草业学报 ›› 2021, Vol. 30 ›› Issue (12): 39-48.DOI: 10.11686/cyxb2021243
李文1,2(), 魏廷虎3, 永措巴占3, 才仁塔次3, 周玉海3, 张雁平1(), 李文浩1, 郭卫兴1
收稿日期:
2021-06-17
修回日期:
2021-08-31
出版日期:
2021-11-11
发布日期:
2021-11-11
通讯作者:
张雁平
作者简介:
Corresponding author. E-mail: mkyzyp@126.com基金资助:
Wen LI1,2(), Ting-hu WEI3, Yongcuobazhan3, Cairentaci3, Yu-hai ZHOU3, Yan-ping ZHANG1(), Wen-hao LI1, Wei-xing GUO1
Received:
2021-06-17
Revised:
2021-08-31
Online:
2021-11-11
Published:
2021-11-11
Contact:
Yan-ping ZHANG
摘要:
建植混播人工草地是修复三江源黑土滩退化草地的有效措施,但不同混播比例下植被和土壤养分特征的变化尚不明确。以垂穗披碱草、中华羊茅和青海草地早熟禾分别按1∶1∶1(M4),2∶1∶1(M5),1∶2∶1(M6),1∶1∶2(M7),2∶2∶1(M8),2∶1∶2(M9)和1∶2∶2(M10)建植混播人工草地,并以各组分单播为对照,研究生产力、物种多样性、超产效应、多样性净效应(包括互补效应和选择效应)和土壤养分特征的变化,并采用多准则决策模型-TOPSIS进行综合评价,以筛选最佳混播比例,以期为三江源退化草地生态修复提供科学依据。结果表明:混播处理地上生物量显著高于中华羊茅和青海草地早熟禾单播的生物量,但显著低于垂穗披碱草单播处理,混播处理地上生物量在M5、M8、M9和M10处理较高。而地下生物量在混播处理间无显著差异。混播处理中,仅M5、M8、M9和M10处理存在超产,达40.4~71.1 g·m-2。M4和M6处理的多样性净效应均小于0,说明由于物种竞争导致群落减产。而M7~M10混播处理的多样性净效应均大于0,说明物种生态位的互补使得群落高产。M8和M9处理中互补效应和选择效应共同主导了超产效应,而M5和M10处理中主要由互补作用主导超产效应。表层土壤的有机质、全氮、全磷、速效磷和速效钾含量在M6、M7和M10混播处理中较高。TOPSIS模型综合评价表明,M10混播处理不但可保持较高的生产力,还可显著提高土壤的养分含量,是三江源区人工草地建植的理想混播比例。
李文, 魏廷虎, 永措巴占, 才仁塔次, 周玉海, 张雁平, 李文浩, 郭卫兴. 混播比例对三江源人工草地植被和土壤养分特征的影响[J]. 草业学报, 2021, 30(12): 39-48.
Wen LI, Ting-hu WEI, Yongcuobazhan, Cairentaci, Yu-hai ZHOU, Yan-ping ZHANG, Wen-hao LI, Wei-xing GUO. Effects of different mixed planting ratios on vegetation and soil characteristics of sown pasture in the Sanjiangyuan region[J]. Acta Prataculturae Sinica, 2021, 30(12): 39-48.
