草业学报 ›› 2021, Vol. 30 ›› Issue (8): 73-85.DOI: 10.11686/cyxb2021037
收稿日期:
2021-01-26
修回日期:
2021-03-08
出版日期:
2021-07-09
发布日期:
2021-07-09
通讯作者:
刘晓静
作者简介:
Corresponding author. E-mail: liuxj@gsau.edu.cn基金资助:
Xue WANG(), Xiao-jing LIU(), Ya-jiao ZHAO, Jing WANG
Received:
2021-01-26
Revised:
2021-03-08
Online:
2021-07-09
Published:
2021-07-09
Contact:
Xiao-jing LIU
摘要:
为探明紫花苜蓿/燕麦间作下种间氮营养竞争和互馈,试验采用桶栽土培法对紫花苜蓿和燕麦进行模拟间作,通过不同生育期、不同氮素水平及不同根系分隔方式对紫花苜蓿和燕麦的氮代谢特性、根系特性及紫花苜蓿结瘤特性进行研究。结果表明:燕麦氮代谢特性、根系特性及紫花苜蓿结瘤特性在各生育期和氮素水平下表现为不分隔>尼龙网分隔>塑料分隔≥单作,且差异显著。紫花苜蓿的氮代谢酶活性、氮含量、氮积累量在现蕾期和初花期时均表现为单作显著大于不分隔和尼龙网分隔(P<0.05),根系平均直径和根系体积在各生育期和氮素水平下表现为单作>塑料分隔>尼龙网分隔>不分隔,且单作显著大于不分隔。在两个氮素水平下,各生育期的紫花苜蓿和燕麦的氮代谢酶活性、干物质重、氮含量、氮积累量、根表面积、根平均直径、根体积、根系活力均表现为N210(施氮水平)>N21(不施氮水平),而紫花苜蓿总根瘤重、总根瘤数、有效根瘤数、有效/根瘤数均表现为N210<N21,且在初花期时不同根系分隔方式间的差距最大。因此,在紫花苜蓿/燕麦间作体系中,种间根系互作越紧密,越有利于燕麦根系的生长和根系活力的提高,增强燕麦氮同化能力,促进紫花苜蓿结瘤固氮并将由此产生的氮素部分继续转移给燕麦,增强间作系统中种间氮营养的互补利用,以达到紫花苜蓿/燕麦间作体系内的种间氮营养高效回馈,从而有效提高了间作体系中氮素的利用效率;且适宜氮素的添加和生育期的推进,使得种间根系互作不断加强,加强了种间氮素的互补利用,促进其间作体系内氮素的高效利用。
汪雪, 刘晓静, 赵雅姣, 王静. 根系分隔方式下紫花苜蓿/燕麦间作氮素利用及种间互馈特征研究[J]. 草业学报, 2021, 30(8): 73-85.
Xue WANG, Xiao-jing LIU, Ya-jiao ZHAO, Jing WANG. Nitrogen utilization and interspecific feedback characteristics of intercropped alfalfa/oat with different root barriers[J]. Acta Prataculturae Sinica, 2021, 30(8): 73-85.
图1 不同分隔方式及氮素水平对紫花苜蓿和燕麦干物质重的影响SA、SO、A-O、NA-O、PA-O、Ⅰ、Ⅱ、Ⅲ表示紫花苜蓿单作、燕麦单作、不分隔、尼龙网分隔、塑料分隔、分枝期、现蕾期、初花期。下同。SA, SO, A-O, NA-O, PA-O, Ⅰ, Ⅱ and Ⅲ were sole alfalfa, sole oat, no barrier, nylon mesh barrier, plastic barrier, branching stage, budding stage and initial blooming stage respectively. The same below.
Fig.1 Effect of different root partitions and N level on dry matter of alfalfa and oat
材料 Materials | 氮素 水平 N level | 分隔 方式 Barriers | 分枝期 Branching stage (Ⅰ) | 现蕾期 Budding stage (Ⅱ) | 初花期 Initial blooming stage (Ⅲ) | |||
---|---|---|---|---|---|---|---|---|
地上 Aboveground | 地下 Underground | 地上 Aboveground | 地下 Underground | 地上 Aboveground | 地下 Underground | |||
紫花苜蓿 Alfalfa | N210 | SA | 99.09±4.93a | 54.46±1.72a | 182.75±3.08ab | 115.70±2.45a | 200.10±1.87a | 135.83±0.68a |
A-O | 91.58±3.74a | 40.22±1.06c | 149.63±1.25c | 67.88±3.33b | 163.93±2.03b | 96.74±9.27c | ||
NA-O | 94.04±5.67a | 41.24±1.21bc | 166.35±3.29b | 74.82±2.07b | 171.61±10.23b | 109.03±0.60b | ||
PA-O | 102.43±6.63a | 45.74±1.83b | 186.63±9.02a | 84.65±2.31ab | 200.29±2.33a | 136.39±13.93a | ||
N21 | SA | 87.74±3.98a | 44.34±2.39a | 156.17±6.21a | 82.36±1.45a | 171.49±1.86a | 118.32±3.06a | |
A-O | 76.17±6.35a | 26.59±1.76c | 106.02±1.52c | 51.32±1.19c | 133.20±7.74c | 82.07±5.11b | ||
NA-O | 80.39±3.28a | 31.12±0.70bc | 125.82±1.34b | 59.07±3.98c | 148.23±2.83bc | 94.03±3.56ab | ||
PA-O | 85.67±3.30a | 33.57±2.77b | 146.43±5.86a | 65.71±3.49b | 162.13±5.24ab | 108.22±0.73a | ||
燕麦 Oat | N210 | SA | 63.48±1.90b | 7.90±0.61b | 146.02±2.00c | 16.40±0.73b | 186.57±6.61b | 28.38±1.37c |
A-O | 76.38±5.20a | 10.65±1.05a | 205.36±8.27a | 26.72±0.43a | 234.61±8.15a | 40.67±1.81a | ||
NA-O | 75.75±3.77a | 8.75±0.74ab | 172.17±6.41b | 22.79±3.67ab | 218.08±2.50a | 34.78±1.11b | ||
PA-O | 63.51±2.44b | 6.91±0.53b | 159.76±10.92bc | 18.08±3.90ab | 191.34±3.38b | 26.07±0.28c | ||
N21 | SA | 55.37±0.48c | 6.72±0.65ab | 132.62±4.58b | 12.50±0.86b | 119.59±4.85c | 19.79±0.76c | |
A-O | 80.92±1.36a | 8.28±0.65a | 185.32±9.09a | 21.16±1.94a | 187.12±6.35a | 34.21±0.70a | ||
NA-O | 65.31±2.50b | 5.74±0.26b | 158.15±7.75ab | 18.11±1.82a | 172.28±7.45a | 29.45±0.65b | ||
PA-O | 60.89±3.59bc | 5.35±0.28b | 141.30±12.89b | 11.92±1.15b | 149.65±2.72b | 18.48±1.14c |
表1 不同分隔方式及氮素水平对紫花苜蓿和燕麦氮积累量的影响
Table 1 Effect of different root partitions and N level on N accumulating of alfalfa and oat (mg·plant-1)
