、氮代谢的协调一致可有效提高体系内生物量和蛋白总量。
汪雪, 刘晓静, 王静, 吴勇, 童长春. 连续间作下的紫花苜蓿/燕麦根系与碳氮代谢特性研究[J]. 草业学报, 2024, 33(3): 85-96.
Xue WANG, Xiao-jing LIU, Jing WANG, Yong WU, Chang-chun TONG. Root and carbon-nitrogen metabolism characteristics of alfalfa-oat mixed stands under continuous intercropping[J]. Acta Prataculturae Sinica, 2024, 33(3): 85-96.
图1 不同种植方式下紫花苜蓿与燕麦的地上生物量DA,IA,DO和IO分别代表紫花苜蓿单作,与燕麦间作的紫花苜蓿,燕麦单作,燕麦间作。不同小写字母表示同一年份下不同种植方式之间差异显著(P<0.05)。下同。DA, IA, DO and IO represented monoculture alfalfa, alfalfa intercropped with oat, monoculture oat, intercropped oat. Different lowercase letters mean significant difference at 0.05 level in different planting patterns of the same planting year. The same below.
Fig.1 Aboveground biomass of alfalfa and oat under different planting methods
光合气体参数 Photosynthetic gas parameter | 种植方式 Planting methods | 年份 Years | 光合气体参数 Photosynthetic gas parameter | 种植方式 Planting methods | 年份 Years | ||
---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | ||||
蒸腾速率 Transpiration rate (Tr,mmol·m-2·s-1) | DA | 8.91±0.06ab | 20.44±0.30a | 净光合速率Net photosynthetic rate (Pn,μmol·m-2·s-1) | DA | 30.97±0.40a | 18.79±0.13a |
IA | 8.52±0.17bc | 15.47±0.13b | IA | 25.52±0.26b | 16.00±1.46b | ||
DO | 7.93±0.31c | 7.93±0.31d | DO | 10.55±0.29c | 10.55±0.29c | ||
IO | 9.40±0.26a | 8.81±0.16c | IO | 11.24±0.17c | 15.22±0.24b | ||
胞间CO2浓度 Intercellular CO2 concentration (Ci,μmol·mol-1) | DA | 305.25±1.35b | 356.45±1.21b | 气孔导度Stomatal conductance (Gs,μmol·m-2·s-1) | DA | 600.73±26.21a | 753.06±15.87a |
IA | 322.43±1.61a | 429.02±6.09a | IA | 419.63±28.30b | 668.73±9.63b | ||
DO | 280.15±4.25c | 280.15±4.25c | DO | 220.00±14.92d | 220.00±14.92c | ||
IO | 266.93±2.85d | 274.50±5.71c | IO | 341.15±7.73c | 229.73±3.06c |
表1 不同种植方式下紫花苜蓿与燕麦的光合气体交换参数
Table 1 Photosynthetic gas exchange parameters of alfalfa and oat under different planting methods
光合气体参数 Photosynthetic gas parameter | 种植方式 Planting methods | 年份 Years | 光合气体参数 Photosynthetic gas parameter | 种植方式 Planting methods | 年份 Years | ||
---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | ||||
蒸腾速率 Transpiration rate (Tr,mmol·m-2·s-1) | DA | 8.91±0.06ab | 20.44±0.30a | 净光合速率Net photosynthetic rate (Pn,μmol·m-2·s-1) | DA | 30.97±0.40a | 18.79±0.13a |
IA | 8.52±0.17bc | 15.47±0.13b | IA | 25.52±0.26b | 16.00±1.46b | ||
DO | 7.93±0.31c | 7.93±0.31d | DO | 10.55±0.29c | 10.55±0.29c | ||
IO | 9.40±0.26a | 8.81±0.16c | IO | 11.24±0.17c | 15.22±0.24b | ||
胞间CO2浓度 Intercellular CO2 concentration (Ci,μmol·mol-1) | DA | 305.25±1.35b | 356.45±1.21b | 气孔导度Stomatal conductance (Gs,μmol·m-2·s-1) | DA | 600.73±26.21a | 753.06±15.87a |
