草业学报 ›› 2021, Vol. 30 ›› Issue (6): 162-169.DOI: 10.11686/cyxb2020225
李晨1(), Ahmad Anum Ali2, 张剑搏1, 梁泽毅1, 丁学智1, 阎萍1()
收稿日期:
2020-05-13
修回日期:
2020-07-21
出版日期:
2021-05-21
发布日期:
2021-05-21
通讯作者:
阎萍
作者简介:
Corresponding author. E-mail: pingyanlz@163.com基金资助:
Chen LI1(), Ali Ahmad ANUM2, Jian-bo ZHANG1, Ze-yi LIANG1, Xue-zhi DING1, Ping YAN1()
Received:
2020-05-13
Revised:
2020-07-21
Online:
2021-05-21
Published:
2021-05-21
Contact:
Ping YAN
摘要:
本试验为研究冷季营养匮乏对放牧牦牛和黄牛血清生化指标、瘤胃发酵参数及放牧行为的影响,选取体重相近、健康无病的4岁母牦牛和母黄牛各10头,分别于2018年11月、2019年1和3月佩戴MOOnitor监测系统对其放牧行为进行研究。在试验期末(2019年3月)采集牧草样品、瘤胃液和血液,用于牧草营养成分、血清生化指标和瘤胃发酵参数分析。结果表明:1)牦牛血清中血糖(GLU)、生长激素(GH)、胰岛素样生长因子1(IGF-1)和胰岛素(INS)含量较黄牛显著升高(P<0.05);2)牦牛瘤胃液氨态氮、乙酸、戊酸、总挥发性脂肪酸含量及乙酸/丙酸均显著高于黄牛(P<0.05);3)冷季营养严重不足,牦牛采食时间、反刍时间较黄牛显著减少(P<0.05),行走时间相对增加(P<0.05),且采食范围由集中趋于分散,空间分布由峡谷平地逐渐向山坡迁移。综上所述,冷季自然放牧下,牦牛较本地黄牛具有更强的营养物质代谢能力且可产生更多的挥发性脂肪酸为其提供能量,通过增加游走采食等放牧行为帮助其提高能量利用效率进而有效应对冷季营养匮乏。
李晨, Ahmad Anum Ali, 张剑搏, 梁泽毅, 丁学智, 阎萍. 冷季牦牛和黄牛采食行为、血清生化指标与瘤胃发酵参数的比较研究[J]. 草业学报, 2021, 30(6): 162-169.
Chen LI, Ali Ahmad ANUM, Jian-bo ZHANG, Ze-yi LIANG, Xue-zhi DING, Ping YAN. Comparative study of grazing behavior, serum biochemical indexes, and rumen fermentation parameters of yaks and cattle in the cold seaso[J]. Acta Prataculturae Sinica, 2021, 30(6): 162-169.
指标 Indexes | 月份Months | 均值标准误 SEM | P值 P-value | ||
---|---|---|---|---|---|
11 | 1 | 3 | |||
干物质Dry matter, DM (g·m-2) | 149.78 | 123.45 | 110.43 | 8.90 | <0.01 |
粗蛋白Crude protein, CP (%) | 7.55A | 4.32B | 2.78C | 0.71 | <0.01 |
中性洗涤纤维Neutral detergent fiber, NDF (%) | 60.60C | 62.47B | 64.11A | 1.16 | <0.01 |
酸性洗涤纤维Acid detergent fiber, ADF (%) | 33.32B | 33.56B | 35.44A | 0.79 | 0.01 |
粗灰分Ash (%) | 10.89B | 11.46A | 7.55C | 0.68 | 0.01 |
表1 冷季草地牧草常规养分含量
Table 1 Nutrition compositions of forage in cold season (dry matter basis)
指标 Indexes | 月份Months | 均值标准误 SEM | P值 P-value | ||
---|---|---|---|---|---|
11 | 1 | 3 | |||
干物质Dry matter, DM (g·m-2) | 149.78 | 123.45 | 110.43 | 8.90 | <0.01 |
粗蛋白Crude protein, CP (%) | 7.55A | 4.32B | 2.78C | 0.71 | <0.01 |
中性洗涤纤维Neutral detergent fiber, NDF (%) | 60.60C | 62.47B | 64.11A | 1.16 | <0.01 |
酸性洗涤纤维Acid detergent fiber, ADF (%) | 33.32B | 33.56B | 35.44A | 0.79 | 0.01 |
粗灰分Ash (%) | 10.89B | 11.46A | 7.55C | 0.68 | 0.01 |
指标 Indexes | 组别 Group | 均值标准误 SEM | P值 P-value | |
---|---|---|---|---|
牦牛 Yak | 黄牛 Cattle | |||