材料 Materials | 氮素 水平 N level | 分隔 方式 Barriers | 分枝期 Branching stage (Ⅰ) | 现蕾期 Budding stage (Ⅱ) | 初花期 Initial blooming stage (Ⅲ) | |||
---|---|---|---|---|---|---|---|---|
地上 Aboveground | 地下 Underground | 地上 Aboveground | 地下 Underground | 地上 Aboveground | 地下 Underground | |||
紫花苜蓿 Alfalfa | N210 | SA | 99.09±4.93a | 54.46±1.72a | 182.75±3.08ab | 115.70±2.45a | 200.10±1.87a | 135.83±0.68a |
A-O | 91.58±3.74a | 40.22±1.06c | 149.63±1.25c | 67.88±3.33b | 163.93±2.03b | 96.74±9.27c | ||
NA-O | 94.04±5.67a | 41.24±1.21bc | 166.35±3.29b | 74.82±2.07b | 171.61±10.23b | 109.03±0.60b | ||
PA-O | 102.43±6.63a | 45.74±1.83b | 186.63±9.02a | 84.65±2.31ab | 200.29±2.33a | 136.39±13.93a | ||
N21 | SA | 87.74±3.98a | 44.34±2.39a | 156.17±6.21a | 82.36±1.45a | 171.49±1.86a | 118.32±3.06a | |
A-O | 76.17±6.35a | 26.59±1.76c | 106.02±1.52c | 51.32±1.19c | 133.20±7.74c | 82.07±5.11b | ||
NA-O | 80.39±3.28a | 31.12±0.70bc | 125.82±1.34b | 59.07±3.98c | 148.23±2.83bc | 94.03±3.56ab | ||
PA-O | 85.67±3.30a | 33.57±2.77b | 146.43±5.86a | 65.71±3.49b | 162.13±5.24ab | 108.22±0.73a | ||
燕麦 Oat | N210 | SA | 63.48±1.90b | 7.90±0.61b | 146.02±2.00c | 16.40±0.73b | 186.57±6.61b | 28.38±1.37c |
A-O | 76.38±5.20a | 10.65±1.05a | 205.36±8.27a | 26.72±0.43a | 234.61±8.15a | 40.67±1.81a | ||
NA-O | 75.75±3.77a | 8.75±0.74ab | 172.17±6.41b | 22.79±3.67ab | 218.08±2.50a | 34.78±1.11b | ||
PA-O | 63.51±2.44b | 6.91±0.53b | 159.76±10.92bc | 18.08±3.90ab | 191.34±3.38b | 26.07±0.28c | ||
N21 | SA | 55.37±0.48c | 6.72±0.65ab | 132.62±4.58b | 12.50±0.86b | 119.59±4.85c | 19.79±0.76c | |
A-O | 80.92±1.36a | 8.28±0.65a | 185.32±9.09a | 21.16±1.94a | 187.12±6.35a | 34.21±0.70a | ||
NA-O | 65.31±2.50b | 5.74±0.26b | 158.15±7.75ab | 18.11±1.82a | 172.28±7.45a | 29.45±0.65b | ||
PA-O | 60.89±3.59bc | 5.35±0.28b | 141.30±12.89b | 11.92±1.15b | 149.65±2.72b | 18.48±1.14c |
材料 Materials | 氮素水平 N level | 分隔 方式 Barriers | 分枝期Branching stage (Ⅰ) | 现蕾期Budding stage (Ⅱ) | 初花期Initial blooming stage (Ⅲ) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
总根长 TRL (cm) | 根表面积 RSA (cm2) | 根平均直径 RAD (mm) | 根体积 RV (cm3) | 总根长 TRL (cm) | 根表面积 RSA (cm2) | 根平均直径 RAD (mm) | 根体积 RV (cm3) | 总根长 TRL (cm) | 根表面积 RSA (cm2) | 根平均直径 RAD (mm) | 根体积 RV (cm3) | |||
紫花苜蓿 Alfalfa | N210 | SA | 119.35±0.58c | 27.39±0.38a | 0.46±0.01a | 0.20±0.01a | 164.97±1.44b | 47.66±0.84a | 0.58±0.01a | 0.43±0.02a | 185.49±0.95d | 66.17±0.35a | 0.68±0.03a | 0.67±0.05a |
A-O | 143.27±1.53a | 26.11±0.23a | 0.36±0.01c | 0.15±0.01b | 183.72±5.35a | 40.13±0.52b | 0.44±0.02d | 0.27±0.01d | 216.62±1.23a | 60.25±1.39c | 0.56±0.02c | 0.53±0.04b | ||
NA-O | 134.99±2.31b | 25.88±0.70a | 0.38±0.02c | 0.16±0.02b | 172.64±2.16b | 40.54±0.17b | 0.47±0.01c | 0.30±0.01c | 205.61±2.64b | 62.47±1.28bc | 0.61±0.01b | 0.60±0.03ab | ||
PA-O | 122.89±0.92c | 25.50±0.97a | 0.41±0.03b | 0.17±0.02b | 164.98±0.70b | 40.98±0.13b | 0.49±0.01b | 0.32±0.00b | 199.89±1.23c | 65.56±0.85ab | 0.65±0.02a | 0.67±0.04a | ||
N21 | SA | 130.57±0.96c | 26.97±0.79a | 0.42±0.02a | 0.18±0.02a | 180.58±0.88bc | 45.11±1.88a | 0.50±0.03a | 0.35±0.05a | 213.40±2.21b | 63.88±1.38a | 0.62±0.02a | 0.65±0.05a | |
A-O | 153.32±2.17a | 24.01±0.70b | 0.31±0.01c | 0.12±0.01b | 191.00±2.48a | 38.65±0.80b | 0.41±0.02c | 0.25±0.02b | 225.88±1.24a | 61.00±1.60a | 0.54±0.02c | 0.52±0.05b | ||
NA-O | 142.05±1.57b | 24.34±0.25b | 0.34±0.02b | 0.13±0.01b | 184.67±1.66b | 39.64±0.24b | 0.43±0.01bc | 0.27±0.01b | 213.15±3.22b | 60.76±2.39a | 0.57±0.03bc | 0.54±0.06b | ||
PA-O | 135.19±0.34c | 24.28±0.54b | 0.36±0.01b | 0.14±0.01b | 178.36±1.35c | 39.73±0.45b | 0.45±0.01b | 0.28±0.01b | 210.03±3.10b | 62.97±1.91a | 0.60±0.02ab | 0.59±0.05ab | ||
