草业学报 ›› 2025, Vol. 34 ›› Issue (5): 1-11.DOI: 10.11686/cyxb2024231
• 研究论文 •
王瑞兵1,2(
), 陈欢1,2, 潘珍珍1,2, 赵维3, 蚌绍豪3, 周小龙1,2, 任正炜3(
)
收稿日期:2024-06-17
修回日期:2024-07-25
出版日期:2025-05-20
发布日期:2025-03-20
通讯作者:
任正炜
作者简介:E-mail: renzhw@lzu.edu.cn基金资助:
Rui-bing WANG1,2(
), Huan CHEN1,2, Zhen-zhen PAN1,2, Wei ZHAO3, Shao-hao BANG3, Xiao-long ZHOU1,2, Zheng-wei REN3(
)
Received:2024-06-17
Revised:2024-07-25
Online:2025-05-20
Published:2025-03-20
Contact:
Zheng-wei REN
摘要:
关于资源添加导致草地物种多样性丧失的模式能够被诸多竞争假说(光竞争假说、生态位维度-多样性假说、氮损害假说、凋落物假说)予以解释。然而,针对不同资源添加类型和数目驱动的物种多样性丧失机制是单独的还是协同的却鲜有研究。为了回答这一问题,以青藏高原甘南高寒草甸为对象,构建不同类型(氮、磷、钾)和数目(0/1/2/3)的资源添加处理,对物种多样性丧失的4种机制进行综合探讨。结果表明:1)相较于对照,氮素添加显著增加了植物地上净初级生产力,减小了物种丰富度,而磷或钾添加则无显著变化;2)氮素添加和资源添加数目都对物种丰富度减小产生直接负效应,这与生态位维度-多样性假说和氮损害假说所蕴含的地下土壤竞争机制有关;3)在氮素添加和资源添加数目处理下,植物地上净初级生产力的增加所引起光照可利用性减小都间接导致物种丰富度的减小,这与地上光竞争假说预测相符。综上,无论在资源类型(氮元素)还是资源添加数目处理下,生态位维度-多样性假说、氮损害假说和光竞争假说所体现的地上和地下多种竞争机制具有驱动草地物种多样性丧失的可能性,研究结果将为高寒草甸物种多样性的维持和保护提供具有可供参考的生态学理论依据。
王瑞兵, 陈欢, 潘珍珍, 赵维, 蚌绍豪, 周小龙, 任正炜. 基于资源类型和数目的高寒草甸物种丧失机制研究[J]. 草业学报, 2025, 34(5): 1-11.
Rui-bing WANG, Huan CHEN, Zhen-zhen PAN, Wei ZHAO, Shao-hao BANG, Xiao-long ZHOU, Zheng-wei REN. Mechanisms of species diversity loss in an alpine meadow community after adding different types and numbers of resources[J]. Acta Prataculturae Sinica, 2025, 34(5): 1-11.
图1 氮、磷和钾添加对群落特征、群落透光率及土壤pH的影响CK:对照;N:氮添加;P:磷添加;K:钾添加。不同小写字母表示不同处理间差异显著(P<0.05),下同。CK: Control; N: Nitrogen addition; P: Phosphorus addition; K: Potassium addition. Different lowercase letters indicate significant differences (P<0.05) among different treatments, the same below.
Fig.1 Effects of N, P and K addition on community characteristics, community light transmittance and soil pH
图2 氮添加与否对群落特征、群落透光率及土壤pH的影响Ns:涉及氮添加的处理;non-Ns:非氮添加的处理。Ns: Nitrogen addition treatments; non-Ns: Non-nitrogen addition treatments. 下同The same below.
Fig.2 Effects of nitrogen addition or non-nitrogen addition on community characteristics, community light transmittance and soil pH
图3 资源添加数目与群落特征、群落透光率和土壤pH的拟合关系阴影部分为95%的置信区间。The shaded area is a 95% confidence interval.
