草业学报 ›› 2025, Vol. 34 ›› Issue (3): 56-70.DOI: 10.11686/cyxb2024165
李绍兴(
), 宋稳锋(
), 周玉玲, 宋李霞, 任可, 马群, 王龙昌(
)
收稿日期:2024-05-07
修回日期:2024-06-24
出版日期:2025-03-20
发布日期:2025-01-02
通讯作者:
王龙昌
作者简介:E-mail: wanglc2003@163.com基金资助:
Shao-xing LI(
), Wen-feng SONG(
), Yu-ling ZHOU, Li-xia SONG, Ke REN, Qun MA, Long-chang WANG(
)
Received:2024-05-07
Revised:2024-06-24
Online:2025-03-20
Published:2025-01-02
Contact:
Long-chang WANG
摘要:
针对西南旱作农业区水土流失、耕地质量低下等问题,亟须探索农业可持续耕作措施,缓解养分限制。以西南地区“蚕豆/玉米/甘薯”旱三熟套作模式中的甘薯田为研究对象,作物前茬秸秆作为覆盖还田材料,设置4个处理:无覆盖(CK)、秸秆覆盖(S)、秸秆+紫云英覆盖(S+M)、紫云英覆盖(M),通过对土壤-微生物-甘薯植株碳、氮、磷含量、生态化学计量特征以及内稳性指数的研究,揭示秸秆和紫云英覆盖对土壤养分限制及生态化学计量特征的影响规律。结果表明:1)秸秆与紫云英覆盖处理显著提高土壤有机碳和全氮含量,从土壤化学计量比的变化发现覆盖处理能有效缓解当地土壤养分限制。2)秸秆与紫云英覆盖处理显著提高了土壤微生物量碳、氮和磷含量,不同生育时期微生物化学计量比有所差异,生育前期波动较大,中后期相对稳定。内稳性特征方面,除CK处理外,微生物与土壤化学计量比之间呈现出严格的内稳性特征。3)秸秆与紫云英覆盖处理显著提高了甘薯各器官氮含量,其中以秸秆与紫云英协同覆盖处理效果最佳。甘薯产量表现为S+M>S>M>CK。化学计量比方面,S+M处理有利于延长甘薯生长时间,有效缓解养分限制状况。甘薯植株各器官化学计量比在整个生育期内均表现为严格的稳态。综上所述,在西南旱作农业区通过进行秸秆与紫云英覆盖,可以提升甘薯产量,调节土壤养分限制,土壤与微生物化学计量比均保持严格的内稳态。
李绍兴, 宋稳锋, 周玉玲, 宋李霞, 任可, 马群, 王龙昌. 秸秆与紫云英覆盖对土壤-微生物-甘薯植株生态化学计量特征的影响[J]. 草业学报, 2025, 34(3): 56-70.
Shao-xing LI, Wen-feng SONG, Yu-ling ZHOU, Li-xia SONG, Ke REN, Qun MA, Long-chang WANG. Effects of straw and milk vetch mulching on the ecological stoichiometric characteristics of soil-microbe-sweet potato plants[J]. Acta Prataculturae Sinica, 2025, 34(3): 56-70.