处理 Treatment | 混播比例 Mixed ratio1 | 播量Sowing quantity | ||
---|---|---|---|---|
垂穗披碱草 E. nutans | 中华羊茅 F. sinensis | 青海草地早熟禾 P. pratensis cv. Qinghai | ||
S1 | 1∶0∶0 | 30 | 0 | 0 |
S2 | 0∶1∶0 | 0 | 20 | 0 |
S3 | 0∶0∶1 | 0 | 0 | 10 |
M4 | 1∶1∶1 | 10 | 6.67 | 3.33 |
M5 | 2∶1∶1 | 15 | 5 | 2.5 |
M6 | 1∶2∶1 | 7.5 | 10 | 2.5 |
M7 | 1∶1∶2 | 7.5 | 5 | 5 |
M8 | 2∶2∶1 | 12 | 8 | 2 |
M9 | 2∶1∶2 | 12 | 4 | 4 |
M10 | 1∶2∶2 | 6 | 8 | 4 |
表1 垂穗披碱草、中华羊茅和青海草地早熟禾混播比例
Table 1 The mixed ratio of E. nutans×F. sinensis×P. pratensis cv. Qinghai (kg·hm-2)
处理 Treatment | 混播比例 Mixed ratio1 | 播量Sowing quantity | ||
---|---|---|---|---|
垂穗披碱草 E. nutans | 中华羊茅 F. sinensis | 青海草地早熟禾 P. pratensis cv. Qinghai | ||
S1 | 1∶0∶0 | 30 | 0 | 0 |
S2 | 0∶1∶0 | 0 | 20 | 0 |
S3 | 0∶0∶1 | 0 | 0 | 10 |
M4 | 1∶1∶1 | 10 | 6.67 | 3.33 |
M5 | 2∶1∶1 | 15 | 5 | 2.5 |
M6 | 1∶2∶1 | 7.5 | 10 | 2.5 |
M7 | 1∶1∶2 | 7.5 | 5 | 5 |
M8 | 2∶2∶1 | 12 | 8 | 2 |
M9 | 2∶1∶2 | 12 | 4 | 4 |
M10 | 1∶2∶2 | 6 | 8 | 4 |
物种Species | S1 | S2 | S3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 |
---|---|---|---|---|---|---|---|---|---|---|
垂穗披碱草E. nutans | 0.894 | 0.357 | 0.427 | 0.358 | 0.349 | 0.427 | 0.415 | 0.282 | ||
中华羊茅 F. sinensis | 0.859 | 0.276 | 0.276 | 0.315 | 0.268 | 0.291 | 0.235 | 0.364 | ||
青海草地早熟禾P. pratensis cv. Qinghai | 0.853 | 0.261 | 0.206 | 0.240 | 0.295 | 0.188 | 0.262 | 0.259 | ||
鹅绒委陵菜P. anserina | 0.028 | 0.050 | 0.050 | 0.050 | 0.049 | 0.045 | 0.052 | 0.055 | ||
多裂委陵菜P. multifida | 0.036 | 0.046 | 0.051 | 0.041 | 0.053 | |||||
细叶亚菊A. tenuifolia | 0.042 | 0.046 | ||||||||
狗娃花Heteropappus hispidus | 0.044 | 0.056 | 0.042 | |||||||
蒲公英T. mongolicum | 0.041 | |||||||||
独一味L. rotata | 0.033 | 0.057 | ||||||||
小大黄R. pumilum | 0.036 | 0.039 | ||||||||
合计Total | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
表2 不同混播比例人工草地物种重要值
Table 2 Changes in species important values of artificial grassland under different mixed-planting ratios
物种Species | S1 | S2 | S3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 |
---|---|---|---|---|---|---|---|---|---|---|
垂穗披碱草E. nutans | 0.894 | 0.357 | 0.427 | 0.358 | 0.349 | 0.427 | 0.415 | 0.282 | ||
中华羊茅 F. sinensis | 0.859 | 0.276 | 0.276 | 0.315 | 0.268 | 0.291 | 0.235 | 0.364 | ||
青海草地早熟禾P. pratensis cv. Qinghai | 0.853 | 0.261 | 0.206 | 0.240 | 0.295 | 0.188 | 0.262 | 0.259 | ||
鹅绒委陵菜P. anserina | 0.028 | 0.050 | 0.050 | 0.050 | 0.049 | 0.045 | 0.052 | 0.055 | ||
多裂委陵菜P. multifida | 0.036 | 0.046 | 0.051 | 0.041 | 0.053 | |||||
细叶亚菊A. tenuifolia | 0.042 | 0.046 | ||||||||
狗娃花Heteropappus hispidus | 0.044 | 0.056 | 0.042 | |||||||
蒲公英T. mongolicum | 0.041 | |||||||||
独一味L. rotata | 0.033 | 0.057 | ||||||||
小大黄R. pumilum | 0.036 | 0.039 | ||||||||
合计Total | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
图1 不同混播比例人工草地地上生物量和地下生物量不同字母表示处理间差异显著(P<0.05)。下同。Different letters indicate significant differences among the treatments at P<0.05. The same below.