Fig.3 Fitting relationship between the number of added resources and community characteristics, community light transmittance and soil pH
图4 群落特征与群落透光率、土壤pH之间的拟合关系不同的颜色代表不同的资源添加类型:0代表对照,1~3分别代表不同的资源添加数目。Different colors represent different types of resource addition: 0 represents the control, 1-3 represent different number of added resources.
Fig.4 The fitting relationship between community characteristics, community light transmittance and soil pH
图5 基于资源添加数目和氮添加解释物种丰富度减小的结构方程模型分析方框内的变量为模拟变量,R2表示混合模型中固定效应所解释的方差。带箭头的线条表示模型拟合路径,其中粗线代表显著的关系;细线代表不显著的关系。实线表示正效应;虚线表示负效应。各路径旁的数字表示标准路径系数(λ),*:P<0.05,**:P<0.01,***:P<0.001。Variables in the rectangles are model variables, and R2 represents the variance explained by the fixed effect in the mixed model. The lines with arrows represent the model fitting path, where the thick lines represent significant relationships; The thin line represents an insignificant relationship. The solid line indicates a positive effect; the dotted line represents the negative effect. The numbers next to each path represent the standard path coefficients (λ), *: P<0.05, **: P<0.01, ***: P<0.001. CFI: 比较拟合指数Comparative?fit?index; SRMR: 标准化残差均方根Standardized root mean square residual; RMSEA: 近似均方根误差Root-mean-square?error?of?approximation.
Fig.5 Structural equation model analysis based on the number of resource addition and nitrogen addition to explain the decrease of species richness
| 1 | Isbell F, Reich P B, Tilman D, et al. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proceedings of the National Academy of Sciences, 2013, 110(29): 11911-11916. |
| 2 | Stevens C J. Recent advances in understanding grasslands. F1000Research, (2018-08-30)[2024-06-15]. https://doi.org/10.12688/f1000research.15050.1. |
| 3 | Cleland E E, Harpole W S. Nitrogen enrichment and plant communities. Annals of the New York Academy of Sciences, 2010, 1195(1): 46-61. |
| 4 | Harpole W S, Sullivan L L, Lind E M, et al. Addition of multiple limiting resources reduces grassland diversity. Nature, 2016, 537(7618): 93-96. |
| 5 | Midolo G, Alkemade R, Schipper A M, et al. Impacts of nitrogen addition on plant species richness and abundance: A global meta-analysis. Global Ecology and Biogeography, 2018, 28(3): 398-413. |
| 6 | Rajaniemi T K. Explaining productivity-diversity relationships in plants. Oikos, 2003, 101(3): 449-457. |
| 7 | Raza S, Na M, Wang P, et al. Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands. Global Change Biology, 2020, 26(6): 3738-3751. |
| 8 | Hautier Y, Niklaus P A, Hector A. Competition for light causes plant biodiversity loss after eutrophication. Science, 2009, 80(324): 636-638. |
| 9 | Fay P A, Prober S M, Harpole W S, et al. Grassland productivity limited by multiple nutrients. Nature Plants, 2015, 1(7): 15080. |
| 10 | DeMalach N, Kadmon R. Light competition explains diversity decline better than niche dimensionality. Functional Ecology, 2017, 31: 1834-1838. |
| 11 | DeMalach N, Zaady E, Kadmon R. Light asymmetry explains the effect of nutrient enrichment on grassland diversity. Ecology Letters, 2017, 20(1): 60-69. |
