草业学报 ›› 2021, Vol. 30 ›› Issue (3): 41-53.DOI: 10.11686/cyxb2020415
刘斯莉1(), 王长庭1(), 张昌兵2, 胡雷1, 唐立涛1, 潘攀1
收稿日期:
2020-09-14
修回日期:
2020-11-19
出版日期:
2021-03-20
发布日期:
2021-03-09
通讯作者:
王长庭
作者简介:
Corresponding author. E-mail: wangct@swun.edu.cn基金资助:
Si-li LIU1(), Chang-ting WANG1(), Chang-bing ZHANG2, Lei HU1, Li-tao TANG1, Pan PAN1
Received:
2020-09-14
Revised:
2020-11-19
Online:
2021-03-20
Published:
2021-03-09
Contact:
Chang-ting WANG
摘要:
探究3种栽培牧草根系特征的差异,对维系川西北退化高寒草地地下生态系统结构和功能意义重大。本研究采用微根管原位监测与室内分析相结合的方法对紫羊茅、垂穂披碱草及老芒麦单播人工草地的根系特征及其土壤环境进行比较分析。结果表明:1)3种栽培牧草根系生长存在明显的季节节律,5-7月为生长高峰期,7-8月为现存高峰期,8-9月为死亡高峰期。2)3种栽培牧草根系现存量均随土层显著降低,其中老芒麦的根系现存量显著高于紫羊茅和垂穂披碱草(P<0.05);紫羊茅根系生产量和死亡量最高,根系净生长速率最低。3)紫羊茅的根系周转率显著高于老芒麦和垂穂披碱草,且随土层加深而显著增加(P<0.05)。4)结构方程模型(SEM)显示,牧草种类和土层深度不仅直接影响根系特征,而且通过改变土壤化学计量比和土壤理化性质,间接影响根尖数和根系动态特征,进而影响根系周转。综上所述,3种栽培牧草在根系生长与资源获取方面存在明显差异性。紫羊茅采取缩短根系寿命,加快根系周转的生长策略以保证营养吸收效率,而垂穂披碱草和老芒麦采取增加根系产量,以及延长根系寿命的策略减缓根系周转,并通过降低根系的碳消耗而增加了其碳汇功能以适应高寒环境。
刘斯莉, 王长庭, 张昌兵, 胡雷, 唐立涛, 潘攀. 川西北高原3种禾本科牧草根系特征比较研究[J]. 草业学报, 2021, 30(3): 41-53.
Si-li LIU, Chang-ting WANG, Chang-bing ZHANG, Lei HU, Li-tao TANG, Pan PAN. A comparative study of root characteristics of three gramineous herbage species in the Northwest Sichuan Plateau[J]. Acta Prataculturae Sinica, 2021, 30(3): 41-53.