燕麦 Oat | N210 | SO | 206.43±2.98b | 51.78±1.18b | 0.50±0.03ab | 0.41±0.04b | 212.69±2.70ab | 53.97±0.71c | 0.51±0.02c | 0.43±0.02c | 239.10±1.70b | 71.34±1.65bc | 0.60±0.02b | 0.67±0.05bc |
A-O | 215.32±3.16a | 56.96±0.58a | 0.53±0.01a | 0.47±0.02a | 223.28±4.72a | 66.27±1.17a | 0.60±0.03a | 0.62±0.04a | 252.38±0.01a | 86.54±1.80a | 0.68±0.03a | 0.93±0.07a | ||
NA-O | 203.86±1.78b | 50.62±0.76b | 0.50±0.02ab | 0.39±0.03b | 213.92±4.09ab | 60.90±0.52b | 0.57±0.02ab | 0.54±0.02b | 242.46±3.45b | 75.57±0.63b | 0.62±0.02b | 0.74±0.04b | ||
PA-O | 193.08±0.77c | 45.10±0.69c | 0.47±0.01b | 0.33±0.02c | 207.13±0.87b | 55.93±0.85c | 0.54±0.01bc | 0.47±0.02c | 235.59±3.68b | 69.03±1.56c | 0.59±0.01b | 0.64±0.04c | ||
N21 | SO | 221.17±2.84a | 50.19±1.93b | 0.46±0.02ab | 0.36±0.04b | 231.14±3.25bc | 52.77±2.01b | 0.46±0.02bc | 0.38±0.04c | 273.59±3.59bc | 70.56±2.20c | 0.51±0.02c | 0.57±0.06c | |
A-O | 227.58±2.55a | 55.29±0.57a | 0.49±0.01a | 0.42±0.02a | 238.02±2.05ab | 62.99±1.65a | 0.53±0.02a | 0.53±0.05a | 285.78±2.33a | 88.33±0.31a | 0.62±0.01a | 0.86±0.02a | ||
NA-O | 220.87±6.30a | 48.01±2.21bc | 0.44±0.02bc | 0.33±0.04bc | 245.50±5.11a | 58.97±1.09a | 0.48±0.01b | 0.45±0.02b | 278.68±2.82ab | 80.15±1.44b | 0.58±0.01b | 0.72±0.03b | ||
PA-O | 218.30±3.84a | 44.77±0.46c | 0.41±0.01c | 0.29±0.01c | 221.93±5.28c | 50.93±1.31b | 0.45±0.01c | 0.36±0.03c | 263.88±3.66c | 68.38±0.41c | 0.50±0.01c | 0.53±0.02c |
表2 不同分隔方式及氮素水平对紫花苜蓿和燕麦根系形态的影响
Table 2 Effect of different root partitions and N level on root morphology of alfalfa and oat
材料 Materials | 氮素水平 N level | 分隔 方式 Barriers | 分枝期Branching stage (Ⅰ) | 现蕾期Budding stage (Ⅱ) | 初花期Initial blooming stage (Ⅲ) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
总根长 TRL (cm) | 根表面积 RSA (cm2) | 根平均直径 RAD (mm) | 根体积 RV (cm3) | 总根长 TRL (cm) | 根表面积 RSA (cm2) | 根平均直径 RAD (mm) | 根体积 RV (cm3) | 总根长 TRL (cm) | 根表面积 RSA (cm2) | 根平均直径 RAD (mm) | 根体积 RV (cm3) | |||
紫花苜蓿 Alfalfa | N210 | SA | 119.35±0.58c | 27.39±0.38a | 0.46±0.01a | 0.20±0.01a | 164.97±1.44b | 47.66±0.84a | 0.58±0.01a | 0.43±0.02a | 185.49±0.95d | 66.17±0.35a | 0.68±0.03a | 0.67±0.05a |
A-O | 143.27±1.53a | 26.11±0.23a | 0.36±0.01c | 0.15±0.01b | 183.72±5.35a | 40.13±0.52b | 0.44±0.02d | 0.27±0.01d | 216.62±1.23a | 60.25±1.39c | 0.56±0.02c | 0.53±0.04b | ||
NA-O | 134.99±2.31b | 25.88±0.70a | 0.38±0.02c | 0.16±0.02b | 172.64±2.16b | 40.54±0.17b | 0.47±0.01c | 0.30±0.01c | 205.61±2.64b | 62.47±1.28bc | 0.61±0.01b | 0.60±0.03ab | ||
PA-O | 122.89±0.92c | 25.50±0.97a | 0.41±0.03b | 0.17±0.02b | 164.98±0.70b | 40.98±0.13b | 0.49±0.01b | 0.32±0.00b | 199.89±1.23c | 65.56±0.85ab | 0.65±0.02a | 0.67±0.04a | ||
N21 | SA | 130.57±0.96c | 26.97±0.79a | 0.42±0.02a | 0.18±0.02a | 180.58±0.88bc | 45.11±1.88a | 0.50±0.03a | 0.35±0.05a | 213.40±2.21b | 63.88±1.38a | 0.62±0.02a | 0.65±0.05a | |
A-O | 153.32±2.17a | 24.01±0.70b | 0.31±0.01c | 0.12±0.01b | 191.00±2.48a | 38.65±0.80b | 0.41±0.02c | 0.25±0.02b | 225.88±1.24a | 61.00±1.60a | 0.54±0.02c | 0.52±0.05b | ||
NA-O | 142.05±1.57b | 24.34±0.25b | 0.34±0.02b | 0.13±0.01b | 184.67±1.66b | 39.64±0.24b | 0.43±0.01bc | 0.27±0.01b | 213.15±3.22b | 60.76±2.39a | 0.57±0.03bc | 0.54±0.06b | ||
PA-O | 135.19±0.34c | 24.28±0.54b | 0.36±0.01b | 0.14±0.01b | 178.36±1.35c | 39.73±0.45b | 0.45±0.01b | 0.28±0.01b | 210.03±3.10b | 62.97±1.91a | 0.60±0.02ab | 0.59±0.05ab | ||
燕麦 Oat | N210 | SO | 206.43±2.98b | 51.78±1.18b | 0.50±0.03ab | 0.41±0.04b | 212.69±2.70ab | 53.97±0.71c | 0.51±0.02c | 0.43±0.02c | 239.10±1.70b | 71.34±1.65bc | 0.60±0.02b | 0.67±0.05bc |
A-O | 215.32±3.16a | 56.96±0.58a | 0.53±0.01a | 0.47±0.02a | 223.28±4.72a | 66.27±1.17a | 0.60±0.03a | 0.62±0.04a | 252.38±0.01a | 86.54±1.80a | 0.68±0.03a | 0.93±0.07a | ||