Fig.1 Changes in aboveground biomass and belowground biomass of artificial grassland under different mixed-planting ratios
处理 Treatment | OY (g·m-2) | OY1 | OY2 |
---|---|---|---|
M4 | -17.07±8.71c | -0.26±0.01c | -0.03±0.02c |
M5 | 40.43±23.36ab | -0.17±0.03ab | 0.07±0.04ab |
M6 | -29.88±26.61c | -0.27±0.04c | -0.05±0.05c |
M7 | -27.62±27.43c | -0.27±0.04c | -0.05±0.05c |
M8 | 71.12±27.10a | -0.13±0.04a | 0.13±0.05a |
M9 | 60.89±25.96a | -0.15±0.04a | 0.11±0.05a |
M10 | 13.11±14.38bc | -0.21±0.02bc | 0.02±0.03bc |
表3 不同混播比例人工草地超产和超产效应
Table 3 Changes in over yielding and transgressive overyielding effect of artificial grassland under different mixed-planting ratios
处理 Treatment | OY (g·m-2) | OY1 | OY2 |
---|---|---|---|
M4 | -17.07±8.71c | -0.26±0.01c | -0.03±0.02c |
M5 | 40.43±23.36ab | -0.17±0.03ab | 0.07±0.04ab |
M6 | -29.88±26.61c | -0.27±0.04c | -0.05±0.05c |
M7 | -27.62±27.43c | -0.27±0.04c | -0.05±0.05c |
M8 | 71.12±27.10a | -0.13±0.04a | 0.13±0.05a |
M9 | 60.89±25.96a | -0.15±0.04a | 0.11±0.05a |
M10 | 13.11±14.38bc | -0.21±0.02bc | 0.02±0.03bc |
图2 不同混播比例人工草地多样性净效应、选择效应和互补效应
Fig.2 Changes in net effect of biodiversity, selection effect and complementarity effect of artificial grassland under different mixed-planting ratios
图3 超产效应1与多样性净效应、选择效应和互补效应的关系
Fig.3 The relationship between transgressive overyielding effect 1 and net effect of biodiversity, selection effect and complementary effect
处理 Treatment | Shannon-Wiener指数 Shannon-Wiener index | Pielou指数 Pielou index | 丰富度指数 Richness index |
---|---|---|---|
S1 | 0.49±0.05d | 0.35±0.04c | 4.00±1.00b |
S2 | 0.61±0.08c | 0.44±0.03b | 4.00±1.00b |
S3 | 0.63±0.02c | 0.39±0.03bc | 5.00±1.00ab |
M4 | 1.51±0.07a | 0.84±0.03a | 5.00±1.00ab |
M5 | 1.45±0.04a | 0.81±0.06a | 5.00±1.00ab |
M6 | 1.47±0.05a | 0.82±0.01a | 5.00±1.00ab |
M7 | 1.49±0.04a | 0.83±0.03a | 5.00±0.00a |
M8 | 1.32±0.05b | 0.84±0.02a | 5.00±1.00ab |
M9 | 1.33±0.07b | 0.83±0.02a | 5.00±0.00ab |
M10 | 1.36±0.05b | 0.84±0.03a | 5.00±0.00ab |
表4 不同混播比例人工草地物种多样性
Table 4 Changes in species diversity of artificial grassland under different mixed-planting ratios
处理 Treatment | Shannon-Wiener指数 Shannon-Wiener index | Pielou指数 Pielou index | 丰富度指数 Richness index |
---|---|---|---|
S1 | 0.49±0.05d | 0.35±0.04c | 4.00±1.00b |
S2 | 0.61±0.08c | 0.44±0.03b | 4.00±1.00b |
S3 | 0.63±0.02c | 0.39±0.03bc | 5.00±1.00ab |
M4 | 1.51±0.07a | 0.84±0.03a | 5.00±1.00ab |
M5 | 1.45±0.04a | 0.81±0.06a | 5.00±1.00ab |
M6 | 1.47±0.05a | 0.82±0.01a | 5.00±1.00ab |
M7 | 1.49±0.04a | 0.83±0.03a | 5.00±0.00a |
M8 | 1.32±0.05b | 0.84±0.02a | 5.00±1.00ab |
M9 | 1.33±0.07b | 0.83±0.02a | 5.00±0.00ab |
M10 | 1.36±0.05b | 0.84±0.03a | 5.00±0.00ab |
1 | Deng J J, Bai X J, Zhou Y B, et al. Variations of soil microbial communities accompanied by different vegetation restoration in an open-cut iron mining area. Science of the Total Environment, 2020, 704: 1-11. |
2 | Mu C C, Abbott B W, Norris A J, et al. The status and stability of permafrost carbon on the Tibetan Plateau. Earth-Science Reviews, 2020, 211: 3382-3393. |