IA | 322.43±1.61a | 429.02±6.09a | IA | 419.63±28.30b | 668.73±9.63b | ||
DO | 280.15±4.25c | 280.15±4.25c | DO | 220.00±14.92d | 220.00±14.92c | ||
IO | 266.93±2.85d | 274.50±5.71c | IO | 341.15±7.73c | 229.73±3.06c |
种植方式 Planting methods | 碳水化合物含量Carbohydrate content (%) | 碳水化合物积累量Carbohydrate accumulation (g) | ||
---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | |
DA | 5.11±0.01c | 5.02±0.03c | 1.52±0.01bc | 1.79±0.17b |
IA | 4.87±0.01d | 4.88±0.03c | 1.30±0.07c | 1.47±0.19c |
DO | 11.48±0.06b | 11.48±0.06b | 1.82±0.14b | 1.82±0.14b |
IO | 12.44±0.06a | 12.56±0.06a | 2.50±0.32a | 2.51±0.06a |
表2 不同种植方式下紫花苜蓿与燕麦的碳水化合物含量及积累量
Table 2 Carbohydrate content and accumulation of alfalfa and oat under different planting methods
种植方式 Planting methods | 碳水化合物含量Carbohydrate content (%) | 碳水化合物积累量Carbohydrate accumulation (g) | ||
---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | |
DA | 5.11±0.01c | 5.02±0.03c | 1.52±0.01bc | 1.79±0.17b |
IA | 4.87±0.01d | 4.88±0.03c | 1.30±0.07c | 1.47±0.19c |
DO | 11.48±0.06b | 11.48±0.06b | 1.82±0.14b | 1.82±0.14b |
IO | 12.44±0.06a | 12.56±0.06a | 2.50±0.32a | 2.51±0.06a |
种植方式 Planting methods | 氮积累量Nitrogen accumulation | 蛋白总量Total protein content | ||
---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | |
DA | 1.05±0.01a | 1.22±0.07a | 6.57±0.05a | 7.61±0.43a |
IA | 0.86±0.06b | 0.89±0.07b | 5.36±0.37b | 5.54±0.44b |
DO | 0.36±0.03c | 0.36±0.03c | 2.25±0.16c | 2.25±0.16c |
IO | 0.47±0.04c | 0.49±0.00c | 2.96±0.27c | 3.09±0.02c |
表3 不同种植方式下紫花苜蓿与燕麦的氮积累量和蛋白总量
Table 3 N accumulation and total protein content of alfalfa and oat under different planting methods (g)
种植方式 Planting methods | 氮积累量Nitrogen accumulation | 蛋白总量Total protein content | ||
---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | |
DA | 1.05±0.01a | 1.22±0.07a | 6.57±0.05a | 7.61±0.43a |
IA | 0.86±0.06b | 0.89±0.07b | 5.36±0.37b | 5.54±0.44b |
DO | 0.36±0.03c | 0.36±0.03c | 2.25±0.16c | 2.25±0.16c |
IO | 0.47±0.04c | 0.49±0.00c | 2.96±0.27c | 3.09±0.02c |
项目 Item | 地上生物量 Aboveground biomass | 蒸腾速率 Transpiration rate (Tr) | 净光合 速率 Net photosynthetic rate (Pn) | 胞间CO2浓度 Intercellular CO2 concentration (Ci) | 气孔导度 Stomatal conductance (Gs) | 核酮糖-1,5-二磷酸羧化酶 Ribulose-1,5-bisphosphate carboxylase (RuBPCase) | 碳水化合物含量 Carbohydrate content (Carbo) | 硝酸还原酶 Nitrate reductase (NR) | 亚硝酸还原酶 Nitrate reductase (NiR) | 谷氨酰胺合成酶 Glutamine synthetase (GS) | 谷氨酸 合酶 Glutamate synthase (GOGAT) | 氮积累量 Nitrogen accumulation (NA) | 蛋白总量Total protein content (TP) | 总根长Total root length (RL) | 根表面积Root surface area (RSA) | 根平均直径Root average diameter (RAD) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tr | 0.936 | |||||||||||||||
