草业学报 ›› 2026, Vol. 35 ›› Issue (2): 179-194.DOI: 10.11686/cyxb2025145
收稿日期:2025-04-24
修回日期:2025-06-16
出版日期:2026-02-20
发布日期:2025-12-24
通讯作者:
杨春雪
作者简介:Corresponding author. E-mail: senxiu99@163.com基金资助:
Meng-hui YANG(
), Ya-jie LIU, Na LI, Chun-xue YANG(
)
Received:2025-04-24
Revised:2025-06-16
Online:2026-02-20
Published:2025-12-24
Contact:
Chun-xue YANG
摘要:
土壤丛枝菌根(AM)真菌可以通过公共菌根网络(CMNs)连接不同植物根系介导植物之间养分传递和资源分配影响植物间互作。然而,在土壤盐碱化严重威胁草地生态系统可持续性的背景下,CMNs在碱环境下对供体植物生长和耐碱性的影响仍不明确。本研究以接种AM真菌的狼尾草为供体植物,采用不同的种植模式:分隔网另一侧无相邻受体植物(无邻体植物种植)、相邻受体植物分别为未接菌的狼尾草(同种植物种植)和未接菌的车前(异种植物种植),通过分室盆栽试验,探究碱胁迫下CMNs对供体植物狼尾草的作用。结果表明:1)碱胁迫下邻体植物(尤其同种植物)显著提高了狼尾草的定殖率和定殖强度;2)碱胁迫下接菌处理中邻体植物为同种植物的处理组狼尾草菌根依赖性和易提取球囊霉素相关土壤蛋白(EE-GRSP)含量显著高于无邻体植物处理组和异种邻体植物处理组;3)碱胁迫显著抑制狼尾草生长,CMNs的建立缓解了该胁迫效应;4)碱胁迫下CMNs显著提高狼尾草的光合能力、渗透调节物质及抗氧化酶活性,降低丙二醛和超氧阴离子自由基含量;5)隶属函数分析表明,碱胁迫下接菌处理中邻体植物为同种植物的处理组耐碱性最强。研究表明AM真菌驱动的CMNs可能通过介导植物互作促进供体植物狼尾草生长并增强其耐碱能力,特别是与同种植物形成的CMNs对狼尾草的促进作用更显著。
杨梦慧, 刘雅洁, 李娜, 杨春雪. 不同种植模式下的菌根网络对狼尾草生长与耐碱性的影响[J]. 草业学报, 2026, 35(2): 179-194.
Meng-hui YANG, Ya-jie LIU, Na LI, Chun-xue YANG. Effects of common mycorrhizal networks on the growth and alkali tolerance of Pennisetum alopecuroides under different planting patterns[J]. Acta Prataculturae Sinica, 2026, 35(2): 179-194.
图1 不同种植模式设计示意图(接菌处理)A:无邻体植物Neighborless plants (NP); B:邻体植物为狼尾草Neighboring plants are P. alopecuroides (PE); C:邻体植物为车前Neighboring plants are P. asiatica (PL); +AM: 施加AM菌剂Apply AM inoculants; -AM (NM): 不施加AM菌剂 No AM inoculants are applied.
Fig.1 Design diagram of different planting modes (inoculation)
图3 不同处理之间的菌根定殖不同小写字母表示不同处理间在0.05水平差异显著。CK:未施加碱胁迫;ST:施加碱胁迫;AM:接种AM真菌处理;NP:无邻体植物;PE:邻体植物为狼尾草;PL:邻体植物为车前;R:受体植物。下同。The different lowercase letters indicate significant differences at the 0.05 level among different treatments. CK: No alkali stress; ST: Alkali stress. AM: Inoculation with AM fungi; NP: Neighborless plants; PE: The neighbor plant is P. alopecuroides; PL: The neighbor plant is P. asiatica. R: Receiver plant. The same below.
Fig. 3 Mycorrhizal colonization under different treatments
胁迫 Stress | 接菌 Inoculation | 邻体植物 Neighboring plants | 菌根依赖性Mycorrhizal dependence | 易提取球囊霉素相关土壤蛋白EE-GRSP (mg·g-1) | 总提取球囊霉素相关土壤蛋白T-GRSP (mg·g-1) | 难提取球囊霉素相关土壤蛋白D-GRSP (mg·g-1) |
|---|---|---|---|---|---|---|
| CK | NM | NP | - | 0.34±0.01f | 0.79±0.02e | 0.45±0.02f |
| PE | - | 0.33±0.01f | 0.81±0.02e | 0.47±0.01f | ||
| PL | - | 0.34±0.02f | 0.79±0.01e | 0.45±0.01f | ||
| CK | AM | NP | 1.12±0.06d | 1.06±0.03b | 2.28±0.05c | 1.22±0.06e |
| PE | 1.23±0.03c | 1.14±0.03a | 2.82±0.09a | 1.67±0.07a | ||
| PL | 1.15±0.02d | 0.95±0.08c | 2.54±0.03b | 1.59±0.05bc | ||
| ST | AM | NP | 1.48±0.01b | 0.56±0.02e | 2.09±0.02d | 1.53±0.01c |
| PE | 1.63±0.01a | 0.76±0.02d | 2.15±0.04d | 1.39±0.02d | ||
| PL | 1.49±0.02b | 0.54±0.02e | 2.15±0.01d | 1.60±0.03b |
表1 不同处理下狼尾草菌根依赖性和根际球囊霉素相关土壤蛋白含量
Table 1 Mycorrhizal dependence and glomycin-related soil protein content in rhizosphere of P. alopecuroides under different treatments
胁迫 Stress | 接菌 Inoculation | 邻体植物 Neighboring plants | 菌根依赖性Mycorrhizal dependence | 易提取球囊霉素相关土壤蛋白EE-GRSP (mg·g-1) | 总提取球囊霉素相关土壤蛋白T-GRSP (mg·g-1) | 难提取球囊霉素相关土壤蛋白D-GRSP (mg·g-1) |
|---|---|---|---|---|---|---|
| CK | NM | NP | - | 0.34±0.01f | 0.79±0.02e | 0.45±0.02f |
| PE | - | 0.33±0.01f | 0.81±0.02e | 0.47±0.01f | ||
| PL | - | 0.34±0.02f | 0.79±0.01e | 0.45±0.01f | ||
| CK | AM | NP | 1.12±0.06d | 1.06±0.03b | 2.28±0.05c | 1.22±0.06e |
| PE | 1.23±0.03c | 1.14±0.03a | 2.82±0.09a | 1.67±0.07a | ||
| PL | 1.15±0.02d | 0.95±0.08c | 2.54±0.03b | 1.59±0.05bc | ||
| ST | AM | NP | 1.48±0.01b | 0.56±0.02e | 2.09±0.02d | 1.53±0.01c |
| PE | 1.63±0.01a | 0.76±0.02d | 2.15±0.04d | 1.39±0.02d | ||
| PL | 1.49±0.02b | 0.54±0.02e | 2.15±0.01d | 1.60±0.03b |
图4 不同处理下狼尾草生长状况AM:接种AM真菌处理;NM:未接种AM真菌处理;NP:无邻体植物;PE:邻体植物为狼尾草;PL:邻体植物为车前;CK:未施加碱胁迫;ST:施加碱胁迫;下同。AM: Inoculation with AM fungi; NM: Uninoculated AM fungi. NP: Neighborless plants; PE: The neighbor plant is P. alopecuroides; PL: The neighbor plant is P. asiatica. CK: No alkali stress; ST: Alkali stress. The same below.