土层Soil depth (cm) | 牧草种类 Herbage species | 土壤全碳Soil total carbon (g·kg-1) | 土壤全氮Soil total nitrogen (g·kg-1) | 土壤全磷Soil total phosphorus (g·kg-1) | 土壤有机质Soil organic matter (g·kg-1) | 碳氮比 C/N | 碳磷比 C/P | 氮磷比 N/P | pH | 土壤含水量Soil water content (%) |
---|---|---|---|---|---|---|---|---|---|---|
0~10 | 紫羊茅 F. rubra | 35.92± 8.58Aa | 3.02± 0.72Aa | 1.10± 0.08Aa | 70.53± 1.15Aa | 11.89± 0.00Aa | 33.44± 9.53Ab | 2.81± 0.80Ab | 5.33± 0.05Aa | 25.63± 1.07Ab |
垂穂披碱草 E. nutans | 47.22± 0.18Aa | 4.05± 0.02Aa | 0.93± 0.23Aa | 61.30± 1.92Aa | 11.67± 0.10Ab | 56.51±11.76Aab | 4.85± 1.03Aab | 5.28± 0.01Ba | 22.93± 1.33Ab | |
老芒麦 E. sibiricus | 52.51± 0.07Aa | 4.49± 0.02Aa | 0.68± 0.07Aa | 78.17± 12.45Aa | 11.69± 0.03Ab | 78.62± 8.31Aa | 6.73± 0.72Aa | 5.16± 0.01Bb | 29.57± 0.52Aa | |
10~20 | 紫羊茅 F. rubra | 30.12± 0.12Bc | 2.92± 0.69Ac | 1.06± 0.07Aa | 68.28± 0.59Aa | 10.29± 0.04Bb | 38.76± 8.11Ab | 3.77± 0.11Aa | 5.51± 0.60Ab | 21.84± 1.16Aab |
垂穂披碱草 E. nutans | 36.33± 0.66Ab | 3.43± 0.38Bb | 0.78± 0.06Ab | 52.05± 1.20Bb | 10.57± 0.20Bb | 46.82± 2.19Ba | 4.44± 0.33Aa | 6.22± 0.92Aa | 19.83± 2.16Ab | |
老芒麦 E. sibiricus | 47.41± 0.60Ba | 4.07± 0.87Ba | 1.05± 0.02Aa | 71.01± 0.90Aa | 11.64± 0.22Aa | 45.22± 0.78Ba | 3.88± 1.47Ba | 5.70± 0.10Ab | 27.09± 2.24Aa |
表1 3种栽培牧草土壤理化特征
Table 1 Soil physicochemical property of three cultivated herbage species
土层Soil depth (cm) | 牧草种类 Herbage species | 土壤全碳Soil total carbon (g·kg-1) | 土壤全氮Soil total nitrogen (g·kg-1) | 土壤全磷Soil total phosphorus (g·kg-1) | 土壤有机质Soil organic matter (g·kg-1) | 碳氮比 C/N | 碳磷比 C/P | 氮磷比 N/P | pH | 土壤含水量Soil water content (%) |
---|---|---|---|---|---|---|---|---|---|---|
0~10 | 紫羊茅 F. rubra | 35.92± 8.58Aa | 3.02± 0.72Aa | 1.10± 0.08Aa | 70.53± 1.15Aa | 11.89± 0.00Aa | 33.44± 9.53Ab | 2.81± 0.80Ab | 5.33± 0.05Aa | 25.63± 1.07Ab |
垂穂披碱草 E. nutans | 47.22± 0.18Aa | 4.05± 0.02Aa | 0.93± 0.23Aa | 61.30± 1.92Aa | 11.67± 0.10Ab | 56.51±11.76Aab | 4.85± 1.03Aab | 5.28± 0.01Ba | 22.93± 1.33Ab | |
老芒麦 E. sibiricus | 52.51± 0.07Aa | 4.49± 0.02Aa | 0.68± 0.07Aa | 78.17± 12.45Aa | 11.69± 0.03Ab | 78.62± 8.31Aa | 6.73± 0.72Aa | 5.16± 0.01Bb | 29.57± 0.52Aa | |
10~20 | 紫羊茅 F. rubra | 30.12± 0.12Bc | 2.92± 0.69Ac | 1.06± 0.07Aa | 68.28± 0.59Aa | 10.29± 0.04Bb | 38.76± 8.11Ab | 3.77± 0.11Aa | 5.51± 0.60Ab | 21.84± 1.16Aab |
垂穂披碱草 E. nutans | 36.33± 0.66Ab | 3.43± 0.38Bb | 0.78± 0.06Ab | 52.05± 1.20Bb | 10.57± 0.20Bb | 46.82± 2.19Ba | 4.44± 0.33Aa | 6.22± 0.92Aa | 19.83± 2.16Ab | |
老芒麦 E. sibiricus | 47.41± 0.60Ba | 4.07± 0.87Ba | 1.05± 0.02Aa | 71.01± 0.90Aa | 11.64± 0.22Aa | 45.22± 0.78Ba | 3.88± 1.47Ba | 5.70± 0.10Ab | 27.09± 2.24Aa |
图1 3种栽培牧草的根尖数动态变化不同小写字母表示不同处理间差异显著(P<0.05),下同。Different lowercase letters indicate significant difference among different treatment (P<0.05). The same below.