Pn | 0.940 | 0.994** | ||||||||||||||
Ci | 0.631 | 0.700 | 0.771 | |||||||||||||
Gs | 0.925 | 0.993** | 0.999** | 0.782 | ||||||||||||
RuBPCase | -0.607 | -0.791 | -0.828 | -0.920 | -0.848 | |||||||||||
Carbo | -0.772 | -0.891 | -0.926 | -0.933 | -0.937 | 0.972* | ||||||||||
NR | 0.970* | 0.978* | 0.991** | 0.772 | 0.986* | -0.781 | -0.902 | |||||||||
NiR | 0.885 | 0.947 | 0.976* | 0.892 | 0.979* | -0.904 | -0.979* | 0.970* | ||||||||
GS | 0.945 | 0.966* | 0.988* | 0.833 | 0.985* | -0.831 | -0.937 | 0.995** | 0.989* | |||||||
GOGAT | 0.867 | 0.936 | 0.968* | 0.906 | 0.972* | -0.919 | -0.986* | 0.960* | 0.999** | 0.982* | ||||||
NA | 0.933 | 0.998** | 0.999** | 0.746 | 0.998** | -0.823 | -0.918 | 0.985* | 0.966* | 0.979* | 0.958* | |||||
TP | 0.933 | 0.998** | 0.999** | 0.746 | 0.998** | -0.823 | -0.918 | 0.985* | 0.966* | 0.979* | 0.958* | 1.000** | ||||
RL | 0.946 | 0.915 | 0.950* | 0.845 | 0.943 | -0.776 | -0.901 | 0.978* | 0.966* | 0.986* | 0.959* | 0.933 | 0.933 | |||
RSA | 0.895 | 0.957* | 0.983* | 0.876 | 0.985* | -0.897 | -0.974* | 0.976* | 0.999** | 0.991** | 0.998** | 0.974* | 0.974* | 0.966* | ||
RAD | 0.868 | 0.952* | 0.977* | 0.882 | 0.982* | -0.921 | -0.985* | 0.962* | 0.998** | 0.981* | 0.998** | 0.971* | 0.971* | 0.947 | 0.998** | |
RV | 0.850 | 0.935 | 0.965* | 0.907 | 0.971* | -0.933 | -0.991** | 0.951* | 0.997** | 0.975* | 0.999** | 0.956* | 0.956* | 0.946 | 0.996** | 0.998** |
表4 根系与碳、氮代谢指标的相关性
Table 4 The correlation between root system and carbon-nitrogen metabolism indicators
项目 Item | 地上生物量 Aboveground biomass | 蒸腾速率 Transpiration rate (Tr) | 净光合 速率 Net photosynthetic rate (Pn) | 胞间CO2浓度 Intercellular CO2 concentration (Ci) | 气孔导度 Stomatal conductance (Gs) | 核酮糖-1,5-二磷酸羧化酶 Ribulose-1,5-bisphosphate carboxylase (RuBPCase) | 碳水化合物含量 Carbohydrate content (Carbo) | 硝酸还原酶 Nitrate reductase (NR) | 亚硝酸还原酶 Nitrate reductase (NiR) | 谷氨酰胺合成酶 Glutamine synthetase (GS) | 谷氨酸 合酶 Glutamate synthase (GOGAT) | 氮积累量 Nitrogen accumulation (NA) | 蛋白总量Total protein content (TP) | 总根长Total root length (RL) | 根表面积Root surface area (RSA) | 根平均直径Root average diameter (RAD) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tr | 0.936 | |||||||||||||||
Pn | 0.940 | 0.994** | ||||||||||||||
Ci | 0.631 | 0.700 | 0.771 | |||||||||||||
Gs | 0.925 | 0.993** | 0.999** | 0.782 | ||||||||||||
RuBPCase | -0.607 | -0.791 | -0.828 | -0.920 | -0.848 | |||||||||||
Carbo | -0.772 | -0.891 | -0.926 | -0.933 | -0.937 | 0.972* | ||||||||||