| 处理Treatment | 操作方法Method of operation |
|---|---|
| 对照Control (CK) | 地表无覆盖。Uncovered land. |
| 秸秆覆盖Straw mulching (S) | 当季作物播种或移栽后,将前茬作物秸秆用铡刀切成20 cm左右长度并均匀覆盖在整个小区内,蚕豆、玉米秸秆覆盖量为7500 kg·hm-2(风干重),甘薯秸秆覆盖量为4500 kg·hm-2(风干重)。After planting or transplantation of crops in the current season, straw of the previous crops were cut into a length of about 20 cm by fodder chopper and evenly covered in the whole plot. The straw cover amount of fava bean and corn were 7500 kg·ha-1 (air-dry weight), and the straw cover amount of sweet potato was 4500 kg?ha-1 (air-dry weight). |
| 紫云英覆盖Milk vetch mulching (M) | 在蚕豆生育期内间作紫云英,紫云英于盛花期收获并切碎,在玉米移栽后均匀覆盖在整个小区内,覆盖量为2500 kg·hm-2(风干重)。During the growth period of fava bean, harvest and chop the milk vetch in full-blossom period, evenly covered in the whole plot after corn was transplanted, and the cover amount is 2500 kg·ha-1 (air-dry weight). |
| 秸秆+紫云英覆盖Straw and milk vetch mulching (S+M) | 秸秆覆盖量和覆盖方法同S,紫云英覆盖量和覆盖方法同M。The mulching amount and mulching method of straw and milk vetch are the same as S and M. |
表1 不同生物覆盖处理及操作方法
Table 1 Treatment and operation methods of different biological coverage
| 处理Treatment | 操作方法Method of operation |
|---|---|
| 对照Control (CK) | 地表无覆盖。Uncovered land. |
| 秸秆覆盖Straw mulching (S) | 当季作物播种或移栽后,将前茬作物秸秆用铡刀切成20 cm左右长度并均匀覆盖在整个小区内,蚕豆、玉米秸秆覆盖量为7500 kg·hm-2(风干重),甘薯秸秆覆盖量为4500 kg·hm-2(风干重)。After planting or transplantation of crops in the current season, straw of the previous crops were cut into a length of about 20 cm by fodder chopper and evenly covered in the whole plot. The straw cover amount of fava bean and corn were 7500 kg·ha-1 (air-dry weight), and the straw cover amount of sweet potato was 4500 kg?ha-1 (air-dry weight). |
| 紫云英覆盖Milk vetch mulching (M) | 在蚕豆生育期内间作紫云英,紫云英于盛花期收获并切碎,在玉米移栽后均匀覆盖在整个小区内,覆盖量为2500 kg·hm-2(风干重)。During the growth period of fava bean, harvest and chop the milk vetch in full-blossom period, evenly covered in the whole plot after corn was transplanted, and the cover amount is 2500 kg·ha-1 (air-dry weight). |
| 秸秆+紫云英覆盖Straw and milk vetch mulching (S+M) | 秸秆覆盖量和覆盖方法同S,紫云英覆盖量和覆盖方法同M。The mulching amount and mulching method of straw and milk vetch are the same as S and M. |
图2 土壤有机碳、全氮和全磷含量的动态变化不同小写字母表示同一时期的不同处理之间在P<0.05水平差异显著,CK为无覆盖,S为秸秆覆盖,S+M为秸秆+紫云英覆盖,M为紫云英覆盖,下同。Different lowercase letters indicate significant differences among different treatments in the same period at the P<0.05 level. CK is no mulching, S is straw mulching, S+M is straw and milk vetch mulching, M is milk vetch mulching, the same below.
Fig.2 Dynamic changes of soil organic carbon, total nitrogen and total phosphorus content
| 计量比Stoichiometric ratio | 土区Soil area | 处理Treatment | 30 d | 60 d | 90 d | 120 d | 150 d |
|---|---|---|---|---|---|---|---|
| C∶N | 根际Rhizosphere | CK | 16.43±0.18a | 15.83±0.43a | 15.15±0.11a | 15.98±0.14a | 17.64±0.38a |
| S | 17.17±0.37a | 15.79±0.56a | 14.68±0.15a | 14.80±0.28a | 17.26±0.20a | ||
| S+M | 17.11±0.19a | 14.26±0.18b | 14.41±0.30a | 15.11±0.50a | 16.77±0.37ab | ||
| M | 16.40±0.62a | 14.80±0.33ab | 14.85±0.42a | 15.20±0.42a | 15.78±0.55b | ||