NA-O | 203.86±1.78b | 50.62±0.76b | 0.50±0.02ab | 0.39±0.03b | 213.92±4.09ab | 60.90±0.52b | 0.57±0.02ab | 0.54±0.02b | 242.46±3.45b | 75.57±0.63b | 0.62±0.02b | 0.74±0.04b | ||
PA-O | 193.08±0.77c | 45.10±0.69c | 0.47±0.01b | 0.33±0.02c | 207.13±0.87b | 55.93±0.85c | 0.54±0.01bc | 0.47±0.02c | 235.59±3.68b | 69.03±1.56c | 0.59±0.01b | 0.64±0.04c | ||
N21 | SO | 221.17±2.84a | 50.19±1.93b | 0.46±0.02ab | 0.36±0.04b | 231.14±3.25bc | 52.77±2.01b | 0.46±0.02bc | 0.38±0.04c | 273.59±3.59bc | 70.56±2.20c | 0.51±0.02c | 0.57±0.06c | |
A-O | 227.58±2.55a | 55.29±0.57a | 0.49±0.01a | 0.42±0.02a | 238.02±2.05ab | 62.99±1.65a | 0.53±0.02a | 0.53±0.05a | 285.78±2.33a | 88.33±0.31a | 0.62±0.01a | 0.86±0.02a | ||
NA-O | 220.87±6.30a | 48.01±2.21bc | 0.44±0.02bc | 0.33±0.04bc | 245.50±5.11a | 58.97±1.09a | 0.48±0.01b | 0.45±0.02b | 278.68±2.82ab | 80.15±1.44b | 0.58±0.01b | 0.72±0.03b | ||
PA-O | 218.30±3.84a | 44.77±0.46c | 0.41±0.01c | 0.29±0.01c | 221.93±5.28c | 50.93±1.31b | 0.45±0.01c | 0.36±0.03c | 263.88±3.66c | 68.38±0.41c | 0.50±0.01c | 0.53±0.02c |
氮素水平 N level | 分隔 方式 Barriers | 分枝期 Branching stage (Ⅰ) | 现蕾期 Budding stage (Ⅱ) | 初花期 Initial blooming stage (Ⅲ) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TNN | ENN | ENN/TNN | TNW (g) | TNN | ENN | ENN/TNN | TNW (g) | TNN | ENN | ENN/TNN | TNW (g) | ||
N210 | SA | 16.67±0.67c | 4.33±0.33c | 0.24±0.01c | 4.07±0.08c | 18.00±1.00b | 6.00±0.00c | 0.34±0.01c | 5.01±0.33c | 22.00±1.15c | 10.00±0.58c | 0.45±0.01c | 9.78±0.46c |
A-O | 22.67±1.45a | 7.67±0.33a | 0.34±0.01a | 5.76±0.14a | 24.00±1.53a | 10.00±0.58a | 0.43±0.01a | 10.24±0.41a | 29.67±1.20a | 17.33±0.88a | 0.58±0.02a | 14.53±0.44a | |
NA-O | 21.33±0.88ab | 6.00±0.58b | 0.28±0.01b | 5.10±0.14b | 22.00±2.08ab | 8.33±0.88ab | 0.37±0.01b | 6.14±0.23b | 25.67±0.67b | 13.33±0.33b | 0.52±0.01b | 11.55±0.57b | |
PA-O | 18.33±1.20bc | 4.67±0.33c | 0.25±0.01c | 3.59±0.10d | 19.67±0.88ab | 6.67±0.33bc | 0.34±0.02c | 4.67±0.34c | 22.67±0.88bc | 11.00±0.58c | 0.47±0.03c | 9.37±0.27c | |
N21 | SA | 19.33±2.03a | 6.00±0.58b | 0.31±0.02c | 8.02±0.85b | 21.00±1.53b | 9.33±0.67bc | 0.43±0.01bc | 10.37±0.71b | 23.67±0.88c | 13.00±0.58c | 0.56±0.01bc | 15.7±0.63c |
A-O | 23.33±0.67a | 9.67±0.33a | 0.41±0.01a | 12.17±0.46a | 25.33±1.33a | 13.00±0.58a | 0.51±0.02a | 15.11±0.16a | 31.33±1.20a | 20.33±0.67a | 0.65±0.02a | 21.33±0.03a | |
NA-O | 22.67±2.40a | 7.67±0.88ab | 0.34±0.01b | 10.27±0.89a | 23.33±0.67ab | 11.00±0.58ab | 0.47±0.01ab | 13.46±0.69a | 27.67±1.20b | 16.67±1.20b | 0.61±0.02ab | 18.61±0.30b | |
PA-O | 19.00±1.73a | 6.00±0.58b | 0.32±0.02bc | 7.13±0.23b | 20.67±0.88b | 8.33±0.67c | 0.40±0.04c | 10.33±0.24b | 23.67±0.33c | 12.33±0.88c | 0.51±0.05c | 13.63±0.71d |
表3 不同分隔方式及氮素水平对紫花苜蓿结瘤特性的影响
Table 3 Effect of different root partitions and N level on nodule characteristics of alfalfa
氮素水平 N level | 分隔 方式 Barriers | 分枝期 Branching stage (Ⅰ) | 现蕾期 Budding stage (Ⅱ) | 初花期 Initial blooming stage (Ⅲ) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TNN | ENN | ENN/TNN | TNW (g) | TNN | ENN | ENN/TNN | TNW (g) | TNN | ENN | ENN/TNN | TNW (g) | ||
N210 | SA | 16.67±0.67c | 4.33±0.33c | 0.24±0.01c | 4.07±0.08c | 18.00±1.00b | 6.00±0.00c | 0.34±0.01c | 5.01±0.33c | 22.00±1.15c | 10.00±0.58c | 0.45±0.01c | 9.78±0.46c |
A-O | 22.67±1.45a | 7.67±0.33a | 0.34±0.01a | 5.76±0.14a | 24.00±1.53a | 10.00±0.58a | 0.43±0.01a | 10.24±0.41a | 29.67±1.20a | 17.33±0.88a | 0.58±0.02a | 14.53±0.44a | |
NA-O | 21.33±0.88ab | 6.00±0.58b | 0.28±0.01b | 5.10±0.14b | 22.00±2.08ab | 8.33±0.88ab | 0.37±0.01b | 6.14±0.23b | 25.67±0.67b | 13.33±0.33b | 0.52±0.01b | 11.55±0.57b | |