NR | 0.970* | 0.978* | 0.991** | 0.772 | 0.986* | -0.781 | -0.902 | |||||||||
NiR | 0.885 | 0.947 | 0.976* | 0.892 | 0.979* | -0.904 | -0.979* | 0.970* | ||||||||
GS | 0.945 | 0.966* | 0.988* | 0.833 | 0.985* | -0.831 | -0.937 | 0.995** | 0.989* | |||||||
GOGAT | 0.867 | 0.936 | 0.968* | 0.906 | 0.972* | -0.919 | -0.986* | 0.960* | 0.999** | 0.982* | ||||||
NA | 0.933 | 0.998** | 0.999** | 0.746 | 0.998** | -0.823 | -0.918 | 0.985* | 0.966* | 0.979* | 0.958* | |||||
TP | 0.933 | 0.998** | 0.999** | 0.746 | 0.998** | -0.823 | -0.918 | 0.985* | 0.966* | 0.979* | 0.958* | 1.000** | ||||
RL | 0.946 | 0.915 | 0.950* | 0.845 | 0.943 | -0.776 | -0.901 | 0.978* | 0.966* | 0.986* | 0.959* | 0.933 | 0.933 | |||
RSA | 0.895 | 0.957* | 0.983* | 0.876 | 0.985* | -0.897 | -0.974* | 0.976* | 0.999** | 0.991** | 0.998** | 0.974* | 0.974* | 0.966* | ||
RAD | 0.868 | 0.952* | 0.977* | 0.882 | 0.982* | -0.921 | -0.985* | 0.962* | 0.998** | 0.981* | 0.998** | 0.971* | 0.971* | 0.947 | 0.998** | |
RV | 0.850 | 0.935 | 0.965* | 0.907 | 0.971* | -0.933 | -0.991** | 0.951* | 0.997** | 0.975* | 0.999** | 0.956* | 0.956* | 0.946 | 0.996** | 0.998** |
1 | Zhang D, Long H Y, Jin J, et al. Effects of growth interaction effect of Leguminous and Gramineous pasture intercropping and absorption of nutrient and phosphorus on pasture expression. Acta Prataculturae Sinica, 2018, 27(10): 15-22. |
张德, 龙会英, 金杰, 等. 豆科与禾本科牧草间作的生长互作效应及对氮、磷养分吸收的影响. 草业学报, 2018, 27(10): 15-22. | |
2 | Li L, Sun J H, Zhang F S, et al. Root distribution and interactions between intercropped species. Oecologia, 2005, 147(2): 280-290. |
3 | Li J T, Qin X M, Qin H Y, et al. Effects of maize and soybean intercrop on maize root morphological traits and its nitrogen and phosphorus nutrient absorption. Journal of Southern Agriculture, 2022, 53(5): 1348-1356. |
李金婷, 覃潇敏, 覃宏宇, 等. 间作对玉米根系形态特征及其氮磷养分吸收的影响. 南方农业学报, 2022, 53(5): 1348-1356. | |
4 | Shao Z Q, Liu S Q, Gou Q D, et al. Effects of nitrogen application and planting patterns on crop yield, nitrogen uptake and root morphology in a maize/alfalfa intercropping system. Journal of Northeast Agricultural Sciences, 2023, 48(4): 6-11. |
邵泽强, 刘书奇, 勾千冬, 等. 施氮和种植模式对玉米/紫花苜蓿间作体系中作物产量、吸氮量和根系形态的影响. 东北农业科学, 2023, 48(4): 6-11. | |
5 | Sekiya N, Yano K. Do pigeon pea and sesbania supply groundwater to intercropped maize through hydraulic lift?: Hydrogen stable isotope investigation of xylem waters. Field Crops Research, 2004, 86(2/3): 167-173. |