Fig.4 The growth status of P. alopecuroides under different treatments
胁迫 Stress | 接菌 Inoculation | 邻体植物 Neighboring plants | 鲜重 Fresh weight (g·plant-1) | 干重 Dry weight (g·plant-1) | 组织含水量(占鲜重) Tissue water content (% fresh weight) |
|---|---|---|---|---|---|
| CK | NM | NP | 0.830±0.025c | 0.174±0.004d | 79.04±0.612b |
| PE | 0.846±0.034c | 0.172±0.001d | 79.60±0.812b | ||
| PL | 0.846±0.031c | 0.174±0.004d | 79.42±0.589b | ||
| AM | NP | 1.130±0.028b | 0.195±0.006c | 82.75±0.908a | |
| PE | 1.204±0.044a | 0.212±0.005a | 82.41±0.372a | ||
| PL | 1.132±0.050b | 0.200±0.001b | 82.31±0.811a | ||
| ST | NM | NP | 0.353±0.027e | 0.104±0.001f | 70.37±2.371c |
| PE | 0.358±0.018e | 0.103±0.001f | 71.03±1.431c | ||
| PL | 0.350±0.042e | 0.104±0.002f | 69.90±3.492c | ||
| AM | NP | 0.731±0.027d | 0.154±0.001e | 78.92±0.956b | |
| PE | 0.827±0.024c | 0.169±0.001d | 79.59±0.674b | ||
| PL | 0.729±0.027d | 0.155±0.001e | 78.73±0.780b |
表2 不同处理下狼尾草的生物量
Table 2 The biomass of P. alopecuroides under different treatments
胁迫 Stress | 接菌 Inoculation | 邻体植物 Neighboring plants | 鲜重 Fresh weight (g·plant-1) | 干重 Dry weight (g·plant-1) | 组织含水量(占鲜重) Tissue water content (% fresh weight) |
|---|---|---|---|---|---|
| CK | NM | NP | 0.830±0.025c | 0.174±0.004d | 79.04±0.612b |
| PE | 0.846±0.034c | 0.172±0.001d | 79.60±0.812b | ||
| PL | 0.846±0.031c | 0.174±0.004d | 79.42±0.589b | ||
| AM | NP | 1.130±0.028b | 0.195±0.006c | 82.75±0.908a | |
| PE | 1.204±0.044a | 0.212±0.005a | 82.41±0.372a | ||
| PL | 1.132±0.050b | 0.200±0.001b | 82.31±0.811a | ||
| ST | NM | NP | 0.353±0.027e | 0.104±0.001f | 70.37±2.371c |
| PE | 0.358±0.018e | 0.103±0.001f | 71.03±1.431c | ||
| PL | 0.350±0.042e | 0.104±0.002f | 69.90±3.492c | ||
| AM | NP | 0.731±0.027d | 0.154±0.001e | 78.92±0.956b | |
| PE | 0.827±0.024c | 0.169±0.001d | 79.59±0.674b | ||
| PL | 0.729±0.027d | 0.155±0.001e | 78.73±0.780b |
胁迫 Stress | 接菌 Inoculation | 邻体植物 Neighboring plants | 叶绿素a Chlorophyll a (mg·g-1) | 叶绿素b Chlorophyll b (mg·g-1) | 净光合速率 Pn (μmol·m-2·s-1) | 叶片气孔导度 Gs (mmol·m-2·s-1) | 胞间二氧化碳浓度 Ci (μmol·mol-1) | 蒸腾速率 Tr (mmol·m-2·s-1) |
|---|---|---|---|---|---|---|---|---|
| CK | NM | NP | 10.32±0.32b | 2.91±0.11b | 2.76±0.20b | 24.40±2.90b | 392.67±32.88ab | 1.14±0.08b |
| PE | 10.30±0.29b | 2.97±0.13b | 2.74±0.26b | 23.85±3.25b | 389.33±23.35ab | 1.18±0.02b | ||
| PL | 10.30±0.33b | 3.04±0.09b | 2.76±0.27b | 24.16±3.01b | 390.67±32.53ab | 1.16±0.05b | ||
| AM | NP | 12.64±0.23a | 3.27±0.10a | 2.94±0.43ab | 30.68±4.57a | 286.00±107.53b | 1.31±0.03a | |
| PE | 12.74±0.18a | 3.39±0.16a | 3.38±0.32a | 31.25±5.74a | 289.00±132.73b | 1.33±0.04a | ||
| PL | 12.72±0.23a | 3.34±0.23a | 3.04±0.41ab | 30.45±5.83a | 383.33±45.35ab | 1.33±0.03a | ||
| ST | NM | NP | 4.88±0.11e | 1.61±0.12e | 1.23±0.18e | 9.77±1.29d | 408.00±14.73a | 0.63±0.06d |
| PE | 4.79±0.13e | 1.57±0.16e | 1.18±0.18e | 10.64±1.05d | 407.67±45.79a | 0.63±0.05d | ||
| PL | 4.85±0.14e | 1.40±0.19e | 1.21±0.19e | 10.20±0.97d | 404.00±8.89a | 0.63±0.06d | ||
| AM | NP | 7.28±0.10d | 2.08±0.03d | 1.53±0.40de | 12.78±0.87cd | 392.67±27.50ab | 0.90±0.15c | |
| PE | 9.08±0.06c | 2.67±0.07c | 2.25±0.10c | 17.97±1.21c | 401.00±7.00a | 0.97±0.07c | ||
| PL | 7.42±0.02d | 2.18±0.06d | 1.84±0.11cd | 14.63±0.64cd | 402.33±33.08a | 0.96±0.08c |
表3 不同处理下狼尾草叶绿素和光合参数
Table 3 Chlorophyll and photosynthetic parameters of P. alopecuroides under different treatments
胁迫 Stress | 接菌 Inoculation | 邻体植物 Neighboring plants | 叶绿素a Chlorophyll a (mg·g-1) | 叶绿素b Chlorophyll b (mg·g-1) | 净光合速率 Pn (μmol·m-2·s-1) | 叶片气孔导度 Gs (mmol·m-2·s-1) | 胞间二氧化碳浓度 Ci (μmol·mol-1) | 蒸腾速率 Tr (mmol·m-2·s-1) |
|---|---|---|---|---|---|---|---|---|
| CK | NM | NP | 10.32±0.32b | 2.91±0.11b | 2.76±0.20b | 24.40±2.90b | 392.67±32.88ab | 1.14±0.08b |
| PE | 10.30±0.29b | 2.97±0.13b | 2.74±0.26b | 23.85±3.25b | 389.33±23.35ab | 1.18±0.02b | ||
| PL | 10.30±0.33b | 3.04±0.09b | 2.76±0.27b | 24.16±3.01b | 390.67±32.53ab | 1.16±0.05b | ||