甘油三酯Triglyceride, TG (mmol·L-1) | 0.257 | 0.282 | 0.029 | 0.772 |
血糖Glucose, GLU (mmol·L-1) | 3.151a | 2.296b | 0.205 | 0.032 |
游离脂肪酸Nonestesterified fatty acid, NEFA (μmol·L-1) | 545.299 | 531.868 | 21.325 | 0.780 |
低密度脂蛋白胆固醇Low-density lipoprotein cholesterol, LDL-C (mmol·L-1) | 0.283 | 0.370 | 0.031 | 0.174 |
高密度脂蛋白胆固醇 High-density lipoprotein cholesterol, HDL-C (mmol·L-1) | 1.144 | 1.268 | 0.113 | 0.601 |
表2 冷季牦牛与黄牛血清营养代谢物成分
Table 2 Serum nutritional metabolites of yak and cattle in the cold season
指标 Indexes | 组别 Group | 均值标准误 SEM | P值 P-value | |
---|---|---|---|---|
牦牛 Yak | 黄牛 Cattle | |||
甘油三酯Triglyceride, TG (mmol·L-1) | 0.257 | 0.282 | 0.029 | 0.772 |
血糖Glucose, GLU (mmol·L-1) | 3.151a | 2.296b | 0.205 | 0.032 |
游离脂肪酸Nonestesterified fatty acid, NEFA (μmol·L-1) | 545.299 | 531.868 | 21.325 | 0.780 |
低密度脂蛋白胆固醇Low-density lipoprotein cholesterol, LDL-C (mmol·L-1) | 0.283 | 0.370 | 0.031 | 0.174 |
高密度脂蛋白胆固醇 High-density lipoprotein cholesterol, HDL-C (mmol·L-1) | 1.144 | 1.268 | 0.113 | 0.601 |
指标 Indexes | 组别 Group | 均值标准误 SEM | P值 P-value | |
---|---|---|---|---|
牦牛 Yak | 黄牛 Cattle | |||
生长激素Growth hormone, GH (ng·mL-1) | 5.639a | 3.790b | 0.442 | 0.037 |
胰岛素样生长因子1 Insulin-like growth factor 1, IGF-1 (ng·mL-1) | 122.628a | 60.281b | 11.904 | 0.026 |
胰岛素样生长因子2 Insulin-like growth factor 2, IGF-2 (ng·mL-1) | 14.732 | 10.713 | 2.222 | 0.382 |
胰岛素Insulin (INS, mIU·L-1) | 14.292a | 7.465b | 1.497 | 0.021 |
表3 冷季牦牛与黄牛激素的含量
Table 3 Hormone content of yak and cattle in cold season
指标 Indexes | 组别 Group | 均值标准误 SEM | P值 P-value | |
---|---|---|---|---|
牦牛 Yak | 黄牛 Cattle | |||
生长激素Growth hormone, GH (ng·mL-1) | 5.639a | 3.790b | 0.442 | 0.037 |
胰岛素样生长因子1 Insulin-like growth factor 1, IGF-1 (ng·mL-1) | 122.628a | 60.281b | 11.904 | 0.026 |
胰岛素样生长因子2 Insulin-like growth factor 2, IGF-2 (ng·mL-1) | 14.732 | 10.713 | 2.222 | 0.382 |
胰岛素Insulin (INS, mIU·L-1) | 14.292a | 7.465b | 1.497 | 0.021 |
指标 Indexes | 组别 Group | 均值标准误 SEM | P值 P-value | |
---|---|---|---|---|
牦牛 Yak | 黄牛 Cattle | |||
氨态氮NH3-N (mmol·L-1) | 4.696a | 1.836b | 0.512 | 0.002 |
乙酸Acetate (mmol·L-1) | 42.484a | 35.484b | 1.572 | 0.025 |
丙酸 Propionate (mmol·L-1) | 9.588 | 10.578 | 0.472 | 0.309 |
异丁酸Isobutyrate (mmol·L-1) | 0.470 | 0.434 | 0.018 | 0.334 |
丁酸Butyrate( mmol·L-1) | 4.782 | 5.517 | 0.309 | 0.246 |
异戊酸Isovalerate (mmol·L-1) | 0.486 | 0.423 | 0.025 | 0.226 |