6 | Wang Y Q, Chao C S, Dai J, et al. Difference in carbon and nitrogen metabolism of rapeseed (Brassica napus L.) with contrasting nitrogen efficiency at seedling stage. Chinese Journal of Oil Crop Sciences, 2022, 44(3): 589-601. |
王玉乾, 巢成生, 代晶, 等. 不同氮效率油菜苗期碳氮代谢差异. 中国油料作物学报, 2022, 44(3): 589-601. | |
7 | Zhao Y J, Liu X J, Tong C C, et al. Effect of alfalfa||maize intercropping on nitrogen metabolism related enzyme activity of maize. Grassland and Turf, 2019, 39(3): 63-71. |
赵雅姣, 刘晓静, 童长春, 等. 紫花苜蓿‖玉米间作对玉米氮代谢相关酶活性的影响. 草原与草坪, 2019, 39(3): 63-71. | |
8 | Deng X Y, Wang X C, Yang W Y, et al. Effects of nitrogen strategies on carbon and nitrogen metabolism of maize in wheat/maize/soybean relay intercropping system. Acta Prataculturae Sinica, 2012, 21(4): 52-61. |
邓小燕, 王小春, 杨文钰, 等. “麦/玉/豆”模式下氮肥运筹对玉米碳氮代谢的影响. 草业学报, 2012, 21(4): 52-61. | |
9 | Lin F, Liu X J, Tong C C, et al. A study of root system characteristics and carbon and nitrogen metabolism of alfalfa and four grass forages in monoculture or intercropped. Acta Prataculturae Sinica, 2019, 28(9): 45-54. |
蔺芳, 刘晓静, 童长春, 等. 4种间作模式下牧草根系特性及其碳、氮代谢特征研究. 草业学报, 2019, 28(9): 45-54. | |
10 | Li J, Wang W L, Zhao X, et al. Effect of roots partitions on interspecific competition and nitrogen fixation in the pea-maize intercropping. Agricultural Research in the Arid Areas, 2016, 34(6): 177-183. |
11 | Yang C, Wang G G, Wang M L. Production and trade of wild oat forage in China. Pratacultural Science, 2017, 34(5): 1129-1135. |
杨春, 王国刚, 王明利. 我国的燕麦草生产和贸易. 草业科学, 2017, 34(5): 1129-1135. | |
12 | Ogindo H O, Walker S. Comparison of measured changes in seasonal soil water content by rained maize-bean intercrop and component cropping systems in a semi-arid region of Southern Africa. Physics and Chemistry of the Earth, 2005, 30: 799-808. |
13 | Liu Y N. Growth, yield and water use efficiency in winter wheat and alfalfa intercropping systems on the dryland of Loess Plateau. Lanzhou: Lanzhou University, 2020. |
刘亚男. 黄土旱塬区冬小麦/紫花苜蓿间作系统作物生长动态、产量与水分利用效率研究. 兰州: 兰州大学, 2020. | |
14 | Sun Y W, Lyu L, Wang Q, et al. The ecological benefit analysis on the alfalfa/legume intercropping. Acta Agrestia Sinica, 2023, 31(3): 884-892. |
孙元伟, 吕陇, 王琦, 等. 紫花苜蓿/豆科牧草间作的生态效益分析. 草地学报, 2023, 31(3): 884-892. | |
15 | Zhang J Q. The effect of different mixed planting modes of maize and legume on silage quality. Lanzhou: Gansu Agricultural University, 2018. |
张建强. 玉米与豆科不同混播模式对青贮品质的影响. 兰州: 甘肃农业大学, 2018. | |
16 | Wang X, Liu X J, Zhao Y J, et al. Nitrogen utilization and interspecific feedback characteristics of intercropped alfalfa/oat with different root barriers. Acta Prataculturae Sinica, 2021, 30(8): 73-85. |