| 非根际Non-rhizosphere | CK | 18.91±0.67a | 15.80±0.39a | 15.64±0.32a | 16.34±0.92a | 15.43±0.18a | |
| S | 15.26±0.93b | 14.86±0.75a | 15.83±0.31a | 14.57±0.61a | 14.42±0.26a | ||
| S+M | 14.43±0.47b | 16.24±0.58a | 15.23±0.68a | 15.85±0.51a | 14.85±0.66a | ||
| M | 15.22±1.03b | 15.73±0.46a | 15.30±0.60a | 14.29±0.26a | 15.62±0.31a | ||
| C∶P | 根际Rhizosphere | CK | 42.03±0.41ab | 35.82±0.72c | 35.15±0.62b | 36.94±0.64a | 39.85±0.52a |
| S | 43.72±1.11ab | 40.12±1.12ab | 39.44±0.61a | 40.38±1.05a | 42.30±1.23a | ||
| S+M | 45.49±1.84a | 39.06±0.34b | 39.68±0.70a | 39.19±0.97a | 41.87±1.25a | ||
| M | 41.47±0.71b | 41.77±0.69a | 38.82±1.13a | 40.32±1.38a | 39.77±1.45a | ||
| 非根际Non-rhizosphere | CK | 41.01±0.74b | 36.26±0.96b | 36.37±1.26c | 37.65±0.73b | 39.65±0.16b | |
| S | 42.90±0.43ab | 44.49±0.79a | 43.46±0.57ab | 40.01±1.05b | 40.57±1.22ab | ||
| S+M | 45.25±0.58a | 46.18±0.67a | 44.41±1.35a | 44.41±1.46a | 43.55±1.44a | ||
| M | 42.34±1.54ab | 44.25±0.83a | 40.70±0.89b | 38.44±0.80b | 39.81±1.02b | ||
| N∶P | 根际Rhizosphere | CK | 2.56±0.01a | 2.27±0.06c | 2.32±0.04b | 2.31±0.06b | 2.26±0.04b |
| S | 2.55±0.08a | 2.54±0.08b | 2.69±0.03a | 2.73±0.06a | 2.45±0.07a | ||
| S+M | 2.66±0.08a | 2.74±0.06ab | 2.76±0.09a | 2.60±0.08a | 2.50±0.04a | ||
| M | 2.53±0.06a | 2.82±0.04a | 2.61±0.04a | 2.65±0.06a | 2.52±0.01a | ||
| 非根际Non-rhizosphere | CK | 2.17±0.08b | 2.30±0.05b | 2.33±0.10c | 2.32±0.17b | 2.57±0.03b | |
| S | 2.83±0.16a | 3.00±0.10a | 2.75±0.04ab | 2.75±0.04a | 2.82±0.12a | ||
| S+M | 3.14±0.06a | 2.85±0.10a | 2.92±0.08a | 2.80±0.03a | 2.94±0.08a | ||
| M | 2.79±0.08a | 2.82±0.07a | 2.66±0.05b | 2.69±0.07a | 2.55±0.02b |
表2 土壤C∶N、C∶P和N∶P的变化
Table 2 Changes in C∶N, C∶P and N∶P in soil
| 计量比Stoichiometric ratio | 土区Soil area | 处理Treatment | 30 d | 60 d | 90 d | 120 d | 150 d |
|---|---|---|---|---|---|---|---|
| C∶N | 根际Rhizosphere | CK | 16.43±0.18a | 15.83±0.43a | 15.15±0.11a | 15.98±0.14a | 17.64±0.38a |
| S | 17.17±0.37a | 15.79±0.56a | 14.68±0.15a | 14.80±0.28a | 17.26±0.20a | ||
| S+M | 17.11±0.19a | 14.26±0.18b | 14.41±0.30a | 15.11±0.50a | 16.77±0.37ab | ||
| M | 16.40±0.62a | 14.80±0.33ab | 14.85±0.42a | 15.20±0.42a | 15.78±0.55b | ||
| 非根际Non-rhizosphere | CK | 18.91±0.67a | 15.80±0.39a | 15.64±0.32a | 16.34±0.92a | 15.43±0.18a | |
| S | 15.26±0.93b | 14.86±0.75a | 15.83±0.31a | 14.57±0.61a | 14.42±0.26a | ||
| S+M | 14.43±0.47b | 16.24±0.58a | 15.23±0.68a | 15.85±0.51a | 14.85±0.66a | ||
| M | 15.22±1.03b | 15.73±0.46a | 15.30±0.60a | 14.29±0.26a | 15.62±0.31a | ||
| C∶P | 根际Rhizosphere | CK | 42.03±0.41ab | 35.82±0.72c | 35.15±0.62b | 36.94±0.64a | 39.85±0.52a |
| S | 43.72±1.11ab | 40.12±1.12ab | 39.44±0.61a | 40.38±1.05a | 42.30±1.23a | ||
| S+M | 45.49±1.84a | 39.06±0.34b | 39.68±0.70a | 39.19±0.97a | 41.87±1.25a | ||
| M | 41.47±0.71b | 41.77±0.69a | 38.82±1.13a | 40.32±1.38a | 39.77±1.45a | ||
| 非根际Non-rhizosphere | CK | 41.01±0.74b | 36.26±0.96b | 36.37±1.26c | 37.65±0.73b | 39.65±0.16b | |
| S | 42.90±0.43ab | 44.49±0.79a | 43.46±0.57ab | 40.01±1.05b | 40.57±1.22ab | ||