Fig.1 Seasonal dynamics of root tips of three cultivated herbage species
图2 3种栽培牧草根系生长季节动态不同大写字母表示不同土层间差异显著(P<0.05)。下同。Different capital letters indicate significant difference between different soil layers (P<0.05). The same below.
Fig.2 Seasonal dynamics of root growth of three cultivated herbage species
土层深度Soil depth (cm) | 牧草种类 Herbage species | 根尖数Root tips | 根系现存量Root standing crop | 根系生产量Root production | 根系死亡量Root mortality | 根系净生长速率RLDNGR | 根系周转率Root turnover rate | 根系寿命Root longevity | 综合评判 Synthetic evaluation | 排名Ranking |
---|---|---|---|---|---|---|---|---|---|---|
0~10 | 紫羊茅 F. rubra | 0.00 | 0.00 | 0.00 | 0.96 | 0.00 | 1.00 | 0.00 | 0.28 | 3 |
垂穂披碱草 E. nutans | 0.61 | 0.64 | 0.82 | 0.00 | 1.00 | 0.32 | 1.00 | 0.63 | 2 | |
老芒麦 E. sibiricus | 1.00 | 1.00 | 1.00 | 1.00 | 0.74 | 0.00 | 0.84 | 0.80 | 1 | |
10~20 | 紫羊茅 F. rubra | 0.01 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 0.00 | 0.43 | 2 |
垂穂披碱草 E. nutans | 0.00 | 0.06 | 0.14 | 0.08 | 1.00 | 0.34 | 0.55 | 0.31 | 3 | |
老芒麦 E. sibiricus | 1.00 | 1.00 | 0.00 | 0.00 | 0.81 | 0.00 | 1.00 | 0.54 | 1 |
表2 3种栽培牧草各项根系生长指标隶属函数值及评判结果
Table 2 Function value of subordination and result of comprehensive judgment on the root characteristics to three cultivated herbage species
土层深度Soil depth (cm) | 牧草种类 Herbage species | 根尖数Root tips | 根系现存量Root standing crop | 根系生产量Root production | 根系死亡量Root mortality | 根系净生长速率RLDNGR | 根系周转率Root turnover rate | 根系寿命Root longevity | 综合评判 Synthetic evaluation | 排名Ranking |
---|---|---|---|---|---|---|---|---|---|---|
0~10 | 紫羊茅 F. rubra | 0.00 | 0.00 | 0.00 | 0.96 | 0.00 | 1.00 | 0.00 | 0.28 | 3 |
垂穂披碱草 E. nutans | 0.61 | 0.64 | 0.82 | 0.00 | 1.00 | 0.32 | 1.00 | 0.63 | 2 | |
老芒麦 E. sibiricus | 1.00 | 1.00 | 1.00 | 1.00 | 0.74 | 0.00 | 0.84 | 0.80 | 1 | |
10~20 | 紫羊茅 F. rubra | 0.01 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 0.00 | 0.43 | 2 |
垂穂披碱草 E. nutans | 0.00 | 0.06 | 0.14 | 0.08 | 1.00 | 0.34 | 0.55 | 0.31 | 3 | |
老芒麦 E. sibiricus | 1.00 | 1.00 | 0.00 | 0.00 | 0.81 | 0.00 | 1.00 | 0.54 | 1 |
图5 根系特征与土壤环境因子的RDA分析TC: 全碳Total carbon;TN: 全氮Total nitrogen;TP: 全磷Total phosphorus;C/N: 碳氮比Carbon to nitrogen ratio;C/P: 碳磷比Carbon to phosphorus ratio;N/P: 氮磷比Nitrogen to phosphorus ratio;SOM: 土壤有机质Soil organic matter;SWC: 土壤含水量Soil water content;R.Tip: 根尖数Root tips;R.Sta: 根系现存量Root standing crop;R.Pro: 根系生产量Root production;R.Mor: 根系死亡量Root mortality;R.Tur: 根系周转率Root turnover rate;R.Lon: 根系寿命Root longevity。下同The same below.