PA-O | 18.33±1.20bc | 4.67±0.33c | 0.25±0.01c | 3.59±0.10d | 19.67±0.88ab | 6.67±0.33bc | 0.34±0.02c | 4.67±0.34c | 22.67±0.88bc | 11.00±0.58c | 0.47±0.03c | 9.37±0.27c | |
N21 | SA | 19.33±2.03a | 6.00±0.58b | 0.31±0.02c | 8.02±0.85b | 21.00±1.53b | 9.33±0.67bc | 0.43±0.01bc | 10.37±0.71b | 23.67±0.88c | 13.00±0.58c | 0.56±0.01bc | 15.7±0.63c |
A-O | 23.33±0.67a | 9.67±0.33a | 0.41±0.01a | 12.17±0.46a | 25.33±1.33a | 13.00±0.58a | 0.51±0.02a | 15.11±0.16a | 31.33±1.20a | 20.33±0.67a | 0.65±0.02a | 21.33±0.03a | |
NA-O | 22.67±2.40a | 7.67±0.88ab | 0.34±0.01b | 10.27±0.89a | 23.33±0.67ab | 11.00±0.58ab | 0.47±0.01ab | 13.46±0.69a | 27.67±1.20b | 16.67±1.20b | 0.61±0.02ab | 18.61±0.30b | |
PA-O | 19.00±1.73a | 6.00±0.58b | 0.32±0.02bc | 7.13±0.23b | 20.67±0.88b | 8.33±0.67c | 0.40±0.04c | 10.33±0.24b | 23.67±0.33c | 12.33±0.88c | 0.51±0.05c | 13.63±0.71d |
1 | Zhu J Q, Werf W, Anten N P R, et al. The contribution of phenotypic plasticity to complementary light capture in plant mixtures. New Phytologist, 2015, 207(4): 1213-1222. |
2 | Corre-Hellou G, Dibet A, Hauggaard-Nielsen H, et al. The competitive ability of pea-barley intercrops against weeds and the interactions with crop productivity and soil N availability. Field Crops Research, 2011, 122(3): 264-272. |
3 | Horwith B. A role for intercropping in modern agriculture. Bioscience, 1985, 35(5): 286-291. |
4 | Yang P, Li J, Zhang Z K, et al. Effect of nitrogen application on intercropping advantages and crop interactions under an oil flax and soybean intercrop system. Acta Prataculturae Sinica, 2016, 25(3): 181-190. |
杨萍, 李杰, 张中凯, 等. 施氮对胡麻/大豆间作体系作物间作优势及种间关系的影响. 草业学报, 2016, 25(3): 181-190. | |
5 | Jiao N Y, Wang J T, Yin F, et al. Effects of ethephon and phosphate fertilizer on N absorption and intercropped advantages of maize and peanut intercropping system. Journal of Plant Nutrition and Fertilizer, 2016, 22(6): 1477-1484. |
焦念元, 汪江涛, 尹飞, 等. 施用乙烯利和磷肥对玉米/花生间作氮吸收分配及间作优势的影响. 植物营养与肥料学报, 2016, 22(6): 1477-1484. | |
6 | Ahlawat A, Jain V, Nainawatee H S. Effect of low temperature and rhizospheric application of naringenin on pea-rhizobium leguminosarum biovar viciae symbiosis. Journal of Plant Biochemistry and Biotechnology, 1998, 7(1): 35-38. |
7 | Jiao N Y, Ning T Y, Zhao C, et al. Effect of nitrogen application and planting pattern on N and P absorption and use in maize-peanut intercropping system. Acta Agronomica Sinica, 2008(4): 706-712. |
焦念元, 宁堂原, 赵春, 等. 施氮量和玉米-花生间作模式对氮磷吸收与利用的影响. 作物学报, 2008(4): 706-712. | |
8 | Palta J A, Fillery L R P, Rebetzke G J. Restricted-tillering wheat does not lead to greater investment in roots and early nitrogen uptake. Field Crops Research, 2007, 104(1): 52-59. |
9 | Zhao Y J, Liu X J, Tong C C, et al. Factors influencing nodulation and N fixation ability of alfalfa in a simulated alfalfa/maize intercropping system. Acta Prataculturae Sinica, 2020, 29(1): 95-105. |
赵雅姣, 刘晓静, 童长春, 等. 紫花苜蓿/玉米间作对紫花苜蓿结瘤固氮特性的影响. 草业学报, 2020, 29(1): 95-105. | |
10 | Li Y Y, Hu H S, Cheng X, et al. Effects of interspecific interactions and nitrogen fertilization rates on above-and below-growth in faba bean/mazie intercropping system. Acta Ecologica Sinica, 2011, 31(6): 1617-1630. |
李玉英, 胡汉升, 程序, 等. 种间互作和施氮对蚕豆/玉米间作生态系统地上部和地下部生长的影响. 生态学报, 2011, 31(6): 1617-1630. | |
11 | Zhu Y Q, Yu H, Zheng W, et al. Effects of different planting configurations on yield of oat and common vetch mixed plantings with soybean in alpine pastures. Acta Prataculturae Sinica, 2020, 29(1): 74-85. |
朱亚琼, 于辉, 郑伟, 等. 燕麦+箭筈豌豆混播草地混播优势的测度与影响因素分析. 草业学报, 2020, 29(1): 74-85. | |
12 | Liu Y C, Xiao J X, Tang L, et al. Effects of nitrogen application rate on the naringenin exudation from intercropped faba bean’s roots in different separation patterns. Plant Physiology Journal, 2017, 53(6): 1097-1103. |