戊酸Valerate (mmol·L-1) | 0.267b | 0.322a | 0.013 | 0.031 |
乙酸∶丙酸Acetate∶propionate | 5.479a | 4.809b | 0.091 | 0.018 |
总挥发性脂肪酸Total volatile fat acid (TVFA, mmol·L-1) | 55.900a | 47.732b | 2.116 | 0.037 |
表4 冷季牦牛与黄牛瘤胃发酵参数
Table 4 Rumen fermentation parameters of yak and cattle in cold season
指标 Indexes | 组别 Group | 均值标准误 SEM | P值 P-value | |
---|---|---|---|---|
牦牛 Yak | 黄牛 Cattle | |||
氨态氮NH3-N (mmol·L-1) | 4.696a | 1.836b | 0.512 | 0.002 |
乙酸Acetate (mmol·L-1) | 42.484a | 35.484b | 1.572 | 0.025 |
丙酸 Propionate (mmol·L-1) | 9.588 | 10.578 | 0.472 | 0.309 |
异丁酸Isobutyrate (mmol·L-1) | 0.470 | 0.434 | 0.018 | 0.334 |
丁酸Butyrate( mmol·L-1) | 4.782 | 5.517 | 0.309 | 0.246 |
异戊酸Isovalerate (mmol·L-1) | 0.486 | 0.423 | 0.025 | 0.226 |
戊酸Valerate (mmol·L-1) | 0.267b | 0.322a | 0.013 | 0.031 |
乙酸∶丙酸Acetate∶propionate | 5.479a | 4.809b | 0.091 | 0.018 |
总挥发性脂肪酸Total volatile fat acid (TVFA, mmol·L-1) | 55.900a | 47.732b | 2.116 | 0.037 |
指标 Indexes | 月份 Months | 组别 Group | 均值标准误 SEM | P值 P-value | |
---|---|---|---|---|---|
牦牛 Yak (h·d-1) | 黄牛 Cattle (h·d-1) | ||||
休息Rest | 11 | 13.62a | 14.74a | 0.37 | 0.11 |
1 | 12.43b | 12.34b | 0.13 | 0.85 | |
3 | 11.54b | 12.11b | 0.19 | 0.11 | |
行走Walk | 11 | 4.00b | 3.30c | 0.16 | 0.03 |
1 | 4.84a | 4.40b | 0.21 | 0.04 | |
3 | 5.78a | 5.04a | 0.21 | 0.06 | |
采食Graze | 11 | 5.23b | 7.06c | 0.45 | <0.01 |
1 | 6.23a | 7.96b | 0.40 | <0.01 | |
3 | 7.43a | 8.68a | 0.35 | 0.05 | |
反刍Rumination | 11 | 9.39a | 11.55a | 0.51 | 0.01 |
1 | 8.79b | 10.35b | 0.41 | 0.02 | |
3 | 8.20b | 9.23c | 0.34 | 0.02 |
表5 冷季牦牛与黄牛放牧行为的变化
Table 5 Changes in grazing behavior of yak and cattle in the cold season
指标 Indexes | 月份 Months | 组别 Group | 均值标准误 SEM | P值 P-value | |
---|---|---|---|---|---|
牦牛 Yak (h·d-1) | 黄牛 Cattle (h·d-1) | ||||
休息Rest | 11 | 13.62a | 14.74a | 0.37 | 0.11 |
1 | 12.43b | 12.34b | 0.13 | 0.85 | |
3 | 11.54b | 12.11b | 0.19 | 0.11 | |
行走Walk | 11 | 4.00b | 3.30c | 0.16 | 0.03 |
1 | 4.84a | 4.40b | 0.21 | 0.04 | |
3 | 5.78a | 5.04a | 0.21 | 0.06 | |
采食Graze | 11 | 5.23b | 7.06c | 0.45 | <0.01 |
1 | 6.23a | 7.96b | 0.40 | <0.01 | |
3 | 7.43a | 8.68a | 0.35 | 0.05 | |
反刍Rumination | 11 | 9.39a | 11.55a | 0.51 | 0.01 |
1 | 8.79b | 10.35b | 0.41 | 0.02 | |
3 | 8.20b | 9.23c | 0.34 | 0.02 |
图1 牦牛与黄牛在冷季不同时期采食空间分布绿色和红色分别表示牦牛和黄牛的活动位置。The green and red represent the moving positions of yaks and cattle, respectively.