汪雪, 刘晓静, 赵雅姣, 等. 根系分隔方式下紫花苜蓿/燕麦间作氮素利用及种间互馈特征研究. 草业学报, 2021, 30(8): 73-85. | |
17 | Yang H, Zhao Y J, Liu X J. Effects on photosynthesis characteristics and yield regulations in the alfalfa/oat intercropping. Acta Agrestia Sinica, 2023, 31(1): 187-195. |
杨航, 赵雅姣, 刘晓静. 紫花苜蓿/燕麦间作的光合特征及其对产量的调控效应. 草地学报, 2023, 31(1): 187-195. | |
18 | Li C J, Li Y Y, Yu C B, et al. Crop nitrogen use and soil mineral nitrogen accumulation under different crop combinations and patterns of strip intercropping in Northwest China. Plant and Soil, 2011, 342: 221-231. |
19 | Lynch J P, Brown K M. New roots for agriculture: Exploiting the root phenome. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367(1595): 1598-1604. |
20 | Zhang Z L, Qu W G, Li X F. Experimental guidance of plant physiology. Beijing: Higher Education Press, 2009. |
张志良, 瞿伟管, 李小芳. 植物生理学实验指导. 北京: 高等教育出版社, 2009. | |
21 | Zou Q. Experimental guidance for plant physiology. Beijing: China Agriculture Press, 2006: 56-125. |
邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2006: 56-125. | |
22 | Rajasekhar V K, Mohr H. Appearance of nitrite in cotyledons of the mustard (Sinapis alba L.) seedling as affected by nitrate, phytochrome and photooxidative damage of plastids. Planta, 1986, 168: 369-376. |
23 | Zheng C F, Lin Z W. Rapid determination of glutamate synthase activity. Plant Physiology Communications, 1985(4): 43-46. |
郑朝峰, 林振武. 谷氨酸合酶活力的快速测定. 植物生理学通讯, 1985(4): 43-46. | |
24 | Zhang D S, Li H B, Shen J B. Strategies for root’s foraging and acquiring soil nutrient in high efficiency under intensive cropping systems. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1547-1555. |
张德闪, 李洪波, 申建波. 集约化互作体系植物根系高效获取土壤养分的策略与机制. 植物营养与肥料学报, 2017, 23(6): 1547-1555. | |
25 | Gao H X, Meng W W, Zhang C C, et al. Yield and nitrogen uptake of sole and intercropped maize and peanut in response to N fertilizer input. Food and Energy Security, 2019, 8: 1-2. |
26 | Wang X, Liu X J, Zhao Y J, et al. Dynamic characteristics of nitrogen nutrition in alfalfa/sweet sorghum intercropping under different root interaction intensities. Acta Agrestia Sinica, 2022, 30(1): 76-83. |
汪雪, 刘晓静, 赵雅姣, 等. 不同根系交互强度下紫花苜蓿/甜高粱体内氮营养动态特征研究. 草地学报, 2022, 30(1): 76-83. | |
27 | Sun B R, Gao Y Z, Yang H J, et al. Performance of alfalfa rather than maize stimulates system phosphorus uptake and overyielding of maize/alfalfa intercropping via changes in soil water balance and root morphology and distribution in a light chernozemic soil. Plant and Soil, 2019, 439(1/2): 145-161. |