| AM | NP | 12.64±0.23a | 3.27±0.10a | 2.94±0.43ab | 30.68±4.57a | 286.00±107.53b | 1.31±0.03a | |
| PE | 12.74±0.18a | 3.39±0.16a | 3.38±0.32a | 31.25±5.74a | 289.00±132.73b | 1.33±0.04a | ||
| PL | 12.72±0.23a | 3.34±0.23a | 3.04±0.41ab | 30.45±5.83a | 383.33±45.35ab | 1.33±0.03a | ||
| ST | NM | NP | 4.88±0.11e | 1.61±0.12e | 1.23±0.18e | 9.77±1.29d | 408.00±14.73a | 0.63±0.06d |
| PE | 4.79±0.13e | 1.57±0.16e | 1.18±0.18e | 10.64±1.05d | 407.67±45.79a | 0.63±0.05d | ||
| PL | 4.85±0.14e | 1.40±0.19e | 1.21±0.19e | 10.20±0.97d | 404.00±8.89a | 0.63±0.06d | ||
| AM | NP | 7.28±0.10d | 2.08±0.03d | 1.53±0.40de | 12.78±0.87cd | 392.67±27.50ab | 0.90±0.15c | |
| PE | 9.08±0.06c | 2.67±0.07c | 2.25±0.10c | 17.97±1.21c | 401.00±7.00a | 0.97±0.07c | ||
| PL | 7.42±0.02d | 2.18±0.06d | 1.84±0.11cd | 14.63±0.64cd | 402.33±33.08a | 0.96±0.08c |
图5 不同处理下狼尾草生理和矿质营养状况Total Chl (mg·g-1):总叶绿素Total chlorophyll;Car (mg·g-1):类胡萝卜素Carotenoids;MDA (mg·g-1):丙二醛Malondialdehyde;Pro (mg·g-1):脯氨酸Proline;SP (mg·g-1):可溶性蛋白Soluble protein;SS (mg·g-1):可溶性糖Soluble sugar;CAT (mg·g-1·min-1):过氧化氢酶Catalase;POD (U·g-1·min-1):过氧化物酶Peroxidase;SOD (U·g-1):超氧化物歧化酶Superoxide dismutase;O2- (μg·g-1):超氧阴离子自由基Superoxide anion radical;PAL (U·g-1·min-1):苯丙氨酸解氨酶Phenylalanine ammonia-lyase;Ash (g):灰分Ash。A: AM-PE-CK; AS: AM-PE-ST; B: AM-PL-CK; BS: AM-PL-ST; C: AM-NP-CK; CS: AM-NP-ST; D: NM-PE-CK; DS: NM-PE-ST; E: NM-PL-CK; ES: NM-PL-ST; F: NM-NP-CK; FS: NM-NP-ST.
Fig.5 Physiological and mineral nutrition status of P. alopecuroides under different treatments
指标 Index | CK | ST | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| AM | NM | AM | NM | |||||||||
| PE | PL | NP | PE | PL | NP | PE | PL | NP | PE | PL | NP | |
| 叶绿素a含量Chlorophyll a content | 0.973 | 0.971 | 0.962 | 0.678 | 0.679 | 0.682 | 0.531 | 0.330 | 0.313 | 0.013 | 0.019 | 0.023 |
| 叶绿素b含量Chlorophyll b content | 0.914 | 0.890 | 0.862 | 0.732 | 0.759 | 0.706 | 0.600 | 0.386 | 0.345 | 0.123 | 0.051 | 0.138 |
| 类胡萝卜素含量Carotenoids content | 0.967 | 0.977 | 0.967 | 0.851 | 0.818 | 0.853 | 0.312 | 0.275 | 0.179 | 0.156 | 0.056 | 0.065 |
| 净光合速率Net Photosynthesis rate | 0.916 | 0.785 | 0.745 | 0.668 | 0.677 | 0.676 | 0.480 | 0.320 | 0.199 | 0.064 | 0.076 | 0.084 |
| 叶片气孔导度Stomatal conductance | 0.807 | 0.778 | 0.787 | 0.547 | 0.558 | 0.566 | 0.340 | 0.222 | 0.158 | 0.082 | 0.067 | 0.052 |
| 叶长Leaf length | 0.864 | 0.831 | 0.944 | 0.703 | 0.582 | 0.669 | 0.483 | 0.342 | 0.675 | 0.195 | 0.056 | 0.319 |
| 叶宽Leaf width | 0.909 | 0.864 | 0.924 | 0.424 | 0.409 | 0.409 | 0.652 | 0.591 | 0.727 | 0.091 | 0.045 | 0.030 |
| 叶面积Leaf area | 0.884 | 0.900 | 0.964 | 0.515 | 0.450 | 0.478 | 0.523 | 0.426 | 0.723 | 0.146 | 0.092 | 0.109 |
| 株高Plant height | 0.854 | 0.833 | 0.917 | 0.667 | 0.646 | 0.729 | 0.375 | 0.313 | 0.563 | 0.125 | 0.146 | 0.146 |
| 茎粗Stem diameter | 0.785 | 0.788 | 0.885 | 0.448 | 0.417 | 0.538 | 0.729 | 0.809 | 0.781 | 0.208 | 0.122 | 0.052 |
| 总根长Total root length | 0.862 | 0.756 | 0.797 | 0.575 | 0.596 | 0.622 | 0.501 | 0.391 | 0.405 | 0.079 | 0.167 | 0.155 |
| 表面积Surface area | 0.854 | 0.732 | 0.714 | 0.341 | 0.333 | 0.329 | 0.448 | 0.196 | 0.180 | 0.063 | 0.051 | 0.069 |
| 体积Volume | 0.705 | 0.794 | 0.696 | 0.477 | 0.482 | 0.480 | 0.417 | 0.460 | 0.404 | 0.054 | 0.070 | 0.067 |
| 平均直径Mean diameter | 0.775 | 0.714 | 0.664 | 0.406 | 0.433 | 0.447 | 0.286 | 0.294 | 0.289 | 0.119 | 0.086 | 0.111 |
| 鲜重Fresh weight | 0.951 | 0.874 | 0.874 | 0.572 | 0.575 | 0.558 | 0.554 | 0.453 | 0.456 | 0.063 | 0.053 | 0.056 |
| 干重Dry weight | 0.944 | 0.833 | 0.778 | 0.583 | 0.611 | 0.611 | 0.583 | 0.472 | 0.444 | 0.000 | 0.028 | 0.000 |
| CAT活性CAT activity | 0.280 | 0.280 | 0.120 | 0.440 | 0.413 | 0.402 | 0.934 | 0.974 | 0.720 | 0.587 | 0.587 | 0.605 |
| POD活性POD activity | 0.053 | 0.044 | 0.062 | 0.025 | 0.024 | 0.020 | 0.968 | 0.955 | 0.916 | 0.797 | 0.808 | 0.810 |
| SOD活性SOD activity | 0.079 | 0.070 | 0.042 | 0.070 | 0.060 | 0.041 | 0.995 | 0.982 | 0.965 | 0.615 | 0.626 | 0.627 |