| S+M | 45.25±0.58a | 46.18±0.67a | 44.41±1.35a | 44.41±1.46a | 43.55±1.44a | ||
| M | 42.34±1.54ab | 44.25±0.83a | 40.70±0.89b | 38.44±0.80b | 39.81±1.02b | ||
| N∶P | 根际Rhizosphere | CK | 2.56±0.01a | 2.27±0.06c | 2.32±0.04b | 2.31±0.06b | 2.26±0.04b |
| S | 2.55±0.08a | 2.54±0.08b | 2.69±0.03a | 2.73±0.06a | 2.45±0.07a | ||
| S+M | 2.66±0.08a | 2.74±0.06ab | 2.76±0.09a | 2.60±0.08a | 2.50±0.04a | ||
| M | 2.53±0.06a | 2.82±0.04a | 2.61±0.04a | 2.65±0.06a | 2.52±0.01a | ||
| 非根际Non-rhizosphere | CK | 2.17±0.08b | 2.30±0.05b | 2.33±0.10c | 2.32±0.17b | 2.57±0.03b | |
| S | 2.83±0.16a | 3.00±0.10a | 2.75±0.04ab | 2.75±0.04a | 2.82±0.12a | ||
| S+M | 3.14±0.06a | 2.85±0.10a | 2.92±0.08a | 2.80±0.03a | 2.94±0.08a | ||
| M | 2.79±0.08a | 2.82±0.07a | 2.66±0.05b | 2.69±0.07a | 2.55±0.02b |
图3 土壤碳、氮、磷含量的三元图图中紫色参考点与紫色参照线参考Tian等[19]的研究结果,图中箭头方向表示C限制和N限制作用增强,a、b分别表示根际与非根际土区。The purple reference point and purple reference line referred to the results of Tian, et al[19], and the arrow direction indicates the enhancement of C restriction and N restriction, a and b represent rhizosphere and non-rhizosphere soil areas respectively.
Fig.3 Ternary diagram of C, N and P content in the soil
图4 土壤微生物量碳、微生物量氮和微生物量磷含量的动态变化
Fig.4 Dynamic changes of soil microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) and microbial biomass phosphorus (MBP) content
图5 根际土壤和非根际土壤微生物量化学计量比的变化图中红色虚线表示微生物量化学计量比的参照值60∶7∶1[20],MBC∶MBN、MBC∶MBP和MBN∶MBP分别表示微生物量碳与微生物量氮、微生物量碳与微生物量磷和微生物量氮与微生物量磷的化学计量比。In the figure, the red dotted line represents the reference of microbial biomass stoichiometric ratio 60∶7∶1[20]. MBC∶MBN, MBC∶MBP and MBN∶MBP represent the stoichiometric ratios of microbial biomass carbon with microbial biomass nitrogen, microbial biomass carbon with microbial biomass phosphorus and microbial biomass nitrogen with microbial biomass phosphorus, respectively.
Fig.5 Changes of microbial biomass stoichiometric ratio in rhizosphere and non-rhizosphere soil
图6 微生物量碳∶微生物量氮和土壤C∶N的线性拟合图中a为根际土区,b为非根际土区,横坐标为土壤化学计量比的自然对数值,纵坐标为土壤微生物化学计量比的自然对数值,下同。In the figure, a is the rhizosphere soil area, b is the non-rhizosphere soil area, and the horizontal coordinate is the natural logarithm of the stoichiometric ratio of soil, and the vertical coordinate is the natural logarithm of the stoichiometric ratio of soil microbial quantification, the same below.
Fig.6 Linear fit of microbial biomass carbon∶microbial biomass nitrogen (MBC∶MBN) and soil C∶N
图9 甘薯植株碳、氮和磷含量的变化a、b、c、d分别表示甘薯根、茎、叶、叶柄。In the figure, a, b, c, and d represent sweet potato root, stem, leave, and petiole, respectively.
Fig.9 Changes of C, N and P content in sweet potato plants
图11 全生育期内甘薯各器官碳∶氮(C∶N)、碳∶磷(C∶P) 和氮∶磷(N∶P)图中箱体上下底分别表示数据的上四分位数和下四分位数,实线和方框分别表示数据的中位数和平均数,n=15;“*”表示处理之间差异显著(P<0.05)。In the figure, the top and bottom of the box-plot represent the upper and lower quartile of the data, respectively; The solid line and the box represent the median and average of the data, respectively, n=15; “*” indicates significant difference among treatments (P<0.05).