Fig.1 The grazing space distribution pattern of yak and cattle in different periods of the cold season
1 | Yan P, Liang C N. Chinese yak. Beijing: China Agricultural Science and Technology Press, 2019: 1-26. |
阎萍, 梁春年.中国牦牛. 北京: 中国农业科学技术出版社, 2019: 1-26. | |
2 | Long R J, Ding L M, Shang Z H, et al. The yak grazing system on the Qinghai-Tibetan Plateau and its status. The Rangeland Journal, 2008, 30(2): 241-246. |
3 | Zhang Z G, Xu D M, Wang L, et al. Convergent evolution of rumen microbiomes in high-altitude mammals. Current Biology, 2016, 26(14): 1873-1879. |
4 | Ding X Z, Guo X, Yan P, et al. Seasonal and nutrients intake regulation of lipoprotein lipase (LPL) activity in grazing yak (Bos grunniens) in the Alpine Regions around Qinghai Lake. Livestock Science, 2012, 143(1): 29-34. |
5 | Ding L, Long R, Yang Y, et al. Behavioural responses by yaks in different physiological states (lactating, dry or replacement heifers), when grazing natural pasture in the spring (dry and germinating) season on the Qinghai-Tibetan plateau. Applied Animal Behaviour Science, 2007, 108(3/4): 239-250. |
6 | Zhang L Y. Feed analysis and feed quality testing technology. Beijing: China Agriculture University Press, 2007: 48-50. |
张丽英. 饲料分析及饲料质量检测技术. 北京: 中国农业大学出版社, 2007: 48-50. | |
7 | Lee M H. Official methods of analysis of AOAC International (16th Edition). Trends in Food Science & Technology,1995, 6(11). 382-384. |
8 | Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991, 74(10): 3583-3597. |
9 | Broderick G A, Kang J H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 1980, 63(1): 64-75. |
10 | Esposito G, Irons P C, Webb E C, et al. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Animal Reproduction Science, 2014, 144(3/4): 60-71. |
11 | Grummer R R, Carroll D J. Effects of dietary fat on metabolic disorders and reproductive performance of dairy cattle. Journal of Animal Science, 1991, 69(9): 3838-3852. |
12 | Gross J J, Kessler E C, Albrecht C, et al. Response of the cholesterol metabolism to a negative energy balance in dairy cows depends on the lactational stage. PLoS One, 2015, 10(6): e0121956. |
13 | Ayuk J, Sheppard M C. Growth hormone and its disorders. Postgraduate Medical Journal, 2006, 82(963): 24-30. |