28 | Zhao C, Zhou H Y, Chai Q, et al. Effects of eugenol and intercropped faba-bean on wheat root growth under different water supply conditions. Acta Prataculturae Sinica, 2014, 23(2): 133-139. |
赵财, 周海燕, 柴强, 等. 不同供水水平下丁香酚和间作蚕豆对小麦根系生长的互作效应. 草业学报, 2014, 23(2): 133-139. | |
29 | Sun G Q, Zhang J H, Wang D Y, et al. Root distribution in tillage layers and yields of pumpkin and oil sunflower in an intercropping system. Chinese Journal of Ecology, 2021, 40(10): 3147-3158. |
孙国庆, 张俊花, 王登燕, 等. 南瓜油葵间作耕作层根系分布与植株产量. 生态学杂志, 2021, 40(10): 3147-3158. | |
30 | Gong X W, Liu C J, Feng N J, et al. Effects of plant growth regulators S3307 and DTA-6 on photosynthetic characteristics and yield in soybean canopy. Plant Physiology Journal, 2017, 53(10): 1867-1876. |
宫香伟, 刘春娟, 冯乃杰, 等. S3307和DTA-6对大豆不同冠层叶片光合特性及产量的影响. 植物生理学报, 2017, 53(10): 1867-1876. | |
31 | Li Y J, Gao Y Z. Effects of maize/alfalfa intercropping system and different fertilization methods on photosynthetic characteristics of maize. Journal of Northeast Normal University (Natural Science Edition), 2022, 54(1): 119-125. |
李艳君, 高英志. 玉米/紫花苜蓿间作和不同施肥方式对玉米光合特性的影响. 东北师范大学学报(自然科学版), 2022, 54(1): 119-125. | |
32 | Wang X, Liu X J, Zhao Y J, et al. Effects of alfalfa/oat intercropping on carbon and nitrogen metabolism and matter accumulation of oat. Acta Agrestia Sinica, 2021, 29(10): 2258-2264. |
汪雪, 刘晓静, 赵雅姣, 等. 紫花苜蓿/燕麦间作对燕麦碳、氮代谢及其物质积累的影响研究. 草地学报, 2021, 29(10): 2258-2264. | |
33 | Man B J, Liu J L, He J H, et al. Effect of oat-potato intercropping on photosynthetic characteristics and yield of oat. Journal of Triticeae Crops, 2021, 41(1): 118-126. |
满本菊, 刘吉利, 贺锦红, 等. 燕麦马铃薯间作对燕麦光合特性及产量的影响. 麦类作物学报, 2021, 41(1): 118-126. | |
34 | Lin F, Liu X J, Tong C C, et al. Characteristics of light energy utilization of intercropping alfalfa/gramineae forage based on yield effect. Chinese Journal of Applied Ecology, 2020, 31(9): 2963-2976. |
蔺芳, 刘晓静, 童长春, 等. 基于产量效应的间作紫花苜蓿/禾本科牧草光能利用特征. 应用生态学报, 2020, 31(9): 2963-2976. | |
35 | Gao Y, Wu P T, Zhao X N, et al. Characteristics of light environment and soil temperature in the spring wheat/spring maize intercropping system. Research of Soil and Water Conservation, 2015, 22(3): 163-169. |
高莹, 吴普特, 赵西宁, 等. 春小麦/春玉米间作模式光温环境特征研究. 水土保持研究, 2015, 22(3): 163-169. | |
36 | Yuan Y, Dong Q Q, Jia P Y, et al. Effects of different fertilizers on growth, nitrogen metabolism and yield of maize and peanut under intercropping. Journal of Shenyang Agricultural University, 2022, 53(2): 129-139. |
袁洋, 董奇琦, 贾佩岩, 等. 间作下不同肥料对玉米花生生长发育、氮代谢及产量的影响. 沈阳农业大学学报, 2022, 53(2): 129-139. | |