Fig.5 Redundancy analysis for root characteristics and soil environmental factors
图6 根系特征与环境因子结构方程模型* P<0.05; ** P<0.01; *** P<0.001;实线表示影响显著,虚线表示影响不显著。CHI表示卡方值;DF表示自由度;GFI表示适配度指数;AGFI表示调整后适配度指数;RMSEA表示近似误差均方根;R2表示解释率。The solid line represents significant correlation, and the dotted line represents no significant correlation. CHI means Chi-Square; DF means degrees of freedom; GFI means goodness-offit index; AGFI means adjusted goodness-offit index; RMSEA means root mean square error of approximation; R2 means the rate of explanation.
Fig.6 The structural equation model of root characteristics and environmental factor
1 | Zhang C, Zhang D W, Deng X G, et al. Various adaptations of meadow forage grasses in response to temperature changes on the Qinghai-Tibet Plateau, China. Plant Growth Regulation, 2019, 88: 181-193. |
2 | Dong S K, Tang L, Zhang X F, et al. Relationship between plant species diversity and functional diversity in alpine grassland. Acta Ecologica Sinica, 2017, 37(5): 1472-1483. |
董世魁, 汤琳, 张相锋, 等. 高寒草地植物物种多样性与功能多样性的关系. 生态学报, 2017, 37(5): 1472-1483. | |
3 | Pan T, Hou S, Liu Y, et al. Influence of degradation on soil water availability in an alpine swamp meadow on the eastern edge of the Tibetan Plateau. Science of The Total Environment, 2020, 722. https: //doi.org/10.1016/j.scitotenv. 2020. 137677. |
4 | Wu G L, Liu Z H, Zhang L, et al. Effects of artificial grassland establishment on soil nutrients and carbon properties in a black-soil-type degraded grassland. Plant and Soil, 2010, 333(1/2): 469-479. |
5 | Li J, Zhang C, Yang Z, et al. Grazing and fertilization influence plant species richness via direct and indirect pathways in an alpine meadow of the eastern Tibetan Plateau. Grassland Forage Science, 2017, 72(2): 343-354. |
6 | Geerken R, Ilaiwi M. Assessment of rangeland degradation and development of a strategy for rehabilitation. Remote Sensing of Environment, 2004, 90(4): 490-504. |
7 | Li Y Y, Dong S K, Wen L, et al. Soil carbon and nitrogen pools and their relationship to plant and soil dynamics of degraded and artificially restored grasslands of the Qinghai Tibetan Plateau. Geoderma, 2014, 213: 178-184. |
8 | Bai Y F, Han X G, Wu J G, et al. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 2004, 431(7005): 181-184. |
9 | Sun T J. Effect of artificial grassland establishing on the vegetation restoration in the degraded ecosystem. Advanced Materials Research, 2014, 955/956/957/958/959: 3474-3478. |
10 | Cao J R, Lin L, Pang S, et al. Early season precipitation accounts for the variability of fine-root traits in a Tibetan alpine grassland. Environmental and Experimental Botany, 2020, 172. https: //doi.org/10.1016/j.envexpbot. 2020. 103991. |