14 | Gross J, van Dorland H A, Schwarz F J, et al. Endocrine changes and liver mRNA abundance of somatotropic axis and insulin system constituents during negative energy balance at different stages of lactation in dairy cows. Journal of Dairy Science, 2011, 94(7): 3484-3494. |
15 | Guo Y M. Effects of dietary energy levels on rumen nitrogen transport and utilization efficiency in Tibetan sheep. Lanzhou: Lanzhou University, 2019. |
郭亚敏. 饲粮能量水平对藏羊瘤胃氮素转运及利用效率的影响. 兰州: 兰州大学, 2019. | |
16 | Yang C. The response of molecular mechanism of adipose metabolism in yak to different dietary energy level. Lanzhou: Lanzhou University, 2018. |
杨超. 牦牛脂肪代谢对饲粮能量水平响应的分子机制研究. 兰州: 兰州大学, 2018. | |
17 | Yang C, Ahmad A A, Bao B J, et al. Increasing dietary energy level improves growth performance and lipid metabolism through up-regulating lipogenic gene expression in yak (Bos grunniens). Animal Feed Science and Technology, 2020, 263: 114455. |
18 | Moss A F, Chrystal P V, Dersjant-Li Y, et al. The influence of phytase, pre-pellet cracked maize and dietary crude protein level on broiler performance via response surface methodology. Journal of Animal Science and Biotechnology, 2019, 10(1): 80. |
19 | Van Houtert M F J. The production and metabolism of volatile fatty acids by ruminants fed roughages: A review. Animal Feed Science and Technology, 1993, 43(3/4): 189-225. |
20 | Nolan J V, Leng R A, Dobos R C, et al. The production of acetate, propionate and butyrate in the rumen of sheep: Fitting models to 14C- or 13C-labelled tracer data to determine synthesis rates and interconversions. Animal Production Science, 2014, 54(12): 2082-2088. |
21 | Long R J, Dong S K, Hu Z Z. Comparative study on digestive and metabolic capacity of lactating yak and dry milk yak under the same diet. Acta Prataculturae Sinica, 1998, 7(3): 52-55. |
龙瑞军, 董世魁, 胡自治. 同一日粮下泌乳牦牛与干奶牦牛消化代谢能力的比较研究. 草业学报, 1998, 7(3): 52-55. | |
22 | Mi J D. Dynamics in rumen and distribution along gastrointestinal tracts of bacteria and methanogen in yak. Lanzhou: Lanzhou University, 2016. |
米见对. 细菌与甲烷菌在牦牛瘤胃中的时间动态及其在消化道的空间分布. 兰州: 兰州大学, 2016. | |
23 | Du Z Y, Cai Y J, Wang X D, et al. Research progress on yak grazing behavior and its influence on the soil properties of alpine grassland. Acta Prataculturae Sinica, 2019, 28(7): 186-197. |
杜子银, 蔡延江, 王小丹, 等. 放牧牦牛行为及其对高寒草地土壤特性的影响研究进展. 草业学报, 2019, 28(7): 186-197. | |
24 | Zhang J B, Ding X Z, Li C, et al. Advances in research on adaptive evolution of native animals of Tibetan Plateau. Acta Veterinaria Et Zootechnica Sinica, 2019, 50(9): 1723-1736. |