Fig.11 C∶N, C∶P and N∶P of various organs of sweet potato during the whole growth period
图12 甘薯各器官C∶N与土壤C∶N的线性拟合图中a、b、c、d分别为甘薯根、茎、叶、叶柄与根际土壤之间的线性回归方程,e、f、g、h分别为甘薯根、茎、叶、叶柄与非根际土壤之间的线性回归方程,横坐标为土壤化学计量比的自然对数值,纵坐标为植株各器官化学计量比的自然对数值,下同。In the figure, a, b, c and d represent the linear regression equation between sweet potato roots, stems, leaves and petioles with rhizosphere soil,e, f, g and h represent the linear regression equation between sweet potato roots, stems, leaves and petioles with non-rhizosphere. The horizontal coordinate is the natural logarithm of the stoichiometric ratio of soil, and the vertical coordinate is the natural logarithm of the stoichiometric ratio of plant organs. The same below.
Fig.12 Linear fit of sweet potato organs C∶N and soil C∶N
| 1 | Wang L C. Theory and practice of sustainable agricultural development. Beijing: Science Press, 2015: 273-275. |
| 王龙昌. 农业可持续发展理论与实践. 北京: 科学出版社, 2015: 273-275. | |
| 2 | Gao Y H, Qu X M, Liang Y T, et al. Study on organic carbon pool of topsoil in farmland in a typical area of southwestern Chongqing. Journal of Southwest University (Natural Science Edition), 2014, 36(5): 120-126. |
| 高岩红, 瞿雪梅, 梁颖涛, 等. 渝西南典型区农田表层土壤有机碳库研究. 西南大学学报(自然科学版), 2014, 36(5): 120-126. | |
| 3 | Du W P, Yan H M, Zhen L, et al. The experience and practice of desertification control in karst region of southwest China. Acta Ecologica Sinica, 2019, 39(16): 5798-5808. |
| 杜文鹏, 闫慧敏, 甄霖, 等. 西南岩溶地区石漠化综合治理研究. 生态学报, 2019, 39(16): 5798-5808. | |
| 4 | Choudhury B U, Nengzouzam G, Islam A. Runoff and soil erosion in the integrated farming systems based on micro-watersheds under projected climate change scenarios and adaptation strategies in the eastern Himalayan mountain ecosystem (India). Journal of Environmental Management, 2022, 309: 114667. |
| 5 | Kader M A, Senge M, Mojid M A, et al. Recent advances in mulching materials and methods for modifying soil environment. Soil and Tillage Research, 2017, 168: 155-166. |
| 6 | Dai Y S, Cheng X, Liu B Y, et al. Impacts of synergistic mulching of straw and milk vetch on soil nutrients, enzyme activities and wheat yield in upland of southwest China. Chinese Journal of Soil Science, 2021, 52(6): 1339-1347. |
| 戴伊莎, 成欣, 刘帮艳, 等. 秸秆和紫云英协同覆盖对西南旱地土壤养分, 酶活性及小麦产量的影响. 土壤通报, 2021, 52(6): 1339-1347. | |
| 7 | Zhang Z S, Cao C G, Guo L J, et al. The effects of rape residue mulching on net global warming potential and greenhouse gas intensity from no-tillage paddy fields. The Scientific World Journal, 2014(1): 198231. |
| 8 | Sarkar S, Skalicky M, Hossain A, et al. Management of crop residues for improving input use efficiency and agricultural sustainability. Sustainability, 2020, 12(23): 9808. |
| 9 | Elser J J, Sterner R W, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems. Ecology Letters, 2000, 3(6): 540-550. |
| 10 | Sterner R W, Elser J J. Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton: Princeton University Press, 2003. |