3 | Miehe G, Schleuss M, Seeber E, et al. The Kobresia pygmaea ecosystem of the Tibetan highlands-origin, functioning and degradation of the world’s largest pastoral alpine ecosystem: Kobresia pastures of Tibetan. Science of the Total Environment, 2019, 648: 754-771. |
4 | Shang Z H, Dong Q M, Shi J J, et al. Research progress in recent ten years of ecological restoration for “black soil land” degraded grassland on Tibetan Plateau-Concurrently discuss of ecological restoration in Sanjiangyuan Region. Acta Agrestia Sinica, 2018, 26(1): 1-21. |
尚占环, 董全民, 施建军, 等. 青藏高原“黑土滩”退化草地及其生态恢复近10年研究进展兼论三江源生态恢复问题. 草地学报, 2018, 26(1): 1-21. | |
5 | Dong S K, Shang Z H, Gao J X, et al. Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau. Agriculture, Ecosystems and Environment, 2020, 287: 1-16. |
6 | Bai Y F, Ma L N, Degen A A, et al. Long-term active restoration of extremely degraded alpine grassland accelerated turnover and increased stability of soil carbon. Global Change Biology, 2020, 26(12): 7217-7228. |
7 | Wu S N, Zhang X, Gao X X, et al. Succession dynamics of a plant community of degraded alpine meadow during the human-induced restoration process in the Three Rivers Source region. Acta Ecologica Sinica, 2019, 39(7): 2444-2453. |
武胜男, 张曦, 高晓霞, 等. 三江源区“黑土滩”型退化草地人工恢复植物群落的演替动态. 生态学报, 2019, 39(7): 2444-2453. | |
8 | Dong Q M, Ma Y S, Xu C J, et al. Study of classification and gradation, restoration of black-soil beach degraded grassland in the Headwaters of Three Rivers. Acta Agrestia Sinica, 2015, 23(3): 441-447. |
董全民, 马玉寿, 许长军, 等. 三江源区黑土滩退化草地分类分级体系及分类恢复研究. 草地学报, 2015, 23(3): 441-447. | |
9 | Qin Y, Chen J J, Yi S H. Plateau pikas burrowing activity accelerates ecosystem carbon emission from alpine grassland on the Qinghai-Tibetan Plateau. Ecological Engineering, 2015, 84: 287-291. |
10 | Shang Z H, Dong Q M, Degen A A, et al. Ecological restoration on Qinghai-Tibetan Plateau: Problems, strategies and prospects. New York: Nova Science Publishers, 2016. |
11 | Li X L, Perry G L W, Brierley G, et al. Quantitative assessment of degradation classifications for degraded alpine meadows (Heitutan), Sanjiangyuan, Western China. Land Degradation & Development, 2015, 25(5): 417-427. |
12 | Zhang Y, Zhang C B, Wang Z Q, et al. Quantitative assessment of relative roles of climate change and human activities on grassland net primary productivity in the Three-River Source Region, China. Acta Prataculturae Sinica, 2017, 26(5): 1-14. |
张颖, 章超斌, 王钊齐, 等. 气候变化与人为活动度对三江源草地生产力影响的定量研究. 草业学报, 2017, 26(5): 1-14. | |
13 | Wu X H, Shan X K, Dong S K, et al. Prediction of alpine artificial grassland restoration based on an improved Lotka-Volterra interspecific competition model. Acta Ecologica Sinica, 2019, 39(9): 3187-3198. |
吴晓慧, 单熙凯, 董世魁, 等. 基于改进的Lotka-Volterra种间竞争模型预测退化高寒草地人工恢复演替结果. 生态学报, 2019, 39(9): 3187-3198. | |
14 | Guo N, Degen A A, Deng B, et al. Changes in vegetation parameters and soil nutrients along degradation and recovery successions on alpine grasslands of the Tibetan plateau. Agriculture, Ecosystems & Environment, 2019, 284: 1-12. |