| PAL活性PAL activity | 0.344 | 0.341 | 0.338 | 0.004 | 0.003 | 0.004 | 0.931 | 0.915 | 0.934 | 0.625 | 0.697 | 0.645 |
| 脯氨酸含量Proline content | 0.031 | 0.045 | 0.041 | 0.046 | 0.043 | 0.044 | 0.984 | 0.983 | 0.989 | 0.569 | 0.570 | 0.575 |
| 可溶性蛋白含量Soluble protein content | 0.070 | 0.067 | 0.071 | 0.035 | 0.034 | 0.037 | 0.974 | 0.978 | 0.875 | 0.467 | 0.461 | 0.477 |
| 可溶性糖含量Soluble sugars content | 0.191 | 0.214 | 0.207 | 0.129 | 0.163 | 0.114 | 0.703 | 0.961 | 0.788 | 0.503 | 0.474 | 0.479 |
超氧阴离子自由基含量 Superoxide anion radical content | 0.969 | 0.942 | 0.922 | 0.875 | 0.886 | 0.884 | 0.528 | 0.521 | 0.521 | 0.074 | 0.056 | 0.043 |
| 丙二醛含量MDA content | 0.961 | 0.871 | 0.956 | 0.875 | 0.878 | 0.927 | 0.594 | 0.548 | 0.465 | 0.143 | 0.144 | 0.122 |
| 隶属函数平均值Subjection average value | 0.678 | 0.648 | 0.650 | 0.467 | 0.461 | 0.473 | 0.617 | 0.564 | 0.561 | 0.238 | 0.224 | 0.234 |
| 排序Rank | 1 | 3 | 2 | 8 | 9 | 7 | 4 | 5 | 6 | 10 | 12 | 11 |
表4 不同处理下狼尾草各项指标的隶属函数值及耐碱性综合评价
Table 4 Subordinative function values and comprehensive evaluation of the various indicators of P. alopecuroides under different treatments
指标 Index | CK | ST | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| AM | NM | AM | NM | |||||||||
| PE | PL | NP | PE | PL | NP | PE | PL | NP | PE | PL | NP | |
| 叶绿素a含量Chlorophyll a content | 0.973 | 0.971 | 0.962 | 0.678 | 0.679 | 0.682 | 0.531 | 0.330 | 0.313 | 0.013 | 0.019 | 0.023 |
| 叶绿素b含量Chlorophyll b content | 0.914 | 0.890 | 0.862 | 0.732 | 0.759 | 0.706 | 0.600 | 0.386 | 0.345 | 0.123 | 0.051 | 0.138 |
| 类胡萝卜素含量Carotenoids content | 0.967 | 0.977 | 0.967 | 0.851 | 0.818 | 0.853 | 0.312 | 0.275 | 0.179 | 0.156 | 0.056 | 0.065 |
| 净光合速率Net Photosynthesis rate | 0.916 | 0.785 | 0.745 | 0.668 | 0.677 | 0.676 | 0.480 | 0.320 | 0.199 | 0.064 | 0.076 | 0.084 |
| 叶片气孔导度Stomatal conductance | 0.807 | 0.778 | 0.787 | 0.547 | 0.558 | 0.566 | 0.340 | 0.222 | 0.158 | 0.082 | 0.067 | 0.052 |
| 叶长Leaf length | 0.864 | 0.831 | 0.944 | 0.703 | 0.582 | 0.669 | 0.483 | 0.342 | 0.675 | 0.195 | 0.056 | 0.319 |
| 叶宽Leaf width | 0.909 | 0.864 | 0.924 | 0.424 | 0.409 | 0.409 | 0.652 | 0.591 | 0.727 | 0.091 | 0.045 | 0.030 |
| 叶面积Leaf area | 0.884 | 0.900 | 0.964 | 0.515 | 0.450 | 0.478 | 0.523 | 0.426 | 0.723 | 0.146 | 0.092 | 0.109 |
| 株高Plant height | 0.854 | 0.833 | 0.917 | 0.667 | 0.646 | 0.729 | 0.375 | 0.313 | 0.563 | 0.125 | 0.146 | 0.146 |
| 茎粗Stem diameter | 0.785 | 0.788 | 0.885 | 0.448 | 0.417 | 0.538 | 0.729 | 0.809 | 0.781 | 0.208 | 0.122 | 0.052 |
| 总根长Total root length | 0.862 | 0.756 | 0.797 | 0.575 | 0.596 | 0.622 | 0.501 | 0.391 | 0.405 | 0.079 | 0.167 | 0.155 |
| 表面积Surface area | 0.854 | 0.732 | 0.714 | 0.341 | 0.333 | 0.329 | 0.448 | 0.196 | 0.180 | 0.063 | 0.051 | 0.069 |
| 体积Volume | 0.705 | 0.794 | 0.696 | 0.477 | 0.482 | 0.480 | 0.417 | 0.460 | 0.404 | 0.054 | 0.070 | 0.067 |
| 平均直径Mean diameter | 0.775 | 0.714 | 0.664 | 0.406 | 0.433 | 0.447 | 0.286 | 0.294 | 0.289 | 0.119 | 0.086 | 0.111 |
| 鲜重Fresh weight | 0.951 | 0.874 | 0.874 | 0.572 | 0.575 | 0.558 | 0.554 | 0.453 | 0.456 | 0.063 | 0.053 | 0.056 |
| 干重Dry weight | 0.944 | 0.833 | 0.778 | 0.583 | 0.611 | 0.611 | 0.583 | 0.472 | 0.444 | 0.000 | 0.028 | 0.000 |
| CAT活性CAT activity | 0.280 | 0.280 | 0.120 | 0.440 | 0.413 | 0.402 | 0.934 | 0.974 | 0.720 | 0.587 | 0.587 | 0.605 |
| POD活性POD activity | 0.053 | 0.044 | 0.062 | 0.025 | 0.024 | 0.020 | 0.968 | 0.955 | 0.916 | 0.797 | 0.808 | 0.810 |
| SOD活性SOD activity | 0.079 | 0.070 | 0.042 | 0.070 | 0.060 | 0.041 | 0.995 | 0.982 | 0.965 | 0.615 | 0.626 | 0.627 |
| PAL活性PAL activity | 0.344 | 0.341 | 0.338 | 0.004 | 0.003 | 0.004 | 0.931 | 0.915 | 0.934 | 0.625 | 0.697 | 0.645 |
| 脯氨酸含量Proline content | 0.031 | 0.045 | 0.041 | 0.046 | 0.043 | 0.044 | 0.984 | 0.983 | 0.989 | 0.569 | 0.570 | 0.575 |
| 可溶性蛋白含量Soluble protein content | 0.070 | 0.067 | 0.071 | 0.035 | 0.034 | 0.037 | 0.974 | 0.978 | 0.875 | 0.467 | 0.461 | 0.477 |