37 | Song Y X, Yang W Y, Li Z X, et al. Effect of maize-soybean relay cropping shade on nitrogen metabolism of soybean seedlings. Chinese Journal of Oil Crop Sciences, 2010, 32(3): 390-394. |
宋艳霞, 杨文钰, 李卓玺, 等. 套作遮荫对大豆不同品种苗期氮代谢的影响. 中国油料作物学报, 2010, 32(3): 390-394. | |
38 | Wang Y F, Yin W, Hu F L, et al. Response of photosynthetic performance of intercropped wheat to interaction intensity between above- and below-ground. Acta Agronomica Sinica, 2021, 47(5): 929-941. |
王一帆, 殷文, 胡发龙, 等. 间作小麦光合性能对地上地下互作强度的响应. 作物学报, 2021, 47(5): 929-941. | |
39 | Wang S Y, Li H, Liu Q, et al. Interactive effects of nitrogen and potassium on root growth and leaf enzyme activities of sweet potato. Acta Agriculturae Boreali-Sinica, 2015, 30(5): 167-173. |
汪顺义, 李欢, 刘庆, 等. 氮钾互作对甘薯根系发育及碳氮代谢酶活性的影响. 华北农学报, 2015, 30(5): 167-173. | |
40 | Wang J, Nie Z J, Fu H C, et al. Effects of exogenous Zn2+ on root growth and some key enzymes in nitrogen metabolism in winter wheat seedlings. Journal of Henan Agricultural University, 2018, 52(3): 307-312. |
王佳, 聂兆君, 扶海超, 等. 外源Zn2+对冬小麦幼苗根系生长及部分氮代谢关键酶的影响. 河南农业大学学报, 2018, 52(3): 307-312. |
[1] | 冯琴, 何小莉, 王斌, 王腾飞, 倪旺, 马霞, 明雪花, 邓建强, 兰剑. 宁夏引黄灌区燕麦与箭筈豌豆的混播效果研究[J]. 草业学报, 2024, 33(3): 107-119. |
[2] | 李妍, 马富龙, 韩路, 王海珍. 美国‘WL’系列不同秋眠级苜蓿品种在南疆的生产性能与适应性评价[J]. 草业学报, 2024, 33(3): 139-149. |
[3] | 鲍根生, 李媛, 冯晓云, 张鹏, 孟思宇. 高寒区氮添加和间作种植互作对燕麦和豌豆根系构型影响的研究[J]. 草业学报, 2024, 33(3): 73-84. |
[4] | 唐璎, 刘晓静, 赵雅姣, 董霖. 甘肃不同区域青贮紫花苜蓿乳酸菌群落特征及其驱动因子研究[J]. 草业学报, 2024, 33(2): 112-124. |
[5] | 罗颖, 李聪, 王沛, 田莉华, 汪辉, 周青平, 雷映霞. 低氮胁迫下不同皮燕麦品种早期的响应研究及耐低氮性综合评价[J]. 草业学报, 2024, 33(2): 164-184. |
[6] | 李文龙, 李峰, 张仲鹃, 王殿清, 王欢, 靳慧卿, 特木热, 胡志玲, 陶雅. 鄂尔多斯高原北部一年两季燕麦种植模式生产性能评价[J]. 草业学报, 2024, 33(1): 159-168. |
[7] | 张珈敏, 关皓, 李海萍, 贾志锋, 马祥, 刘文辉, 陈有军, 陈仕勇, 蒋永梅, 甘丽, 周青平, 杨丽雪. 混播比例及乳酸菌剂对燕麦-饲用豌豆发酵TMR品质及瘤胃降解特性的影响[J]. 草业学报, 2024, 33(1): 169-181. |
[8] | 白旭琴, 贾春云, 李文栓, 李亚敏, 刘长风, 韩秀云, 褚美函, 巩宗强, 李晓军. 叶面喷施硒肥对紫花苜蓿富硒降镉效果的影响[J]. 草业学报, 2024, 33(1): 50-60. |
[9] | 刘选帅, 孙延亮, 马春晖, 张前兵. 菌磷耦合下紫花苜蓿的干物质产量及磷素空间分布特征[J]. 草业学报, 2023, 32(9): 104-115. |
[10] | 任春燕, 梁国玲, 刘文辉, 刘凯强, 段嘉蕾. 青藏高原高寒地区早熟燕麦资源筛选和适应性评价[J]. 草业学报, 2023, 32(9): 116-129. |
[11] | 石永红, 高鹏, 方志红, 赵祥, 韩伟, 魏江铭, 刘琳, 李锦臻. 15个进口饲用燕麦品种炭疽病的抗病性评价及损失分析[J]. 草业学报, 2023, 32(9): 130-142. |
[12] | 徐蕊, 王峥, 王仪明, 苏连泰, 高鲤, 周鹏, 安渊. 紫花苜蓿对轮作水稻产量和蔗糖代谢的影响[J]. 草业学报, 2023, 32(8): 129-140. |
[13] | 王宝强, 马文静, 王贤, 朱晓林, 赵颖, 魏小红. 一氧化氮对干旱胁迫下紫花苜蓿幼苗次生代谢产物的影响[J]. 草业学报, 2023, 32(8): 141-151. |
[14] | 凌文卿, 张磊, 李珏, 冯启贤, 李妍, 周燚, 刘一佳, 阳伏林, 周晶. 布氏乳杆菌和不同糖类联用对紫花苜蓿青贮营养成分、发酵品质、瘤胃降解率及有氧稳定性的影响[J]. 草业学报, 2023, 32(7): 122-134. |
[15] | 王少鹏, 刘佳, 洪军, 林积圳, 张义, 史昆, 王赞. 紫花苜蓿MsPPR1基因的克隆及抗旱功能分析[J]. 草业学报, 2023, 32(7): 49-60. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||