| 12 | Borer E T, Seabloom E W, Gruner D S, et al. Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 2014, 508(7497): 517-520. |
| 13 | Harpole W S, Tilman D. Grassland species loss resulting from reduced niche dimension. Nature, 2007, 446(7137): 791-793. |
| 14 | Crawley M J, Johnston A E, Silvertown J, et al. Determinants of species richness in the park grass experiment. The American Naturalist, 2005, 165(2): 179-192. |
| 15 | Ke Y, Yu Q, Wang H, et al. The potential bias of nitrogen deposition effects on primary productivity and biodiversity. Global Change Biology, 2022, 29(4): 1054-1061. |
| 16 | Horswill P, O’Sullivan O S, Phoenix G K, et al. Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition. Environmental Pollution, 2008, 155(2): 336-349. |
| 17 | Tian Q, Yang L, Ma P, et al. Below-ground-mediated and phase-dependent processes drive nitrogen-evoked community changes in grasslands. Journal of Ecology, 2020, 108(5): 1874-1887. |
| 18 | Farrer E C, Suding K N. Teasing apart plant community responses to N enrichment: The roles of resource limitation, competition and soil microbes. Ecology Letters, 2016, 19(10): 1287-1296. |
| 19 | Stevens C J, Dupré C, Dorland E, et al. Nitrogen deposition threatens species richness of grasslands across Europe. Environmental Pollution, 2010, 158(9): 2940-2945. |
| 20 | Gross F. Species richness in a successional grassland: Effects of nitrogen enrichment and plant litter. Ecology, 1998, 79(8): 2593-2602. |
| 21 | Lamb E G, Kembel S W, Cahill J F. Shoot, but not root, competition reduces community diversity in experimental mesocosms. Journal of Ecology, 2009, 97(1): 155-163. |
| 22 | Matsushima M, Chang S X. Effects of understory removal, N fertilization, and litter layer removal on soil N cycling in a 13-year-old white spruce plantation infested with Canada bluejoint grass. Plant Soil, 2007, 292: 243-258. |
| 23 | DeMalach N. Toward a mechanistic understanding of the effects of nitrogen and phosphorus additions on grassland diversity. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 32: 65-72. |
| 24 | Band N, Kadmon R, Mandel M, et al. Assessing the roles of nitrogen, biomass, and niche dimensionality as drivers of species loss in grassland communities. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(10): e2112010119. |
| 25 | Ren Z W, Zhao W, Bang S H, et al. The role of nutrients, light, and litter in species loss in an alpine meadow community. Acta Oecologica, 2024, 122(1): 103984. |
| 26 | Rosseel Y. Lavaan: An R package for structural equation modeling. Journal of Statistical Software, 2012, 48(2): 1-36. |
| 27 | Song S, Zhu J, Zheng T, et al. Long-term grazing exclusion reduces species diversity but increases community heterogeneity in an alpine grassland. Frontiers in Ecology and Evolution, 2020, 8: 66. |
| 28 | Wang X, Li F Y, Tang K, et al. Land use alters relationships of grassland productivity with plant and arthropod diversity in Inner Mongolian grassland. Ecological Applications, 2020, 30(3): e02052. |
| 29 | Howard A L. Handbook of structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 2013, 20(2): 354-360. |