张剑搏, 丁学智, 李晨, 等. 高原土著动物适应性进化的研究进展. 畜牧兽医学报, 2019, 50(9): 1723-1736. | |
25 | Ding X Z, Yang C, Li C, et al. Research on grazing behavior of hornless yaks in cold Seasons in Qinghai Datong area with MOOnitor monitoring system. China Herbivore Science, 2018, 38(4): 44-48. |
丁学智, 杨超, 李晨, 等. 基于MOOnitor监测系统对青海大通地区无角牦牛冷季放牧行为的研究. 中国草食动物科学, 2018, 38(4): 44-48. | |
26 | Liu P P, Ding L M, Chen J Q. Study on the grazing behaviour of yak and cattle-yak in autumn pasture of Qilian Mountain by GPS Tracking and Positioning System. Acta Ecologae Animalis Domastici, 2015, 36(10): 56-60. |
刘培培, 丁路明, 陈军强. 利用GPS跟踪定位系统对祁连山区秋季牧场牦牛和犏牛牧食行为的研究. 家畜生态学报, 2015, 36(10): 56-60. |
[1] | 霍俊宏, 詹康, 黄秋生, 钟小军, 占今舜, 严学兵. 不同精粗比日粮对山羊生产性能、血清生化指标和瘤胃发酵的影响[J]. 草业学报, 2021, 30(6): 151-161. |
[2] | 蓝婧婷, 任瑞, 周瑞, 戴洪伟, 舒文秀, 朱凯, 王略宇, 徐红伟, 臧荣鑫. 花椰菜尾菜发酵饲料对保育猪生长性能、血清生化指标、小肠组织形态及经济效益的影响[J]. 草业学报, 2021, 30(6): 180-189. |
[3] | 纪会, 官久强, 王会, 周建旭, 阿农呷, 何宗伟, 樊珍详, 邱龙康, 曹诗晓, 安添午, 柏琴, 钟金城, 罗晓林. 亚丁牦牛和拉日马牦牛遗传多样性及遗传结构分析[J]. 草业学报, 2021, 30(5): 134-145. |
[4] | 潘发明, 常生华, 王国栋, 郝生燕, 刘佳, 张辉元, 徐银萍. 物候期对放牧牦牛瘤胃液、牧草中脂肪酸及乳脂中共轭亚油酸组成的影响及其相关性分析[J]. 草业学报, 2021, 30(3): 110-120. |
[5] | 张生伟, 王小平, 张展海, 马友记, 滚双宝, 杨巧丽, 高小莉, 张保军. 青贮杂交构树对杜湖杂交肉羊生长性能、血清生化指标和肉品质的影响[J]. 草业学报, 2021, 30(3): 89-99. |
[6] | 张强, 达娃央拉, 姬秋梅, 信金伟, 张成福, 朱勇, 洛桑顿珠, 次旦央吉, 孙光明, 姜辉. 西藏查吾拉地区不同性别牦牛产肉性能和肉营养成分的比较[J]. 草业学报, 2020, 29(7): 193-198. |
[7] | 杨勤, 官久强, 柴志欣, 李华德, 曹诗晓, 张翔飞, 柏琴, 钟金城, 罗晓林. 低海拔舍饲对牦牛肌肉品质的影响研究[J]. 草业学报, 2020, 29(5): 33-42. |
[8] | 涂瑞, 苗建军, 彭忠利, 高彦华, 柏雪, 谢昕廷. 不同精粗比日粮中添加小肽对牦牛瘤胃体外发酵特性的影响[J]. 草业学报, 2020, 29(3): 78-88. |
[9] | 杜子银, 蔡延江, 王小丹, 张斌. 放牧牦牛行为及其对高寒草地土壤特性的影响研究进展[J]. 草业学报, 2019, 28(7): 186-197. |
[10] | 苗建军, 彭忠利, 高彦华, 郭春华, 王鼎, 付洋洋. 青稞替代玉米对育肥牦牛生产性能和肉品质的影响[J]. 草业学报, 2019, 28(1): 95-107. |
[11] | 任春燕, 毕研亮, 杜汉昌, 于博, 屠焰, 郭艳丽, 刁其玉. 开食料中不同NDF水平对犊牛生长性能、瘤胃内环境及血清生化指标的影响[J]. 草业学报, 2018, 27(5): 210-218. |
[12] | 张昌吉, 张勇, 郭武君, 张利平, 滚双宝. 甘肃高山细毛羊母羊妊娠后期补饲效果研究[J]. 草业学报, 2017, 26(7): 106-115. |
[13] | 李君风, 原现军, 董志浩, Seare Tajebe Desta, 陈雷, 白晰, 白云峰, 邵涛. 西藏地区牦牛瘤胃中兼性厌氧纤维素降解菌的分离鉴定[J]. 草业学报, 2017, 26(6): 176-184. |
[14] | 樊懿萱, 王锋, 王强, 聂海涛, 王子玉, 陶晓强. 发酵木薯渣替代部分玉米对湖羊生长性能、血清生化指标、屠宰性能和肉品质的影响[J]. 草业学报, 2017, 26(3): 91-99. |
[15] | 肖红, 徐长林, 张德罡, 张建文, 杨海磊, 柴锦隆, 潘涛涛, 王艳, 鱼小军. 阴山扁蓿豆光合特性对模拟牦牛、藏羊践踏和降水的短期响应[J]. 草业学报, 2017, 26(2): 43-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||