15 | Xu S H, Shang Z H. The three-stage species niche and reproductive characteristics of poisonous weeds in the three-stages of the secondary vegetation’s formation of ‘bare land’ degraded grassland in the Three Rivers Source region, Qinghai-Tibetan Plateau. Acta Agrestia Sinica, 2019, 27(4): 949-955. |
徐松鹤, 尚占环. 三江源区“黑土滩”次生植被形成的三阶段物种生态位与毒杂草繁殖特征. 草地学报, 2019, 27(4): 949-955. | |
16 | Ma Y S, Shang Z H, Shi J J, et al. Studies on allocate skills of artificial community of “black soil type” degraded grassland in the Yellow River source region. Acta Agriculturae Boreali-Occidentalis Sinica, 2007, 16(5): 1-6. |
马玉寿, 尚占环, 施建军, 等. 黄河源区“黑土型”退化草地人工群落组分配置技术研究. 西北农业学报, 2007, 16(5): 1-6. | |
17 | Ma Y S, Shi J J, Dong Q M, et al. Study on screening of forage species fittingly cultivated in black-soil beach. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2011, 41(4): 1-4. |
马玉寿, 施建军, 董全民, 等. 适宜黑土滩栽培的牧草品种筛选研究. 青海畜牧兽医杂志, 2011, 41(4): 1-4. | |
18 | Ma Y S, Lang B N, Li Q Y, et al. Study on rehabilitating and rebuilding technologies for degenerated alpine meadow in the Changjiang and Yellow river source region. Pratacultural Science, 2002, 19(9): 1-5. |
马玉寿, 郎百宁, 李青云, 等. 江河源区高寒草甸退化草地恢复与重建技术研究. 草业科学, 2002, 19(9): 1-5. | |
19 | Bao S D. Soil agro-chemistrical analysis. Beijing: China Agriculture Press, 2001. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2001. | |
20 | Ma K P, Huang J H, Yu S L, et al. Plant community diversity in Dongling Mountain, Beijing, China: Ⅱ. Species richness, evenness and species diversities. Acta Ecologica Sinica, 1995, 15(3): 268-277. |
马克平, 黄建辉, 于顺利, 等. 北京东灵山地区植物群落多样性的研究Ⅱ丰富度、均匀度和物种多样性指数. 生态学报, 1995, 15(3): 268-277. | |
21 | Loreau M, Hector A. Partitioning selection and complementarity in biodiversity experiments. Nature, 2001, 412: 72-76. |
22 | Li J, Pan P, Wang C T, et al. Root dynamics of artificial grassland for swards of differing ages in the ‘Three-River Source’ region. Acta Prataculturae Sinica, 2021, 30(3): 28-40. |
李洁, 潘攀, 王长庭, 等. 三江源区不同建植年限人工草地根系动态特征. 草业学报, 2021, 30(3): 28-40. | |
23 | Guan H L, Fan J W, Li Y Z. The impact of different introduced artificial grassland species combinations on community biomass and species diversity in temperate steppe of the Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2019, 28(9): 192-201. |
官惠玲, 樊江文, 李愈哲. 不同人工草地对青藏高原温性草原群落生物量组成及物种多样性的影响. 草业学报, 2019, 28(9): 192-201. | |
24 | Cox S, Peel M D, Creech J E, et al. Forage production of grass-legume binary mixtures on intermountain Western USA irrigated pastures. Crop Science, 2017, 57: 1742-1753. |
25 | Hector A, Hautier Y, Saner P, et al. General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology, 2010, 91(8): 2213-2220. |
26 | Li L, Tilman D, Lambers H, et al. Plant diversity and overyielding: Insights from belowground facilitation of intercropping in agriculture. New Phytologist, 2014, 203: 63-69. |
27 | Wang Y K, Ding X F, Wang X P, et al. Genotypic diversity of a dominant species Leymus chinensis inhibited ecological function of species diversity in the Inner Mongolia Steppe. Acta Ecologica Sinica, 2019, 39(5): 1507-1516. |