| 30 | Zhao Y, Yang B, Li M, et al. Community composition, structure and productivity in response to nitrogen and phosphorus additions in a temperate meadow. The Science of the Total Environment, 2019, 654: 863-871. |
| 31 | Li W, Gan X L, Jiang Y, et al. Nitrogen effects on grassland biomass production and biodiversity are stronger than those of phosphorus. Environmental Pollution, 2022, 309: 119720. |
| 32 | Shi R L. The mechanism of species loss under addition of nitrogen and phosphorus at sub-alpine meadow in Tibetan Plateau. Lanzhou: Lanzhou University, 2014. |
| 师瑞玲. 氮磷添加引起青藏高原亚高寒草甸物种多样性丧失的机理研究. 兰州: 兰州大学, 2014. | |
| 33 | Ren Z W. Effects of resource additions on species diversity of alpine meadow on Qinghai-Tibetan Plateau. Lanzhou: Lanzhou University, 2010. |
| 任正炜. 资源添加对青藏高原高寒草甸物种多样性的影响. 兰州: 兰州大学, 2010. | |
| 34 | Niinemets Ü, Kull K. Co-limitation of plant primary productivity by nitrogen and phosphorus in a species-rich wooded meadow on calcareous soils. Acta Oecologica-International Journal of Ecology, 2005, 28(3): 345-356. |
| 35 | Pan Z Z, Wang R B, Chen H, et al. Response of aboveground productivity to nutrient addition driven by species diversity in an alpine meadow community. Acta Ecologica Sinica, (2024-11-06)[2024-11-21]. https://doi.org/10.20103/j.stxb.202406191417. |
| 潘珍珍, 王瑞兵, 陈欢, 等. 物种多样性驱动高寒草甸地上生产力对养分添加的响应. 生态学报, (2024-11-06)[2024-11-21]. https://doi.org/10.20103/j.stxb.202406191417. | |
| 36 | Liess A, Lange K, Schulz F A, et al. Light, nutrients and grazing interact to determine diatom species richness via changes to productivity, nutrient state and grazer activity. Journal of Ecology, 2009, 97(2): 326-336. |
| 37 | Yang X, Yang Z, Tan J, et al. Nitrogen fertilization, not water addition, alters plant phylogenetic community structure in a semi-arid steppe. Journal of Ecology, 2018, 106(3): 991-1000. |
| 38 | Wang L, Shi J J, Dong Q M, et al. Effects of nitrogen and phosphorus addition on community diversity and biomass of alpine steppe. Acta Agrestia Sinica, 2019, 27(6): 1633-1642. |
| 王玲, 施建军, 董全民, 等. 氮、磷添加对高寒草原群落多样性和生物量的影响. 草地学报, 2019, 27(6): 1633-1642. | |
| 39 | Ceulemans T, Merckx R, Hens M, et al. Plant species loss from European semi-natural grasslands following nutrient enrichment-is it nitrogen or is it phosphorus? Global Ecology and Biogeography, 2013, 22(1): 73-82. |
| 40 | Zhou X L, Guo Z, Zhang P F, et al. Different categories of biodiversity explain productivity variation after fertilization in a Tibetan alpine meadow community. Ecology and Evolution, 2017, 7(10): 3464-3474. |
| 41 | Janssens F, Peeters A, Tallowin J R, et al. Relationship between soil chemical factors and grassland diversity. Plant and Soil, 1998, 202(1): 69-78. |
| 42 | Yang Y J, Zhou H K, Ye X, et al. Short-term responses of plant community structure and function to nitrogen, phosphorus and potassium additions in an alpine meadow of Qinghai-Xizang Plateau. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(11): 2317-2323. |
| 杨月娟, 周华坤, 叶鑫, 等. 青藏高原高寒草甸植物群落结构和功能对氮、磷、钾添加的短期响应. 西北植物学报, 2014, 34(11): 2317-2323. | |