11 | Wang C T, Zhao X Q, Zi H B, et al. The effect of simulated warming on root dynamics and soil microbial community in an alpine meadow of the Qinghai-Tibet Plateau. Applied Soil Ecology, 2017, 116: 30-41. |
12 | Bardgett R D, Mommer L, De Vries F T. Going underground: Root traits as drivers of ecosystem processes. Trends in Ecology & Evolution, 2014, 29(12): 692-699. |
13 | Sullivan P F, Sommerkorn M, Rueth H M, et al. Climate and species affect fine root production with long-term fertilization in acidic tussock tundra near Toolik Lake, Alaska. Oecologia, 2007, 153: 643-652. |
14 | Bai W M, Zhou M, Fang Y, et al. Differences in spatial and temporal root lifespan of three Stipa grasslands in Northern China. Biogeochemistry, 2017, 132(3): 293-306. |
15 | Eissenstat D M, Wells C E, Yanai R D, et al. Building roots in a changing environment: Implications for root longevity. New Phytologist, 2000, 147(1): 33-42. |
16 | Cheng W X, Coleman D C, Box J E J. Root dynamics, production and distribution in agroecosystems on the Georgia piedmont using minirhizotrons. Journal of Applied Ecology, 1990, 27(2): 592-604. |
17 | Zi H B, Chen Y, Hu L, et al. Effects of nitrogen addition on root dynamics in an alpine meadow, Northwestern Sichuan. Chinese Journal of Plant Ecology, 2018, 42(1): 38-49. |
字洪标, 陈焱, 胡雷, 等. 氮肥添加对川西北高寒草甸植物群落根系动态的影响. 植物生态学报, 2018, 42(1): 38-49. | |
18 | Chen B S. Teaching methods in forage and crop cultivation. Beijing: China Agriculture Press, 2001. |
陈宝书. 牧草饲料作物栽培学. 北京: 中国农业出版社, 2001. | |
19 | Wang Q J, Li S X, Wang W Y, et al. The despondences of carbon and nitrogen reserves in plants and soils to vegetations cover change on Kobresia pygmaea meadow of Yellow River and Yangtze River source region. Acta Ecologica Sinica, 2008(3): 885-894. |
王启基, 李世雄, 王文颖, 等. 江河源区高山嵩草(Kobresia pygmaea)草甸植物和土壤碳、氮储量对覆被变化的响应. 生态学报, 2008(3): 885-894. | |
20 | Zi H B, Liu M, Ade L J, et al. Effects of cultivation duration on soil microbial functional diversity of artificial grassland in the Three-River Headwater region. Chinese Journal of Ecology, 2017, 36(4): 978-987. |
字洪标, 刘敏, 阿的鲁骥, 等. 三江源区不同建植年限对人工草地土壤微生物功能多样性的影响. 生态学杂志, 2017, 36(4): 978-987. | |
21 | Bao S D. Analysis of agricultural chemistry. Beijing: China Agriculture Press, 2000: 25-82. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000: 25-82. | |
22 | Bai W M, Cheng W X, Li L H. Applications of minirhizotron techniques to root ecology research. Acta Ecologica Sinica, 2005(11): 284-289. |
白文明, 程维信, 李凌浩. 微根窗技术及其在植物根系研究中的应用. 生态学报, 2005(11): 284-289. | |
23 | Wu Y B, Che R X, Ma S, et al. Estimation of root production and turnover in an alpine meadow: Comparison of three measurement methods. Acta Ecologica Sinica, 2014, 34(13): 3529-3537. |