| 可溶性糖含量Soluble sugars content | 0.191 | 0.214 | 0.207 | 0.129 | 0.163 | 0.114 | 0.703 | 0.961 | 0.788 | 0.503 | 0.474 | 0.479 |
超氧阴离子自由基含量 Superoxide anion radical content | 0.969 | 0.942 | 0.922 | 0.875 | 0.886 | 0.884 | 0.528 | 0.521 | 0.521 | 0.074 | 0.056 | 0.043 |
| 丙二醛含量MDA content | 0.961 | 0.871 | 0.956 | 0.875 | 0.878 | 0.927 | 0.594 | 0.548 | 0.465 | 0.143 | 0.144 | 0.122 |
| 隶属函数平均值Subjection average value | 0.678 | 0.648 | 0.650 | 0.467 | 0.461 | 0.473 | 0.617 | 0.564 | 0.561 | 0.238 | 0.224 | 0.234 |
| 排序Rank | 1 | 3 | 2 | 8 | 9 | 7 | 4 | 5 | 6 | 10 | 12 | 11 |
| [1] | Hamoud Y A, Saleem T, Zia-ur-Rehman M, et al. Synergistic effect of biochar with gypsum, lime, and farm manure on the growth and tolerance in rice plants under different salt-affected soils. Chemosphere, 2024, 360: 142357. |
| [2] | Jaffar M T, Chang W, Zhang J, et al. Sugarcane bagasse biochar boosts maize growth and yield in salt-affected soil by improving soil enzymatic activities. Journal of Environmental Management, 2024, 363: 121418. |
| [3] | Zhang K Y. Effects of saline-alkali stress on ecological stoichiometric characteristics of manganese and zinc in Leymus chinensis and implications for ecological restoration. Changchun: Jinlin University, 2024. |
| 张可依. 盐碱胁迫对羊草锰锌生态化学计量特征的影响及生态修复启示. 长春: 吉林大学, 2024. | |
| [4] | Cong S. Effects of different amelioration techniques on soil saline-alkali characteristics in Songnen Plain. Beijing: University of Chinese Academy of Sciences, 2022. |
| 丛山. 不同改良技术对松嫩平原盐碱地土壤盐碱特征的影响. 北京: 中国科学院大学, 2022. | |
| [5] | Chebotar V K, Chizhevskaya E P, Khonina O V, et al. Biotechnological potential of galophytes and their microbiomes for agriculture in Russia and Kazakhstan. Russian Journal of Plant Physiology, 2023, 70(8): 183. |
| [6] | Elmeknassi M, Elghali A, de Carvalho H W P, et al. A review of organic and inorganic amendments to treat saline-sodic soils: Emphasis on waste valorization for a circular economy approach. Science of The Total Environment, 2024, 921: 171087. |
| [7] | Zriba Z, Karbout N, Azaiez F E B, et al. Effect of different soil amendments on irrigation and crop yields in the oases of southern Tunisia. Emirates Journal of Food and Agriculture, 2023, 35(4): 297-304. |
| [8] | Yuan X L, Gao H, Li L, et al. Effects of microbial inoculants on crop yield and quality in saline-alkali land. New Farmer, 2024(1): 87-89. |
| 袁喜丽, 高慧, 李磊, 等. 微生物菌剂对盐碱地农作物产量与品质的影响研究. 新农民, 2024(1): 87-89. | |
| [9] | Zhang M X, Xu Y L. Screening of saline-alkali tolerant rhizosphere promoting bacteria. Agriculture and Technology, 2025, 45(1): 113-117. |
| 张梦雪, 许永利. 耐盐碱根际促生菌的筛选. 农业与技术, 2025, 45(1): 113-117. | |
| [10] | Zhang X L, Wang G L, Chang F D, et al. Effects of biological inoculants on physicochemical properties and microbial flora of rhizosphere saline soil. Journal of Ecological Environment, 2022, 31(10): 1984-1992. |
| 张晓丽, 王国丽, 常芳弟, 等. 生物菌剂对根际盐碱土壤理化性质和微生物区系的影响. 生态环境学报, 2022, 31(10): 1984-1992. | |
| [11] | Dong F X. The mechanism of arbuscular mycorrhizal fungi enhancing saline-alkali tolerance of Populus×xiaohei. Yangling: Northwest A & F University, 2023. |
| 董奉鑫. 丛枝菌根真菌增强小黑杨盐碱耐受性机制研究. 杨凌: 西北农林科技大学, 2023. | |
| [12] | Wang Z H, Liu Y J, Jin Y, et al. Effects of arbuscular mycorrhizal fungi inoculation and association with Chloris virgata on growth and physiological characteristics of Leymus chinensis under salt stress. Chinese Journal of Grassland, 2024, 46(6): 22-35. |
| 王子贺, 刘雅洁, 金蕴, 等. 盐胁迫下丛枝菌根真菌接种和虎尾草伴生对羊草生长和生理特性的影响. 中国草地学报, 2024, 46(6): 22-35. | |
| [13] | Zhang C N, Zhang R F, Wang H, et al. Effects of arbuscular mycorrhizal fungi on abiotic stress tolerance in crops: a review. Bulletin of Microbiology, 2020, 47(11): 3880-3891. |
| 张春楠, 张瑞芳, 王红, 等. 丛枝菌根真菌影响作物非生物胁迫耐受性的研究进展. 微生物学通报, 2020, 47(11): 3880-3891. | |
| [14] | Pan Y, Zhang H, Li X, et al. Effects of salt-tolerant probiotic bacteria and their compound insects on growth, physiology and biochemistry of Pennisetum chinensis under salt stress. Guizhou Agricultural Sciences, 2023, 51(7): 39-49. |