刘英超, 肖靖秀, 汤利, 等. 施氮对不同分隔方式间作蚕豆根系分泌柚皮素的影响. 植物生理学报, 2017, 53(6): 1097-1103. | |
13 | Zhao X F, Pang Z G, Lv S H, et al. Effects of rapeseed and chickpea on manganese nutrition of wheat under different root barrier patterns. Acta Agriculturae Boreali Sinica, 2009, 24(6): 133-137. |
赵秀芬, 房增国, 吕世华, 等. 根系不同分隔方式下油菜和鹰嘴豆对小麦锰营养的影响. 华北农学报, 2009, 24(6): 133-137. | |
14 | Wang X Y, Zhang S Y, Yue X R, et al. Effects of inoculating FM and intercropping under different roots separation methods on plant growth and nitrogen utilization of maize and soybean in red soils. Journal of Plant Nutrition and Fertilizer, 2017, 23(4): 1022-1029. |
汪新月, 张仕颖, 岳献荣, 等. 隔根与接种FM对红壤上玉米/大豆植株生长及氮素利用的影响. 植物营养与肥料学报, 2017, 23(4): 1022-1029. | |
15 | Zeng J X, Wen X C, Muhammad A R, et al. Effects of combined applications of nitrogen and phosphorus on interspecies interaction, yield, and dry matter accumulation and translocation in maize in a maize-soybean relay intercropping system. Acta Prataculturae Sinica, 2017, 26(7): 166-176. |
曾瑾汐, 文熙宸, Muhammad Ali Raza, 等. 氮磷配施对玉米-大豆套作模式下种间作用、玉米产量及干物质积累与转运的影响.草业学报, 2017, 26(7): 166-176. | |
16 | Song C, Mao L, Xu M, et al. Phosphorus fractions and availability of rhizosphere soil in a maize-soybean relay intercropping system. Journal of Soil and Water Conservation, 2015, 29(5): 226-230, 238. |
宋春, 毛璐, 徐敏, 等. 玉米-大豆套作体系作物根际土壤磷素形态及有效性. 水土保持学报, 2015, 29(5): 226-230, 238. | |
17 | Liu Y C, Xiao J X, Zheng Y, et al. Effects of nitrogen levels and root barriers on nitrogen absorption of intercropping wheat and faba bean. Journal of Southwest Forestry University (Natural Science), 2018, 38(1): 72-78. |
刘英超, 肖靖秀, 郑毅, 等. 不同施氮水平及根系分隔方式对间作小麦蚕豆氮吸收的影响. 西南林业大学学报(自然科学), 2018, 38(1): 72-78. | |
18 | Yang F, Liao D P, Wu X L, et al. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Research, 2017, 203: 16-23. |
19 | Sun L, Liu G H, Zhang X X, et al. Effects of pelletizing and adding Mongolia medicinal Scutellaria baicalensis on vitamin content and chemical composition of alfalfa. Acta Prataculturae Sinica, 2020, 29(10): 99-108. |
孙林, 刘广华, 张欣昕, 等. 蒙药黄芩与制粒对紫花苜蓿维生素和化学成分的影响. 草业学报, 2020, 29(10): 99-108. | |
20 | Li J, Wang W L, Zhao X, et al. Effect of roots partitions on interspecific competition and nitrogen fixation in the pea-maize intercropping. Agricultural Research in the Arid Areas, 2016, 34(6): 177-183. |
李娟, 王文丽, 赵旭, 等. 根际分隔对玉米/豌豆间作种间竞争及豌豆结瘤固氮的影响. 干旱地区农业研究, 2016, 34(6): 177-183. | |
21 | Lin F, Liu X J, Tong C C, et al. A study of root system characteristics and carbon and nitrogen metabolism of alfalfa and four grass forages in monoculture or intercropped. Acta Prataculturae Sinica, 2019, 28(9): 45-54. |
蔺芳, 刘晓静, 童长春, 等. 4种间作模式下牧草根系特性及其碳、氮代谢特征研究. 草业学报, 2019, 28(9): 45-54. | |
22 | Zhang G G, Dong S T, Yang Z B. Production performance of alfalfa+maize intercropping systems and evaluation of interspecies competition. Acta Prataculturae Sinica, 2011, 20(1): 22-30. |
张桂国, 董树亭, 杨在宾. 苜蓿+玉米间作系统产量表现及其种间竞争力的评定. 草业学报, 2011, 20(1): 22-30. | |
23 | Yang C, Wang G G, Wang M L. Oat grass production and trade in China. Pratacultural Science, 2017, 34(5): 1129-1135. |
杨春, 王国刚, 王明利. 我国的燕麦草生产和贸易. 草业科学, 2017, 34(5): 1129-1135. | |
24 | Wang X, Zeng Z H, Zhu B, et al. Effect of different intercropping and mixture modes on forage yield and quality of oat and common vetch. Acta Agronomica Sinica, 2007(11): 1892-1895. |
王旭, 曾昭海, 朱波, 等. 箭筈豌豆与燕麦不同间作混播模式对产量和品质的影响. 作物学报, 2007(11): 1892-1895. | |
25 | Zhao J H, Sun J H, Chen L Z. Productivity and interspecific competition of maize intercropped with faba bean, soybean or pea. Acta Prataculturae Sinica, 2020, 29(1): 86-94. |