吴伊波, 车荣晓, 马双, 等. 高寒草甸植被细根生产和周转的比较研究. 生态学报, 2014, 34(13): 3529-3537. | |
24 | Ade L J, Zi H B, Liu M, et al. Response of belowground root growth dynamics to snow cover change in alpine meadow. Acta Ecologica Sinica, 2017, 37(20): 6773-6784. |
阿的鲁骥, 字洪标, 刘敏, 等. 高寒草甸地下根系生长动态对积雪变化的响应. 生态学报, 2017, 37(20): 6773-6784. | |
25 | Sanders J L, Brown D A. A new fiber optic technique for measuring root growth of soybeans under field conditions. Agronomy Journal, 1978, 70: 1073-1076. |
26 | Wang C T, Wang G X, Liu W, et al. Comparison of soil mechanical composition and soil fertility at different grassland types in alpine meadow. Journal of Arid Land Resources and Environment, 2013, 27(9): 160-165. |
王长庭, 王根绪, 刘伟, 等. 高寒草甸不同类型草地土壤机械组成及肥力比较. 干旱区资源与环境, 2013, 27(9): 160-165. | |
27 | Cheng B, Zhao Y J, Zhang W G, et al. Research progress of ecological stoichiometry. Acta Ecologica Sinica, 2010, 30(6): 1628-1637. |
程滨, 赵永军, 张文广, 等. 生态化学计量学研究进展. 生态学报, 2010, 30(6): 1628-1637. | |
28 | Tian L M, Zhao L, Wu X D, et al. Soil moisture and texture primarily control the soil nutrient stoichiometry across the Tibetan grassland. The Science of The Total Environment, 2018, 622/623: 192-202. |
29 | Guo D L, Fan P P. Four hypotheses about the effects of soil nitrogen availability on fine root production and turnover. Chinese Journal of Applied Ecology, 2007, 18(10): 2354-2360. |
郭大立, 范萍萍. 关于氮有效性影响细根生产量和周转率的四个假说. 应用生态学报, 2007, 18(10): 2354-2360. | |
30 | Bai Y T, Wei Z J, Dai J Z, et al. Responses of plant and soil C∶N∶P stoichiometry to fertilization in Leymus chinensis mowing meadow. Ecology and Environment Sciences, 2017, 26(4): 620-627. |
白玉婷, 卫智军, 代景忠, 等. 施肥对羊草割草地植物群落和土壤C∶N∶P生态化学计量学特征的影响. 生态环境学报, 2017, 26(4): 620-627. | |
31 | Zhang L, Wang C T, Liu W, et al. Relationships of dominant species root activity, plant community characteristics and soil micro-environment in artificial grassland over different cultivation periods. Acta Prataculturae Sinica, 2012, 21(5): 185-194. |
张莉, 王长庭, 刘伟, 等. 不同建植期人工草地优势种植物根系活力、群落特征及其土壤环境的关系. 草业学报, 2012, 21(5): 185-194. | |
32 | Luo P, Han X, Wang Y, et al. Influence of long-term fertilization on soil microbial biomass, dehydrogenase activity, and bacterial and fungal community structure in a brown soil of northeast China. Annals of Microbiology, 2015, 65: 533-542. |
33 | Ou Y S, Wang X, Li J, et al. Content and ecological stoichiometry characteristics of soil carbon, nitrogen, and phosphorus in artificial grassland under different restoration years. Chinese Journal of Applied & Environmental Biology, 2019, 25(1): 38-45. |
欧延升, 汪霞, 李佳, 等. 不同恢复年限人工草地土壤碳氮磷含量及其生态化学计量特征. 应用与环境生物学报, 2019, 25(1): 38-45. | |