王宇坤, 丁新峰, 王小平, 等. 内蒙古典型草原建群种羊草基因型多样性抑制群落物种多样性的生态功能. 生态学报, 2019, 39(5): 1507-1516. | |
28 | Li S S, Wang N X, Zheng W, et al. Comparison of transgressive overyielding effect and plant diversity effects of annual and perennial legume-grass mixtures. Chinese Journal of Plant Ecology, 2021, 45(1): 23-37. |
黎松松, 王宁欣, 郑伟, 等. 一年生和多年生豆禾混播草地超产与多样性效应的比较. 植物生态学报, 2021, 45(1): 23-37. | |
29 | Li C J, Li Y Y, Yu C B, et al. Crop nitrogen use and soil mineral nitrogen accumulation under different crop combinations and patterns of strip intercropping in northwest China. Plant and Soil, 2011, 342(1): 221-231. |
30 | Bauters M, Moonen P, Summerauer L, et al. Soil nutrient depletion and tree functional composition shift following repeated clearing in secondary forests of the Congo Basin. Ecosystems, 2021, 24(1): 1-14. |
31 | Xie K Y, Zhao Y, Li X L, et al. Relationships between grasses and legumes in mixed grassland: A review. Acta Prataculturae Sinica, 2013, 22(3): 284-296. |
谢开云, 赵云, 李向林, 等. 豆-禾混播草地种间关系研究进展. 草业学报, 2013, 22(3): 284-296. | |
32 | Wu X J, Yang M, Lu Y X, et al. Effects of mixing ratio and nitrogen fertilization on root characteristics in the common vetch/oat mixture. Acta Prataculturae Sinica, 2020, 29(9): 106-116. |
吴晓娟, 杨梅, 芦奕晓, 等. 混播比例和施氮肥对箭筈豌豆/燕麦草地根系特性的影响. 草业学报, 2020, 29(9): 106-116. | |
33 | Lai X L, Shi S L, Wu F, et al. Nutrient characteristics of soil sowed with different combinations of alfalfa and three perennial grasses. Pratacultural Science, 2020, 37(1): 52-64. |
来幸樑, 师尚礼, 吴芳, 等. 紫花苜蓿与3种多年生禾草混播草地的土壤养分特征. 草业科学, 2020, 37(1): 52-64. |
[1] | 王传旗, 刘文辉, 张永超, 周青平. 野生垂穗披碱草成苗期间的耐旱性研究[J]. 草业学报, 2021, 30(9): 76-85. |
[2] | 林小丁, 常乐, 冯丹. 2000-2019年青海地区植被总初级生产力遥感估算及时空变化分析[J]. 草业学报, 2021, 30(6): 16-27. |
[3] | 李洁, 潘攀, 王长庭, 胡雷, 陈科宇, 杨文高. 三江源区不同建植年限人工草地根系动态特征[J]. 草业学报, 2021, 30(3): 28-40. |
[4] | 刘斯莉, 王长庭, 张昌兵, 胡雷, 唐立涛, 潘攀. 川西北高原3种禾本科牧草根系特征比较研究[J]. 草业学报, 2021, 30(3): 41-53. |
[5] | 孙华方, 李希来, 金立群, 李成一, 张静. 黄河源人工草地土壤微生物多样性对建植年限的响应[J]. 草业学报, 2021, 30(2): 46-58. |
[6] | 罗文蓉, 胡国铮, 干珠扎布, 高清竹, 李岩, 葛怡情, 李钰, 何世丞, 旦久罗布. 模拟干旱对藏北高寒草甸植物物候期和生产力的影响[J]. 草业学报, 2021, 30(2): 82-92. |
[7] | 林慧龙, 范迪, 冯琦胜, 梁天刚. 草地综合顺序分类法研究新热点:2008-2020年回顾与展望[J]. 草业学报, 2021, 30(10): 201-213. |
[8] | 周诗晶, 罗佳宁, 刘仲淼, 董超, 秦燕, 吴淑娟, 甘红军, 谢菲, 庄光辉, 伏兵哲, 牛得草. 箭筈豌豆种植密度对土壤微生物养分代谢的影响[J]. 草业学报, 2021, 30(10): 63-72. |
[9] | 刘万弟, 李小伟, 黄文广, 马惠成, 马红英, 王文晓. 宁夏草原针茅属植物群落物种多样性和生产力格局及影响因素研究[J]. 草业学报, 2021, 30(1): 12-23. |
[10] | 韩福贵, 满多清, 郑庆钟, 赵艳丽, 张裕年, 肖斌, 付贵全, 杜娟. 青土湖典型湿地白刺灌丛沙堆群落物种多样性及土壤养分变化特征研究[J]. 草业学报, 2021, 30(1): 36-45. |
[11] | 鲍根生, 宋梅玲, 王玉琴, 尹亚丽, 王宏生. 围封和防除狼毒对狼毒斑块土壤理化性质和微生物量影响的研究[J]. 草业学报, 2020, 29(9): 63-72. |
[12] | 吴晓娟, 杨梅, 芦奕晓, 杨惠敏. 混播比例和施氮肥对箭筈豌豆/燕麦草地根系特性的影响[J]. 草业学报, 2020, 29(9): 106-116. |
[13] | 梁军, 全小龙, 张杰雪, 史惠兰, 段中华, 乔有明. 3种禾草水提取液对其种子发芽和幼苗生长的潜在化感作用[J]. 草业学报, 2020, 29(7): 81-89. |
[14] | 崔博超, 郑江华, 吐尔逊·哈斯木, 段素素, 杜梦洁. 塔里木河流域草地净初级生产力时空分异特征研究[J]. 草业学报, 2020, 29(6): 1-13. |
[15] | 黄玙璠, 舒英格, 肖盛杨, 陈梦军. 喀斯特山区不同草地土壤养分与酶活性特征[J]. 草业学报, 2020, 29(6): 93-104. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||