| 11 | Zeng D P, Jiang L L, Zeng C S, et al. Reviews on the ecological stoichiometry characteristics and its applications. Acta Ecologica Sinica, 2013, 33(18): 5484-5492. |
| 曾冬萍, 蒋利玲, 曾从盛, 等. 生态化学计量学特征及其应用研究进展. 生态学报, 2013, 33(18): 5484-5492. | |
| 12 | Bao S D. Soil and agricultural chemistry analysis (Third Edition). Beijing: China Agriculture Press, 2000. |
| 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. | |
| 13 | Brookes P C, Landman A, Pruden G, et al. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 1985, 17(6): 837-842. |
| 14 | Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987, 19(6): 703-707. |
| 15 | Wu J S, Xiao H A, Chen G Q, et al. Measurement of microbial biomass-P in upland soils in China. Acta Pedologica Sinica, 2003, 40(1): 70-78. |
| 吴金水, 肖和艾, 陈桂秋, 等. 旱地土壤微生物磷测定方法研究. 土壤学报, 2003, 40(1): 70-78. | |
| 16 | Lu R K. Soil agrochemical analysis methods. Beijing: China Agricultural Science and Technology Press, 2000. |
| 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. | |
| 17 | Makino W, Cotner J B, Sterner R W, et al. Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C∶N∶P stoichiometry. Functional Ecology, 2003, 17(1): 121-130. |
| 18 | Persson J, Fink P, Goto A, et al. To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos, 2010, 119(5): 741-751. |
| 19 | Tian H Q, Chen G S, Zhang C, et al. Pattern and variation of C∶N∶P ratios in China’s soils: a synthesis of observational data. Biogeochemistry, 2010, 98: 139-151. |
| 20 | Cleveland C C, Liptzin D. C∶N∶P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 2007, 85(3): 235-252. |
| 21 | Pan L D, Li R, Zhang Y S, et al. Effects of straw mulching on soil ecological stoichiometry characteristics and yield on sloping farmland in karst area, Southwestern China. Acta Ecologica Sinica, 2022, 42(11): 4428-4438. |
| 盘礼东, 李瑞, 张玉珊, 等. 西南喀斯特区坡耕地秸秆覆盖对土壤生态化学计量特征及产量的影响. 生态学报, 2022, 42(11): 4428-4438. | |
| 22 | Wang K K, Ren T, Yan J Y, et al. Straw returning mediates soil microbial biomass carbon and phosphorus turnover to enhance soil phosphorus availability in a rice-oilseed rape rotation with different soil phosphorus levels. Agriculture, Ecosystems & Environment, 2022, 335: 107991. |
| 23 | Guenet B, Neill C, Bardoux G, et al. Is there a linear relationship between priming effect intensity and the amount of organic matter input? Applied Soil Ecology, 2010, 46(3): 436-442. |
| 24 | Yang G, Li Z G, Shi B D. Spatial and temporal evolution characteristics of soil available phosphorus and soil microbial biomass phosphorus in the burned area of Larix gmelinii. Acta Ecologica Sinica, 2023, 43(12): 5027-5037. |
| 杨光, 李兆国, 石炳东. 兴安落叶松林火烧迹地土壤有效磷与土壤微生物生物量磷时空演变特征. 生态学报, 2023, 43(12): 5027-5037. | |
| 25 | Liu X H, Gao X M, Yu M, et al. Effects of straw returning amount on soil phosphorus leaching and corn yield in dryland of northeast China. Journal of Agricultural Science and Technology, 2022, 24(10): 154-160. |
| 刘晓辉, 高晓梅, 于淼, 等. 秸秆还田量对东北旱地土壤磷素淋溶及玉米产量的影响. 中国农业科技导报, 2022, 24(10): 154-160. | |