34 | Yavitt J B, Harms K E, Garcia M N, et al. Soil fertility and fine root dynamics in response to 4 years of nutrient (N, P, K) fertilization in a lowland tropical moist forest, Panama. Austral Ecology, 2011, 36(4): 433-445. |
35 | Wang M B, Xun J J, Chen J W, et al. The net growth rate of fine roots of Caragana korshinskii seedlings in the Loess Plateau region, Northwest Shanxi. Acta Ecologica Sinica, 2010, 30(5): 1117-1124. |
王孟本, 荀俊杰, 陈建文, 等. 晋西北黄土区幼龄柠条细根的净生长速率. 生态学报, 2010, 30(5): 1117-1124. | |
36 | Niu S L, Wu M Y, Han Y, et al. Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytologist, 2008, 177: 209-219. |
37 | Ma X X, Yan Y, Hong J T, et al. Impacts of warming on root biomass allocation in alpine steppe on the north Tibetan Plateau. Journal of Mountain Science, 2017, 14: 1-9. |
38 | Pei Z Q, Zhou Y, Zheng Y R, et al. Contribution of fine root turnover to the soil organic carbon cycling in a Reaumuria soongorica community in an arid ecosystem of Xinjiang Uygur Autonomous region, China. Chinese Journal of Plant Ecology, 2011, 35(11): 1182-1191. |
裴智琴, 周勇, 郑元润, 等. 干旱区琵琶柴群落细根周转对土壤有机碳循环的贡献. 植物生态学报, 2011, 35(11): 1182-1191. | |
39 | Yu W T, Yu Y Q. Advances in the research of underground biomass. Chinese Journal of Applied Ecology, 2001(6): 927-932. |
宇万太, 于永强. 植物地下生物量研究进展. 应用生态学报, 2001(6): 927-932. | |
40 | King J S, Albaugh T J, Allen H L, et al. Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytologist, 2002, 154(2): 389-398. |
41 | Dai L C, Ke X, Cao Y F, et al. Allocation patterns of above-and belowground biomass and its response to meteorological factors on an alpine meadow in Qinghai-Tibet Plateau. Acta Ecologica Sinica, 2019, 39(2): 486-493. |
戴黎聪, 柯浔, 曹莹芳, 等. 青藏高原矮嵩草草甸地下和地上生物量分配格局及其与气象因子的关系. 生态学报, 2019, 39(2): 486-493. | |
42 | Schenk H J. Vertical vegetation structure below ground: Scaling from root to globe. Berlin Heidelberg: Progress in Botany, 2005. |
43 | Wu Y, Zhang J, Deng Y, et al. Effects of warming on root diameter, distribution, and longevity in an alpine meadow. Plant Ecology, 2014, 215(9): 1057-1066. |
44 | Li Y L. Relationship among rice root aerechyma, root radial oxygen loss and rhizosphere nitrification. Acta Ecologica Sinica, 2012, 32(7): 2066-2074. |
李奕林. 水稻根系通气组织与根系泌氧及根际硝化作用的关系. 生态学报, 2012, 32(7): 2066-2074. | |
45 | Sun X C, Chen F J, Yuan L X, et al. The physiological mechanism underlying root elongation in response to nitrogen deficiency in crop plants. Planta, 2020, 251(2): 1154-1156. |
46 | Zhang Y K, Zhang L F, Zhang X Z, et al. Effects of different range restorations on the root traits of vegetation in the alpine meadow. Journal of Lanzhou University (Natural Sciences), 2014, 50(1): 107-111. |
张燕堃, 张灵菲, 张新中, 等. 不同草地恢复措施对高寒草甸植物根系特征的影响. 兰州大学学报(自然科学版), 2014, 50(1): 107-111. | |