| 43 | Cheng Y K, Liu X, Song Z P, et al. Divergent trait responses to nitrogen addition in tall and short species. Journal of Ecology, 2023, 111(7): 1443-1454. |
| 44 | Zhu J, Zhang Y, Liu Y. Effects of short-term grazing exclusion on plant phenology and reproductive succession in a Tibetan alpine meadow. Scientific Reports, 2016, 6(1): 27781. |
| 45 | Zhang J Q, Li Q, Ren Z W, et al. Effects of nitrogen addition on species richness and relationship between species richness and aboveground productivity of alpine meadow of the Qinghai-Tibetan Plateau, China. Chinese Journal of Plant Ecology, 2010, 24(10): 1125-1131. |
| 张杰琦, 李奇, 任正炜, 等. 氮素添加对青藏高原高寒草甸植物群落丰富度及其与地上生产力关系的影响. 植物生态学报, 2010, 24(10): 1125-1131. | |
| 46 | Harpole W S, Suding K N. A test of the niche dimension hypothesis in an arid annual grassland. Oecologia, 2011, 166(1): 197-205. |
| 47 | Cardinale B J, Hillebrand H, Harpole W S, et al. Separating the influence of resource ‘availability’ from resource ‘imbalance’ on productivity-diversity relationships. Ecology Letters, 2009, 12(6): 475-487. |
| 48 | Harpole W S, Sullivan L L, Lind E M, et al. Out of the shadows: Multiple nutrient limitations drive relationships among biomass, light and plant diversity. Functional Ecology, 2017, 31(9): 1839-1846. |
| 49 | Bobbink R, Hicks K, Galloway J N, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications, 2010, 20(1): 30-59. |
| 50 | Bai W, Guo D, Tian Q, et al. Differential responses of grasses and forbs led to marked reduction in below-ground productivity in temperate steppe following chronic n deposition. Journal of Ecology, 2015, 103(6): 1570-1579. |
| [1] | 霍佳娟, 宋明华. 青藏高原高寒草甸不同退化阶段植物氮利用速率变化[J]. 草业学报, 2025, 34(2): 16-26. |
| [2] | 涂晓东, 崔俊芳, 况福虹, 李春培, 杜玖珍, 王红兰, 唐翔宇. 川西北高寒草甸转为耕地对土壤微生物群落的影响[J]. 草业学报, 2025, 34(2): 54-66. |
| [3] | 和阳一丹, 陈昌明, 黄晓霞, 施国美, 和克俭. 川西高寒草甸植物功能属性与环境因子的关系研究[J]. 草业学报, 2024, 33(9): 28-39. |
| [4] | 谭湘蛟, 董逵才, 张华, 唐川川, 杨燕. 积雪增加对青藏高原高寒草甸土壤磷有效性的影响[J]. 草业学报, 2024, 33(7): 205-214. |
| [5] | 秦瑞敏, 程思佳, 马丽, 张中华, 魏晶晶, 苏洪烨, 史正晨, 常涛, 胡雪, 阿的哈则, 袁访, 李珊, 周华坤. 围封和施肥对高寒草甸群落特征和植被碳氮库的影响[J]. 草业学报, 2024, 33(4): 1-11. |
| [6] | 油志远, 马淑娟, 王长庭, 丁路明, 宋小艳, 尹高飞, 毛军. 川滇高原高寒草甸生态系统不同功能群植物分布格局的MaxEnt模型预测[J]. 草业学报, 2024, 33(3): 1-12. |
| [7] | 马源, 王晓丽, 马玉寿, 张德罡. 高寒草甸退化程度对优势物种根际土壤真菌群落和生态网络的影响[J]. 草业学报, 2024, 33(2): 125-137. |
| [8] | 冯娅斯, 蒋文婷, 刘益宏, 王燕, 李渊, 陈有超, 蔡延江. 翻耕和植物残体覆盖对“黑土滩”型退化草地土壤氧化亚氮排放的影响[J]. 草业学报, 2024, 33(11): 15-29. |
| [9] | 李林芝, 张德罡, 马源, 罗珠珠, 林栋, 海龙, 白兰鸽. 不同退化程度高寒草甸土壤团聚体养分及生态化学计量特征研究[J]. 草业学报, 2023, 32(8): 48-60. |
| [10] | 廖小琴, 王长庭, 刘丹, 唐国, 毛军. 氮磷配施对高寒草甸植物根系特征的影响[J]. 草业学报, 2023, 32(7): 160-174. |
| [11] | 路欣, 祁娟, 师尚礼, 车美美, 李霞, 独双双, 赛宁刚, 贾燕伟. 阔叶类草抑制剂与氮素配施对高寒草甸土壤特性的影响[J]. 草业学报, 2023, 32(7): 38-48. |
| [12] | 刘彩凤, 段媛媛, 王玲玲, 王乙茉, 郭正刚. 高原鼠兔干扰对高寒草甸植物物种多样性与土壤生态化学计量比间关系的影响[J]. 草业学报, 2023, 32(6): 157-166. |
| [13] | 孙玉, 杨永胜, 何琦, 王军邦, 张秀娟, 李慧婷, 徐兴良, 周华坤, 张宇恒. 三江源高寒草甸水源涵养功能及土壤理化性质对退化程度的响应[J]. 草业学报, 2023, 32(6): 16-29. |
| [14] | 周娟娟, 刘云飞, 王敬龙, 魏巍. 短期养分添加对西藏沼泽化高寒草甸地上生物量、植物多样性和功能性状的影响[J]. 草业学报, 2023, 32(11): 17-29. |
| [15] | 游郭虹, 刘丹, 王艳丽, 王长庭. 高寒草甸植物叶片生态化学计量特征对长期氮肥添加的响应[J]. 草业学报, 2022, 31(9): 50-62. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||