赵建华, 孙建好, 陈亮之. 三种豆科作物与玉米间作对玉米生产力和种间竞争的影响. 草业学报, 2020, 29(1): 86-94. | |
26 | Zhao Y J, Liu X J, Wu Y, et al. Rhizosphere soil nutrients, enzyme activities and microbial community characteristics in legume-cereal intercropping system in northwest china. Journal of Desert Research, 2020, 40(3): 219-228. |
赵雅姣, 刘晓静, 吴勇, 等. 豆禾牧草间作根际土壤养分、酶活性及微生物群落特征. 中国沙漠, 2020, 40(3): 219-228. | |
27 | Li L, Li X L, Zhang F S. Facilitation of wheat to phosphorus uptake by soybean in the wheat soybean intercropping. Acta Ecologica Sinica, 2000(4): 629-633. |
李隆, 李晓林, 张福锁. 小麦-大豆间作中小麦对大豆磷吸收的促进作用. 生态学报, 2000(4): 629-633. | |
28 | Lu R K. Analytical methods of soil agrochemistry. Beijing: China Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. | |
29 | Zou Q. Physiological experiment guidance. Beijing: China Agricultural Publishing House, 2006. |
邹琦. 生理学实验指导. 北京: 中国农业出版社, 2006. | |
30 | Wang F, Gao J W, Liu Y. Higher ammonium transamination capacity can alleviate glutamate inhibition on winter wheat (Triticum aestivum L.) root growth under high ammonium stress. PLoS One, 2016, 11(8): e0160997. |
31 | Wang H L, Yang H J, Su F, et al. Effects of nitrogen on expression of key genes related to carbon/nitrogen metabolism and terpenoid metabolism in matruing flue-cured tobacco leaves. Acta Tabacaria Sinica, 2014, 20(5): 116-120. |
王红丽, 杨惠娟, 苏菲, 等. 氮用量对烤烟成熟期叶片碳氮代谢及萜类代谢相关基因表达的影响. 中国烟草学报, 2014, 20(5): 116-120. | |
32 | Zeng D D, Qin R, Li M. The ferredoxin-dependent glutamate synthase (OsFd-GOGAT) participates in leaf senescence and the nitrogen remobilization in rice. Molecular Genetics and Genomics, 2017, 292(2): 394. |
33 | Zhang Y T, Wang W H, Shen H, et al. Influence of arbuscular mycorrhizal associations on the interspecific competition between mycorrhizal and non-mycorrhizal plants. Acta Ecologica Sinica, 2012, 32(5): 1428-1435. |
张宇亭, 王文华, 申鸿, 等. 接种AMF对菌根植物和非菌根植物竞争的影响. 生态学报, 2012, 32(5): 1428-1435. | |
34 | Xiao Y B, Li L, Zhang F S. The interspecific nitrogen facilitation and the subsequent nitrogen transfer between the intercropped wheat and faba bean. Chinese Agricultural Sciences, 2005(5): 965-973. |
肖焱波, 李隆, 张福锁. 小麦/蚕豆间作体系中的种间相互作用及氮转移研究. 中国农业科学, 2005(5): 965-973. | |
35 | Tang X M, Zhong R C, Jie H K, et al. Effect of cassava-peanut intercropping on metabolites and key enzyme activity of carbon-nitrogen metabolism of peanut leaf. Southwest China Journal of Agriculture Sciences, 2014, 27(6): 2316-2321. |
唐秀梅, 钟瑞春, 揭红科, 等. 间作木薯对花生叶片碳氮代谢产物及关键酶活性的影响. 西南农业学报, 2014, 27(6): 2316-2321. | |
36 | Guo F, Wan S B, Wang C B, et al. Nitrogen metabolism and relative enzyme activities of the peanut relay-cropped with wheat. Journal of Plant Nutrition and Fertilizer, 2009, 15(2): 416-421. |
郭峰, 万书波, 王才斌, 等. 麦套花生氮素代谢及相关酶活性变化研究. 植物营养与肥料学报, 2009, 15(2): 416-421. | |
37 | Song Y X, Yang W Y, Li Z X, et al. Effect of maize-soybean relay cropping shade on nitrogen metabolism of soybean seedlings. Chinese Journal of Oil Crop Sciences, 2010, 32(3): 390-394. |
宋艳霞, 杨文钰, 李卓玺, 等. 套作遮荫对大豆不同品种苗期氮代谢的影响. 中国油料作物学报, 2010, 32(3): 390-394. | |
38 | Wu Y W, Li Q, Dou P, et al. Effects of nitrogen fertilizer on leaf chlorophyll content and enzyme activity at late growth stages in maize cultivars with contrasting tolerance to low nitrogen. Acta Prataculturae Sinica, 2017, 26(10): 188-197. |
吴雅薇, 李强, 豆攀, 等. 氮肥对不同耐低氮性玉米品种生育后期叶绿素含量和氮代谢酶活性的影响. 草业学报, 2017, 26(10): 188-197. | |
39 | Zhao J P, Ren J C, Guo P Y, et al. Effects of nitrogen application rate on key enzyme activities of nitrogen metabolism in wheat. Journal of Triticeae Crops, 2019, 39(10): 1222-1225. |
赵吉平, 任杰成, 郭鹏燕, 等. 施氮量对小麦氮素代谢关键酶活性的影响. 麦类作物学报, 2019, 39(10): 1222-1225. | |