47 | Ferguson S D, Nowak R S. Transitory effects of elevated atmospheric CO2 on fine root dynamics in an arid ecosystem do not increase long-term soil carbon input from fine root litter. New Phytologist, 2011, 190(4): 953-967. |
48 | Burton A J, Hendrick R L, Pregitzer K S. Relationships between fine root dynamics and nitrogen availability in michigan Northern Hardwood Forests. Oecologia, 2000, 125(3): 389-399. |
49 | Hu L, Wang C T, Ade L J, et al. Relationship between root biomass, soil organic carbon and soil mechanical composition in alpine meadow. Journal of Southwest University for Nationalities (Natural Science Edition), 2015, 41(1): 6-11. |
胡雷, 王长庭, 阿的鲁骥, 等. 高寒草甸植物根系生物量及有机碳含量与土壤机械组成的关系. 西南民族大学学报(自然科学版), 2015, 41(1): 6-11. | |
50 | Sun J, Wang H. Soil nitrogen and carbon determine the trade-off of the above- and below-ground biomass across alpine grasslands, Tibetan Plateau. Ecological Indicators, 2016, 60: 1070-1076. |
51 | Zhou X M , Wang Q J, Zhao X Q. Chinese Kobresia meadow. Beijing: Science Press, 2001. |
周兴民, 王启基, 赵新全. 中国嵩草草甸. 北京: 科学出版社, 2001. | |
52 | Yan X L. Root biology: Principles and applications. Beijing: Science Press, 2007. |
严小龙. 根系生物学: 原理与应用. 北京: 科学出版社, 2007. | |
53 | Copley J. Ecology goes underground. Nature, 2000, 406(6795): 452-454. |
[1] | 孙忠超, 郭天斗, 于露, 马彦平, 赵亚楠, 李雪颖, 王红梅. 宁夏东部荒漠草原向灌丛地人为转变过程土壤粒径分形特征[J]. 草业学报, 2021, 30(4): 34-45. |
[2] | 张丽星, 海春兴, 常耀文, 高晓媚, 高文邦, 解云虎. 羊草及芨芨草草原和西北针茅草原土壤质量评价[J]. 草业学报, 2021, 30(4): 68-79. |
[3] | 张超, 闫瑞瑞, 梁庆伟, 娜日苏, 李彤, 杨秀芳, 包玉海, 辛晓平. 不同利用方式下草地土壤理化性质及碳、氮固持研究[J]. 草业学报, 2021, 30(4): 90-98. |
[4] | 李洁, 潘攀, 王长庭, 胡雷, 陈科宇, 杨文高. 三江源区不同建植年限人工草地根系动态特征[J]. 草业学报, 2021, 30(3): 28-40. |
[5] | 孙华方, 李希来, 金立群, 李成一, 张静. 黄河源人工草地土壤微生物多样性对建植年限的响应[J]. 草业学报, 2021, 30(2): 46-58. |
[6] | 王琇瑜, 黄晓霞, 和克俭, 孙晓能, 吕曾哲舟, 张勇, 朱湄, 曾睿钦. 滇西北高寒草甸植物群落功能性状与土壤理化性质的关系[J]. 草业学报, 2020, 29(8): 6-17. |
[7] | 梁军, 全小龙, 张杰雪, 史惠兰, 段中华, 乔有明. 3种禾草水提取液对其种子发芽和幼苗生长的潜在化感作用[J]. 草业学报, 2020, 29(7): 81-89. |
[8] | 邱月, 吴鹏飞, 魏雪. 三种人工草地小型土壤节肢动物群落多样性动态及其差异[J]. 草业学报, 2020, 29(5): 21-32. |
[9] | 王磊, 宋乃平, 陈林, 杨新国, 王兴. 荒漠草原土壤粗质化和养分减少伴随多年生群落转变为一年生群落[J]. 草业学报, 2020, 29(11): 183-189. |
[10] | 蔺芳, 刘晓静, 童长春, 吴勇. 4种间作模式下牧草根系特性及其碳、氮代谢特征研究[J]. 草业学报, 2019, 28(9): 45-54. |
[11] | 官惠玲, 樊江文, 李愈哲. 不同人工草地对青藏高原温性草原群落生物量组成及物种多样性的影响[J]. 草业学报, 2019, 28(9): 192-201. |
[12] | 常海涛, 赵娟, 刘佳楠, 刘任涛, 罗雅曦, 张静. 退耕还林与还草对土壤理化性质及分形特征的影响——以宁夏荒漠草原为例[J]. 草业学报, 2019, 28(7): 14-25. |
[13] | 宿婷婷, 马红彬, 周瑶, 贾希洋, 张蕊, 张双乔, 胡艳莉. 黄土丘陵典型草原土壤理化性质对生态恢复措施的响应[J]. 草业学报, 2019, 28(4): 34-46. |
[14] | 伍文宪, 张蕾, 黄小琴, 杨潇湘, 薛龙海, 刘勇. 川西北高寒牧区不同人工草地对土壤微生物多样性影响[J]. 草业学报, 2019, 28(3): 29-41. |
[15] | 刘玉祯, 曹文侠, 王金兰, 李文, 辛雨琼, 王世林, 王小军. 祁连山东段不同类型灌丛斑块土壤特征对围封的响应[J]. 草业学报, 2019, 28(11): 32-45. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||