| 潘宇, 张昊, 李湘, 等. 耐盐促生菌与其复合菌剂对盐胁迫狼尾草生长及生理生化的影响. 贵州农业科学, 2023, 51(7): 39-49. | |
| [15] | Wang S R. A study on the adaptability of fourteen economic plants to soil salinization in the Songnen Plain. Beijing: Chinese Academy of Sciences, 2024. |
| 王世睿. 十四种经济植物对松嫩平原土壤盐碱化的适应性研究. 北京: 中国科学院大学, 2024. | |
| [16] | Kong L, Gong X W, Zhang X L, et al. Effects of arbuscular mycorrhizal fungi on photosynthesis, ion balance of tomato plants under saline-alkali soil condition. Journal of Plant Nutrition, 2020, 43(5): 682-698. |
| [17] | Li X J, Gong J C, Li X X, et al. Effects of legume-grass mixtures on soil arbuscular mycorrhizal fungi community and plant nitrogen uptake. Chinese Journal of Grassland, 2023, 45(7): 71-80. |
| 李香君, 弓晋超, 李旭旭, 等. 豆禾混播对丛枝菌根真菌群落及氮素吸收的影响. 中国草地学报, 2023, 45(7): 71-80. | |
| [18] | Muneer M A, Chen X, Munir M Z, et al. Interplant transfer of nitrogen between C3 and C4 plants through common mycorrhizal networks under different nitrogen availability. Journal of Plant Ecology, 2023, 16(2): 763-775. |
| [19] | Wipf D, Krajinski F, Van T D, et al. Trading on the arbuscular mycorrhiza market: From arbuscules to common mycorrhizal networks. New Phytologist, 2019, 223: 1127-1142. |
| [20] | Yang G W, Liu N, Yang X, et al. Relationship between arbuscular mycorrhizal fungi and individual plant and their effects on plant productivity and species diversity of plant community. Acta Prataculturae Sinica, 2015, 24(6): 188-203. |
| 杨高文, 刘楠, 杨鑫, 等. 丛枝菌根真菌与个体植物的关系及其对群落生产力和物种多样性的影响. 草业学报, 2015, 24(6): 188-203. | |
| [21] | Ding C, Zhao Y, Zhang Q, et al. Cadmium transfer between maize and soybean plants via common mycorrhizal networks. Ecotoxicology and Environmental Safety, 2022, 232: 113273. |
| [22] | Merckx V S F T, Gomes S I F, Wang D, et al. Mycoheterotrophy in the wood-wide web. Nature Plants, 2024, 10(5): 710-718. |
| [23] | Cao B F, Jiang H X, Liu L, et al. Research progress on mechanism of arbuscular common mycorrhizal networks in plant-plant interactions. Journal of Applied Ecology, 2021, 32(9): 3385-3396. |
| 曹本福, 姜海霞, 刘丽, 等. 丛枝菌根菌丝网络在植物互作中的作用机制研究进展. 应用生态学报, 2021, 32(9): 3385-3396. | |
| [24] | MacColl K A, Tosi M, Chagnon P L, et al. Prairie restoration promotes the abundance and diversity of mutualistic arbuscular mycorrhizal fungi. Ecological Applications, 2024, 34(5): e2981. |
| [25] | Arai M, Ikazaki K, Terajima Y, et al. Effects of organic amendment on earthworm density and biomass in sugarcane fields with different soil pH. European Journal of Soil Biology, 2024, 122: 103645. |
| [26] | Bertagnoli B G P, Pimenta J A, Colozzi Filho A, et al. Occurrence of plant suppression gradients through common mycorrhizal networks across ecological groups during successional dynamics. Pedobiologia, 2024, 107: 151006. |
| [27] | Ma Q, Wang H, Wu E, et al. Comprehensive physiological, transcriptomic, and metabolomic analysis of the response of Panicum miliaceum L. roots to alkaline stress. Land Degradation & Development, 2023, 34(10): 2912-2930. |
| [28] | Lu X Y, Liu Y J, Bai C X, et al. Effects of Chloris virgata and arbuscular mycorrhizal fungi on the growth of Leymus chinensis under alkali stress. Acta Prataculturae Sinica, 2024, 33(11): 69-83. |
| 卢晓瑜, 刘雅洁, 白彩霞, 等. 虎尾草伴生和丛枝菌根真菌对碱胁迫下羊草生长的影响. 草业学报, 2024, 33(11): 69-83. | |
| [29] | Qiu L X, Xu K X, Guan D X, et al. Contrasting effects of arsenic on mycorrhizal-mediated silicon and phosphorus uptake by rice. Journal of Environmental Management, 2025, 373: 124005. |
| [30] | Gong M Q, Wang F Z, Chen Y, et al. Mycorrhizal dependency and inoculant effects on the growth of Betula alnoides seedlings. Journal of Forestry Research, 2000, 18(2): 101-104. |
| [31] | Li Y, Xu J, Hu J, et al. Arbuscular mycorrhizal fungi and glomalin play a crucial role in soil aggregate stability in Pb-contaminated soil. International Journal of Environmental Research and Public Health, 2022, 19(9): 5029. |