| 26 | Bui E N, Henderson B L. C∶N∶P stoichiometry in Australian soils with respect to vegetation and environmental factors. Plant and Soil, 2013, 373: 553-568. |
| 27 | Wu P N, Wang Y L, Hou X Q, et al. Effects of straw returning with nitrogen fertilizer on maize yield and soil physical properties under drip-irrigation in Yanghuang irrigation area in Ningxia. Soils, 2020, 52(3): 470-475. |
| 吴鹏年, 王艳丽, 侯贤清, 等. 秸秆还田配施氮肥对宁夏扬黄灌区滴灌玉米产量及土壤物理性状的影响. 土壤, 2020, 52(3): 470-475. | |
| 28 | Xu W X, Li J Q, Meng L, et al. Effects of kudzu mulching on physical and chemical properties and enzyme activities of surface soil in young rubber plantation. Journal of Plant Nutrition and Fertilizers, 2020, 26(9): 1740-1748. |
| 徐文娴, 李金秋, 孟磊, 等. 葛藤覆盖对幼龄橡胶园表层土壤理化性状和酶活性的影响. 植物营养与肥料学报, 2020, 26(9): 1740-1748. | |
| 29 | Janssen B H. Nitrogen mineralization in relation to C∶N ratio and decomposability of organic materials. Plant and Soil, 1996, 181: 39-45. |
| 30 | Zheng S M, Xia Y H, Hu Y J, et al. Stoichiometry of carbon, nitrogen, and phosphorus in soil: Effects of agricultural land use and climate at a continental scale. Soil and Tillage Research, 2021, 209: 104903. |
| 31 | Wu J. Study on soil ecological stoichiometry under different soil management practices in dry farmland of the Loess Plateau of central Gansu Province. Lanzhou: Gansu Agricultural University, 2018. |
| 武均. 不同管理措施下陇中黄土高原旱作农田土壤生态化学计量学特征研究. 兰州: 甘肃农业大学, 2018. | |
| 32 | Prommer J, Walker T W N, Wanek W, et al. Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity. Global Change Biology, 2020, 26(2): 669-681. |
| 33 | Peng S X, Chen D P, Wang J W, et al. Progress in phosphorus biogeochemical cycle under global changes. Environmental Ecology, 2020, 2(12): 1-7, 22. |
| 彭淑娴, 陈登鹏, 王嘉伟, 等. 全球变化背景下磷生物地球化学循环研究进展. 环境生态学, 2020, 2(12): 1-7, 22. | |
| 34 | Malik A A, Martiny J B H, Brodie E L, et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. The ISME Journal, 2020, 14(1): 1-9. |
| 35 | Yang Y, Liu H, Yang X, et al. Plant and soil elemental C∶N∶P ratios are linked to soil microbial diversity during grassland restoration on the Loess Plateau, China. Science of the Total Environment, 2022, 806(1): 150557. |
| 36 | Peng Y M, Wu J, Cai L Q, et al. Effects of no-tillage and straw mulching on carbon, nitrogen, and phosphorus ecological stoichiometry in spring wheat and soil. Chinese Journal of Ecology, 2021, 40(4): 1062-1072. |
| 彭亚敏, 武均, 蔡立群, 等. 免耕及秸秆覆盖对春小麦-土壤碳氮磷生态化学计量特征的影响. 生态学杂志, 2021, 40(4): 1062-1072. | |
| 37 | Tang Z Y, Xu W T, Zhou G Y, et al. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proceedings of the National Academy of Sciences, 2018, 115(16): 4033-4038. |
| 38 | Lambers H, Raven J A, Shaver G R, et al. Plant nutrient-acquisition strategies change with soil age. Trends in Ecology & Evolution, 2008, 23(2): 95-103. |
| 39 | Lin S Y, Zeng Y, Yang W W, et al. Effects of straw and biochar addition on carbon, nitrogen and phosphorus ecological stoichiometry in Jasminum sambac plant and soil. Chinese Journal of Plant Ecology, 2023, 47(4): 530-545. |