40 | Li Q, Chen J, Wu L, et al. Belowground interactions impact the soil bacterial community, soil fertility, and crop yield in maize/peanut intercropping systems. International Journal of Molecular Sciences, 2018, 19(2): 622. |
41 | Sun X F, Huang L J, Wang P C, et al. Effects of different phosphorus supply levels on morphology and physiology of Paspalum wettsteinii. Acta Prataculturae Sinica, 2020, 29(8): 58-69. |
孙小富, 黄莉娟, 王普昶, 等. 不同供磷水平对宽叶雀稗形态及生理的影响. 草业学报, 2020, 29(8): 58-69. | |
42 | Zhang Y K, Chen F J, Li L, et al. Effects of different types of maize roots on efficient phosphorus uptake and productivity in intercropping system. Chinese Science: Life Science, 2012, 42(10): 841-849. |
张义凯, 陈范骏, 李隆, 等. 不同类型的玉米根系对间作体系磷高效吸收以及生产力的影响. 中国科学: 生命科学, 2012, 42(10): 841-849. | |
43 | Li Y Y, Pang F H, Sun J H, et al. Effects of root barrier between intercropped maize and faba bean and nitrogen (N) application on the spatial distributions and morphology of crops’ roots. Journal of China Agricultural University, 2010, 15(4): 13-19. |
李玉英, 庞发虎, 孙建好, 等. 根系分隔和施氮对蚕豆/玉米间作体系根系分布和形态的影响. 中国农业大学学报, 2010, 15(4): 13-19. | |
44 | Xu Q, Cheng Z H, Lu T, et al. Effects of intercropping on growth, nutrient uptake and rhizosphere environment in plants. Acta Botanica Boreali-Occcidentalia Sinica, 2010, 30(2): 350-356. |
徐强, 程智慧, 卢涛, 等. 间作对植株生长及养分吸收和根际环境的影响. 西北植物学报, 2010, 30(2): 350-356. | |
45 | Liu X J, Ye F, Zhang X L. Effects of exogenous nitrogen forms on root characteristics of alfalfa at different growth stages. Acta Prataculturae Sinica, 2015, 24(6): 53-63. |
刘晓静, 叶芳, 张晓玲. 外源氮素形态对紫花苜蓿不同生育期根系特性的影响. 草业学报, 2015, 24(6): 53-63. | |
46 | Liao D P, Yong T W, Liu X M, et al. Growth and nitrogen uptake of maize relay intercropped with soybean or sweet potato. Journal of Plant Nutrition and Fertilizer, 2014, 20(6): 1395-1402. |
廖敦平, 雍太文, 刘小明, 等. 玉米-大豆和玉米-甘薯套作对玉米生长及氮素吸收的影响. 植物营养与肥料学报, 2014, 20(6): 1395-1402. | |
47 | Wang L B, Shao Z Q, Lu W L. Effects of nitrogen application levels and root separation on the root morphology and nitrogen fixation ability of alfalfa in the maize/alfalfa intercropping system. Henan Agricultural Sciences, 2020, 11(1): 1-13. |
王立波, 邵泽强, 陆文龙. 施氮和根系分隔对玉米/紫花苜蓿间作体系中紫花苜蓿根系形态和固氮能力的影响. 河南农业科学, 2020, 11(1): 1-13. |
[1] | 袁英良, 唐丹, 鲁英, 冉桂霞, 郭艳芹. 吉林地区麦后复种饲用油菜与燕麦混播效应研究[J]. 草业学报, 2021, 30(7): 167-178. |
[2] | 古丽娜扎尔·艾力null, 陶海宁, 王自奎, 沈禹颖. 基于APSIM模型的黄土旱塬区苜蓿——小麦轮作系统深层土壤水分及水分利用效率研究[J]. 草业学报, 2021, 30(7): 22-33. |
[3] | 周倩倩, 张亚见, 张静, 殷涂童, 盛下放, 何琳燕. 产硫化氢细菌的筛选及阻控苜蓿吸收铅和改良土壤的作用[J]. 草业学报, 2021, 30(7): 44-52. |
[4] | 李进, 陈仕勇, 赵旭, 田浩琦, 陈智华, 周青平. 基于SCoT标记的饲用燕麦品种遗传结构及指纹图谱分析[J]. 草业学报, 2021, 30(7): 72-81. |
[5] | 聂秀美, 慕平, 赵桂琴, 何海鹏, 吴文斌, 蔺豆豆, 苏伟娟, 张丽睿. 贮藏年限对裸燕麦种带真菌和真菌毒素的影响[J]. 草业学报, 2021, 30(6): 106-120. |
[6] | 臧真凤, 白婕, 刘丛, 昝看卓, 龙明秀, 何树斌. 紫花苜蓿形态和生理指标响应干旱胁迫的品种特异性[J]. 草业学报, 2021, 30(6): 73-81. |
[7] | 高鹏, 魏江铭, 李瑶, 张丽红, 赵祥, 杜利霞, 韩伟. 山西省大同市早播饲用燕麦叶部真菌病害病原鉴定及影响因素分析[J]. 草业学报, 2021, 30(6): 82-93. |
[8] | 谢展, 穆麟, 张志飞, 陈桂华, 刘洋, 高帅, 魏仲珊. 乳酸菌或有机酸盐与尿素复配添加对紫花苜蓿混合青贮的影响[J]. 草业学报, 2021, 30(5): 165-173. |
[9] | 王吉祥, 宫焕宇, 屠祥建, 郭侲洐, 赵嘉楠, 沈健, 栗振义, 孙娟. 耐亚磷酸盐紫花苜蓿品种筛选及评价指标的鉴定[J]. 草业学报, 2021, 30(5): 186-199. |
[10] | 张小芳, 魏小红, 刘放, 朱雪妹. PEG胁迫下紫花苜蓿幼苗内源激素对NO的响应[J]. 草业学报, 2021, 30(4): 160-169. |
[11] | 候怡谣, 李霄, 龙瑞才, 杨青川, 康俊梅, 郭长虹. 过量表达紫花苜蓿MsHB7基因对拟南芥耐旱性的影响[J]. 草业学报, 2021, 30(4): 170-179. |
[12] | 刘凯强, 刘文辉, 贾志锋, 梁国玲, 马祥. 干旱胁迫对‘青燕1号’燕麦产量及干物质积累与分配的影响[J]. 草业学报, 2021, 30(3): 177-188. |
[13] | 马欣, 罗珠珠, 张耀全, 刘家鹤, 牛伊宁, 蔡立群. 黄土高原雨养区不同种植年限紫花苜蓿土壤细菌群落特征与生态功能预测[J]. 草业学报, 2021, 30(3): 54-67. |
[14] | 沙栢平, 谢应忠, 高雪芹, 蔡伟, 伏兵哲. 地下滴灌水肥耦合对紫花苜蓿草产量及品质的影响[J]. 草业学报, 2021, 30(2): 102-114. |
[15] | 刘建新, 刘瑞瑞, 贾海燕, 卜婷, 李娜. NaHS引发提高裸燕麦种子活力的生理机制[J]. 草业学报, 2021, 30(2): 135-142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||