| [32] | Li Y L, Ma R, Ma Y J, et al. Effects of salt and drought stresses on seeds germination and seedlings growth of Kalidium foliatum. Acta Agrestia Sinica, 2023, 31(12): 3715-3723. |
| 李亚莉, 马瑞, 马彦军, 等. 盐旱胁迫对盐爪爪种子萌发及幼苗生长的影响. 草地学报, 2023, 31(12): 3715-3723. | |
| [33] | Deng Y F, Xiao S P, Liu X W, et al. Comprehensive evaluation of early-maturing cotton F1 materials by principal component analysis and membership function method. Subtropical Agriculture Research, 2022, 18(1): 1-6. |
| 邓艳凤, 肖水平, 刘新稳, 等. 主成分分析和隶属函数法对早熟棉F1代材料的综合评价. 亚热带农业研究, 2022, 18(1): 1-6. | |
| [34] | Lu J Y, Tian H, Xiong J B, et al. A multi-trait evaluation of cold resistance of 14 native Pennisetum alopecuroides germplasm lines at the seedling stage. Acta Prataculturae Sinica, 2024, 33(8): 98-111. |
| 陆姣云, 田宏, 熊军波, 等. 14份乡土狼尾草材料幼苗的耐冷性综合评价. 草业学报, 2024, 33(8): 98-111. | |
| [35] | Xu J M, Zhou Y H, Gao R M, et al. Effect of arbuscular mycorrhizal fungi on absorption of mineral elements of Taraxacum mongolicum under salt stress. Journal of Shanxi Agricultural Sciences, 2022, 50(2): 206-212. |
| 徐嘉美, 周昀晖, 高璿濛, 等. 盐胁迫下丛枝菌根真菌对蒲公英矿质元素吸收的影响. 山西农业科学, 2022, 50(2): 206-212. | |
| [36] | Liu R J, Chen Y L. Mycorrhizology. Beijing: Science Press, 2007. |
| 刘润进, 陈应龙. 菌根学. 北京: 科学出版社, 2007. | |
| [37] | Duan H X, Luo C L, Shi Q, et al. Research progress in the effects of arbuscular mycorrhizal fungi on plant-soil systems. Acta Ecologica Sinica, 2025, 45(1): 475-491. |
| 段海霞, 罗崇亮, 师茜, 等. 丛枝菌根真菌对植物-土壤系统的影响研究进展. 生态学报, 2025, 45(1): 475-491. | |
| [38] | Lu J N. The effects of arbuscular mycorrhizal fungi on the growth of three grassland plants. Baoding: Hebei Agricultural University, 2023. |
| 鲁佳男. 丛枝菌根真菌对3种草地植物生长的影响. 保定: 河北农业大学, 2023. | |
| [39] | Zhang H, Zhong X, Li S Z, et al. Responses of genes involved in mycorrhizal symbiosis to arbuscular mycorrhizal colonization in different wheat cultivars. Soil and Fertilizer Sciences in China, 2022(11): 199-211. |
| 张慧, 钟雄, 李素珍, 等. 菌根共生参与基因对不同品种小麦菌根侵染的响应. 中国土壤与肥料, 2022(11): 199-211. | |
| [40] | Holátko J, Brtnický M, Kučerík J, et al. Glomalin truths, myths, and the future of this elusive soil glycoprotein. Soil Biology and Biochemistry, 2021, 153: 108116. |
| [41] | Gispert M, Phang C, Carrasco-Barea L. The role of soil as a carbon sink in coastal salt-marsh and agropastoral systems at La Pletera, NE Spain. Catena, 2020, 185: 104331. |
| [42] | Liu Y L, Wang P, Wang J K. Formation and stability mechanism of soil aggregates: Progress and prospect. Acta Pedologica Sinica, 2023, 60(3): 627-643. |
| 刘亚龙, 王萍, 汪景宽. 土壤团聚体的形成和稳定机制: 研究进展与展望. 土壤学报, 2023, 60(3): 627-643. | |
| [43] | Zhang S J, Chen X L, Qi J F, et al. Remediation of vanadium contaminated soil based on arbuscular mycorrhiza. Ecology and Environmental Sciences, 2025, 34(4): 631-641. |
| 张淑娟, 陈昕龙, 亓静凡, 等. 基于丛枝菌根的钒污染土壤修复. 生态环境学报, 2025, 34(4): 631-641. | |
| [44] | Yang X X, Li R J, Cui Z L, et al. Study on the characteristics of changes in glomalin-related soil proteins during the degradation and restoration of alpine meadow. Qinghai Technology, 2025, 32(1): 20-29. |
| 杨晓璇, 李润杰, 崔子龙, 等. 高寒草甸退化与恢复过程球囊霉素相关土壤蛋白变化特征研究. 青海科技, 2025, 32(1): 20-29. | |
| [45] | Kiers E T, Duhamel M, Beesetty Y, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 2011, 333(6044): 880-882. |
| [46] | Gong Y B, Hu J H, Hu D M, et al. Effects of arbuscular mycorrhizal fungi on the growth and physiological traits of Pyrus betulifolia under salt-alkali stress. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(8): 1320-1329. |
| 龚远博, 胡吉怀, 胡丁猛, 等. 丛枝菌根真菌对盐碱胁迫下杜梨幼苗生长和生理特性的影响. 西北植物学报, 2022, 42(8): 1320-1329. | |
| [47] | Peng Z C, Du H L, Wang M, et al. Research on AMF regulation of cotton growth and ion balance under salt alkali stress. Journal of Agricultural Science and Technology, 2025, 27(2): 33-41. |
| 彭梓程, 杜洪力, 王铭, 等. 丛枝菌根真菌调控盐碱胁迫下棉花生长及离子平衡的研究. 中国农业科技导报, 2025, 27(2): 33-41. | |