| 林少颖, 曾瑜, 杨文文, 等. 添加秸秆及其生物炭对茉莉植株与土壤碳氮磷生态化学计量特征的影响. 植物生态学报, 2023, 47(4): 530-545. | |
| 40 | Güsewell S. N∶P ratios in terrestrial plants: variation and functional significance. New Phytologist, 2004, 164(2): 243-266. |
| 41 | Koerselman W, Meuleman A F M. The vegetation N∶P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 1996, 33(6): 1441-1450. |
| 42 | Yu Y F, He T G, Zeng C C, et al. Carbon, nitrogen and phosphorus stoichiometry in plants, litter, soil, and microbes in degraded vegetation communities in a karst area of southwest China. Acta Ecologica Sinica, 2022, 42(3): 935-946. |
| 俞月凤, 何铁光, 曾成城, 等. 喀斯特区不同退化程度植被群落植物-凋落物-土壤-微生物生态化学计量特征. 生态学报, 2022, 42(3): 935-946. | |
| 43 | Wang C Y, Yang C, Song C G, et al. Root-soil ecological stoichiometric characteristics of alpine grassland in the source area of Three Rivers. Grassland and Turf, 2022, 42(5): 8-20. |
| 王春燕, 杨冲, 宋成刚, 等. 三江源区高寒草地根系-土壤C、N、P生态化学计量特征. 草原与草坪, 2022, 42(5): 8-20. | |
| 44 | Li S J, Sheng M J, Li G, et al. Variations in eco-enzymatic stoichiometric characteristics of fluvo-aquic soil with different use intensities in the north China plain. Journal of Agro-Environment Science, 2022, 41(12): 2733-2741. |
| 李胜君, 盛美君, 李刚, 等. 华北不同利用强度潮土酶生态化学计量特征比较. 农业环境科学学报, 2022, 41(12): 2733-2741. |
| [1] | 顾明明, 姜幸慧, 马志毅, 邱水玲, 刘浩宇, 张洺瑞, 卢佳宁, 丘宇俊, 王本治, 甘乾福. 甘薯和芋头在闽东山羊瘤胃中的降解特性及表面附着微生物群落变化[J]. 草业学报, 2024, 33(9): 169-184. |
| [2] | 李思媛, 孙宗玖, 于冰洁, 周晨烨, 周磊, 郑丽, 刘慧霞, 冶华薇. 封育对伊犁绢蒿荒漠草地土壤碳氮磷、酶活性及其化学计量特征的影响[J]. 草业学报, 2024, 33(7): 25-40. |
| [3] | 李林芝, 张德罡, 马源, 罗珠珠, 林栋, 海龙, 白兰鸽. 不同退化程度高寒草甸土壤团聚体养分及生态化学计量特征研究[J]. 草业学报, 2023, 32(8): 48-60. |
| [4] | 李思媛, 崔雨萱, 孙宗玖, 刘慧霞, 冶华薇. 封育对蒿类荒漠草地土壤有机碳及土壤微生物生物量生态化学计量特征的影响[J]. 草业学报, 2023, 32(6): 58-70. |
| [5] | 许爱云, 张丽华, 王晓佳, 马冲, 李元景, 曹兵. 蒙古冰草非结构性碳水化合物及碳氮磷化学计量特征对氮添加的响应[J]. 草业学报, 2023, 32(2): 35-43. |
| [6] | 王玉霞, 柴锦隆, 周洋洋, 徐长林, 王琳, 鱼小军. 种植方式对陇中干旱区扁蓿豆种子产量及构成因素的影响[J]. 草业学报, 2021, 30(8): 60-72. |
| [7] | 刘帅楠, 李广, 吴江琪, 马维伟, 杨传杰, 张世康, 姚瑶, 陆燕花, 魏星星, 张娟. 黄土丘陵区不同土地类型下土壤养分特征—基于生态化学计量学[J]. 草业学报, 2021, 30(3): 200-207. |
| [8] | 熊梅, 乔荠瑢, 杨阳, 张峰, 郑佳华, 吴建新, 赵萌莉. 不同载畜率下短花针茅和土壤生态化学计量特征研究[J]. 草业学报, 2021, 30(2): 212-219. |
| [9] | 冯军, 石超, 门胜男, Hafiz Athar Hussain, 柯剑鸿, Linna Cholidah, 陈锦芬, 郭欣, 武海燕, 冉泰霖, 向信华, 王龙昌. 不同降雨下旱地油菜节水节肥技术对土壤养分及酶活性的调控效应[J]. 草业学报, 2020, 29(4): 51-62. |
| [10] | 王鑫, 罗雪萍, 字洪标, 杨文高, 胡雷, 王长庭. 青海森林凋落物生态化学计量特征及其影响因子[J]. 草业学报, 2019, 28(8): 1-14. |
| [11] | 程瑞希, 字洪标, 罗雪萍, 杨有芳, 代迪, 王艳丽, 所尔阿芝, 王长庭. 青海省森林林下草本层化学计量特征及其碳储量[J]. 草业学报, 2019, 28(7): 26-37. |
| [12] | 李明雨, 黄文广, 杨君珑, 李小伟. 宁夏草原植物叶片氮磷化学计量特征及其驱动因素[J]. 草业学报, 2019, 28(2): 23-32. |
| [13] | 李明, 秦洁, 红雨, 杨殿林, 周广帆, 王宇, 王丽娟. 氮素添加对贝加尔针茅草原土壤团聚体碳、氮和磷生态化学计量学特征的影响[J]. 草业学报, 2019, 28(12): 29-40. |
| [14] | 王贺正, 黄明, 张均, 马超, 吴金芝, 李友军, 陈明灿, 付国占. 秸秆覆盖量对旱地小麦结实期抗氧化性的影响[J]. 草业学报, 2019, 28(11): 96-104. |
| [15] | 周文菲, 刘芙蓉, 姚甄业, 龚春梅. 猪毛菜属3种不同光合型物种的生长适应特征比较[J]. 草业学报, 2019, 28(10): 78-90. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||