| [48] | Liu Z N, Guo S X, Li W. Effect of arbuscular mycorrhizal fungi on growth and physiological characteristics of Lilium brownii. Acta Prataculturae Sinica, 2017, 26(11): 85-93. |
| 刘兆娜, 郭绍霞, 李伟. AM真菌对百合生长和生理特性的影响. 草业学报, 2017, 26(11): 85-93. | |
| [49] | Awaydul A, Zhu W, Yuan Y, et al. Common mycorrhizal networks influence the distribution of mineral nutrients between an invasive plant, Solidago canadensis, and a native plant, Kummerowa striata. Mycorrhiza, 2019, 29: 29-38. |
| [50] | Zhang H, Wang X, Gao Y, et al. Short-term N transfer from alfalfa to maize is dependent more on arbuscular mycorrhizal fungi than root exudates in N deficient soil. Plant and Soil, 2020, 446: 23-41. |
| [51] | Russell M, Řezáčová V, Miller K S, et al. Common mycorrhizal networks improve survival and mediate facilitative plant interactions among Andropogon gerardii seedlings under drought stress. Mycorrhiza, 2025, 35(1): 1-14. |
| [52] | Bian A N, Lin M, Wang W Q, et al. Effects of root salt stress on growth and allocation of mineral elements in halophyte and glycophyte seedlings. Journal of Tropical and Subtropical Botany, 2015, 23(4): 405-412. |
| [53] | Chen X, Wu X L, Liu S R, et al. Effects of AMF on photosynthetic characteristics and gene expressions of tea plants under drought stress. Horticultural Plant Journal, 2024, 51(10): 2358-2370. |
| 陈鑫, 邬晓龙, 刘升锐, 等. 干旱胁迫下AMF对茶树光合特性及其基因表达的影响. 园艺学报, 2024, 51(10): 2358-2370. | |
| [54] | Qiao X, Guo X, Li A. Common mycorrhizal networks contribute to overyielding in faba bean/coix intercropping systems. Agronomy Journal, 2020, 112(4): 2598-2607. |
| [55] | Zhang X. Physiological effects of boron deficiency and alkali stress on Pyrus calleryana and Pyrus betulifolia. Yangling: Northwest A & F University, 2024. |
| 张旭. 缺硼及碱胁迫对豆梨和杜梨的生理影响. 杨凌: 西北农林科技大学, 2024. | |
| [56] | Fahad S, Bajwa A A, Nazir U, et al. Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant Science, 2017, 8: 1147. |
| [57] | Wang Z H, Huang S Q, Zou F, et al. Effects of temperature and NaCl on seed germination and seedling antioxidant enzyme activities of sweet sorghum. Journal of Agricultural Science and Technology, 2020, 22(9): 42-51. |
| 王志恒, 黄思麒, 邹芳, 等. 温度与NaCl处理对甜高粱种子萌发及幼苗抗氧化酶活性的影响. 中国农业科技导报, 2020, 22(9): 42-51. | |
| [58] | Zhang W Z, Gu L J, Duan T Y. Research progress on the mechanism of AM fungi for improving plant stress resistance. Pratacultural Science, 2018, 35(3): 491-507. |
| 张伟珍, 古丽君, 段廷玉. AM真菌提高植物抗逆性的机制. 草业科学, 2018, 35(3): 491-507. |
| [1] | 王豫婉, 刘凌云, 郭一荻, 范希峰, 岳跃森, 穆娜, 肖国增, 滕珂. 基于纳米磁珠介导的狼尾草花粉管通道转化法体系的建立[J]. 草业学报, 2025, 34(12): 183-194. |
| [2] | 张然, 刘琛琢, 苑峰, 刘亚玲, 董笛, 王思宁, 邹博坤, 李晓霞. 长穗偃麦草响应NaHCO3胁迫的离子平衡机制及转录组分析[J]. 草业学报, 2025, 34(10): 174-186. |
| [3] | 明艳, 窦梓镱, 郑伟, 王宁欣, 陈雪. 紫花苜蓿与库尔勒香梨间作体系氮素转移途径的定量分析[J]. 草业学报, 2025, 34(10): 51-61. |
| [4] | 卜祥琪, 李姗姗, 段莹娜, 王迎春, 郑琳琳. 一氧化氮对盐碱胁迫下盐地碱蓬抗逆性及饲用品质的影响[J]. 草业学报, 2024, 33(9): 60-69. |
| [5] | 陆姣云, 田宏, 熊军波, 吴新江, 刘洋, 张鹤山. 14份乡土狼尾草材料幼苗的耐冷性综合评价[J]. 草业学报, 2024, 33(8): 98-111. |
| [6] | 程鑫宇, 王继莲, 麦日艳古·亚生null, 李明源. 盐爪爪根际土壤产IAA菌株分离及促生特性分析[J]. 草业学报, 2024, 33(4): 110-121. |
| [7] | 卢晓瑜, 刘雅洁, 白彩霞, 李进华, 王子贺, 杨春雪. 虎尾草伴生和丛枝菌根真菌对碱胁迫下羊草生长的影响[J]. 草业学报, 2024, 33(11): 69-83. |
| [8] | 刘建新, 刘瑞瑞, 刘秀丽, 欧晓彬, 贾海燕, 卜婷, 李娜. 盐碱胁迫下外源硫化氢对裸燕麦叶片氨基酸代谢过程的影响[J]. 草业学报, 2023, 32(2): 119-130. |
| [9] | 王博, 张茹, 刘静, 李志刚. 翻埋与覆盖林木枝条对干旱区沙化土壤及紫花苜蓿根系丛枝菌根真菌的影响[J]. 草业学报, 2023, 32(2): 15-25. |
| [10] | 李瑞强, 王玉祥, 孙玉兰, 张磊, 陈爱萍. 盐胁迫对5份无芒雀麦苗期生长和生理生化的影响及综合性评价[J]. 草业学报, 2023, 32(1): 99-111. |
| [11] | 苗阳阳, 张艳蕊, 宋标, 刘旭桐, 张安琪, 吕金泽, 张浩, 张小华, 欧阳佳慧, 李旺, 曲善民. 碱蓬根际和内生细菌菌株对盐碱胁迫下苜蓿生长的影响[J]. 草业学报, 2022, 31(9): 107-117. |
| [12] | 陈雅琦, 苏楷淇, 陈泰祥, 李春杰. 混合盐碱胁迫对醉马草种子萌发及幼苗生理特性的影响[J]. 草业学报, 2021, 30(3): 137-157. |
| [13] | 范朕连, 贾阳杰, 范远, 宋慧平, 冯政君. 盐碱土施用硅钙渣对披碱草生长的影响及机制[J]. 草业学报, 2021, 30(2): 93-101. |
| [14] | 申午艳, 冯政君, 秦文芳, 范远. 盐碱胁迫下黑麦草生长及离子微区分布特征[J]. 草业学报, 2020, 29(2): 52-63. |
| [15] | 王占军, 马琨, 崔慧珍, 李光文, 俞鸿千, 蒋齐. 土壤丛枝菌根真菌与宁夏主要草原类型植被群落分布间的相互关系研究[J]. 草业学报, 2020, 29(12): 150-160. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||