草业学报 ›› 2023, Vol. 32 ›› Issue (3): 200-211.DOI: 10.11686/cyxb2022083
• 研究论文 • 上一篇
苗涵1,2(), 魏莱1,2, 杨燕萍1,2, 车永和1,2()
收稿日期:
2022-02-19
修回日期:
2022-04-25
出版日期:
2023-03-20
发布日期:
2022-12-30
通讯作者:
车永和
作者简介:
E-mail: 13933502823@163.com基金资助:
Han MIAO1,2(), Lai WEI1,2, Yan-ping YANG1,2, Yong-he CHE1,2()
Received:
2022-02-19
Revised:
2022-04-25
Online:
2023-03-20
Published:
2022-12-30
Contact:
Yong-he CHE
摘要:
冰草植物为禾本科小麦族多年生牧草,具有耐干旱、抗寒冷、耐盐碱等优点,是盐碱地改良的优良作物。为给冰草种质耐盐性评价提供依据,本试验对2个冰草主栽品种,蒙农1号蒙古冰草和蒙农杂种冰草,通过温室花盆培育在幼苗期进行了5个海水浓度的梯度胁迫,经30 d胁迫后,对各浓度处理材料的株高(SH)、根长(RL)、超氧化物歧化酶(SOD)、丙二醛(MDA)和K+等共12项农艺性状和生理指标进行了测定。探究盐胁迫对冰草幼苗的生长特征、K+/Na+、抗氧化酶活性和渗透调节物质等的影响;通过公式计算各项指标在不同浓度海水处理下的耐盐系数,进一步对其采用主成分分析、模糊隶属函数分析和逐步回归方程等方法进行耐盐性系统评价。结果表明:供试材料在不同浓度盐胁迫处理下除苗相对含水量无显著差异外,各指标间均存在显著差异(P
苗涵, 魏莱, 杨燕萍, 车永和. 海水胁迫下冰草幼苗期耐盐性指标筛选[J]. 草业学报, 2023, 32(3): 200-211.
Han MIAO, Lai WEI, Yan-ping YANG, Yong-he CHE. Comprehensive screening of Agropyron cultivars for tolerance to salt stress at the seedling stage[J]. Acta Prataculturae Sinica, 2023, 32(3): 200-211.
图1 不同浓度海水胁迫下冰草材料的形态指标和相对含水量不同字母代表同一种冰草材料在不同浓度之间差异显著(P<0.05),下同。
Fig.1 Morphological indexes and relative water content of Agropyron under different seawater concentrationDifferent letters represent the significant differences (P<0.05) of the same material of Agropyron under different seawater treatment, the same below.
图4 不同海水浓度下冰草材料的抗氧化酶活性和渗透调节物质含量
Fig.4 Antioxidant enzyme activity and osmotic adjustment substance content of Agropyron under different seawater concentration
指标 Index | 蒙冰Mengnong No.1 | ||||
---|---|---|---|---|---|
30% | 40% | 50% | 60% | 70% | |
MDA | 1.04±0.05b | 1.22±0.04b | 0.71±0.13b | 2.37±0.35a | 2.42±0.31a |
SOD | 3.33±0.06d | 4.79±0.04c | 7.98±0.28b | 8.21±0.18b | 9.02±0.32a |
POD | 1.20±0.02d | 1.42±0.04c | 1.67±0.05a | 1.56±0.03b | 0.97±0.02e |
SP | 0.03±0.00ab | 0.02±0.00bc | 0.02±0.00c | 0.02±0.00bc | 0.03±0.00a |
SS | 0.85±0.02a | 0.30±0.01c | 0.11±0.01d | 0.02±0.01e | 0.58±0.04b |
Pro | 1.38±0.02c | 2.72±0.08b | 2.88±0.08b | 4.40±0.02a | 4.43±0.08a |
Na+ | 6.97±0.23e | 14.91±1.69c | 10.70±0.67d | 20.55±0.32b | 24.79±0.87a |
K+ | 0.76±0.00ab | 0.68±0.00ab | 0.77±0.00a | 0.66±0.00bc | 0.57±0.00c |
SH | 0.91±0.05a | 0.82±0.07a | 0.93±0.04a | 0.79±0.05a | 0.57±0.07b |
RL | 0.72±0.09b | 1.14±0.11a | 1.27±0.14a | 0.94±0.01ab | 0.92±0.07ab |
RWC-R | 1.14±0.02a | 1.14±0.05a | 1.01±0.03b | 1.12±0.03ab | 1.15±0.01a |
RWC-S | 1.04±0.03a | 1.03±0.05a | 0.89±0.11a | 0.92±0.06a | 1.03±0.02a |
指标 Index | 蒙农Hycrest-Mengnong | ||||
30% | 40% | 50% | 60% | 70% | |
MDA | 1.12±0.06b | 1.00±0.21b | 0.94±0.02b | 1.54±0.05a | 1.69±0.07a |
SOD | 1.59±0.08d | 2.44±0.08c | 3.77±0.11b | 3.82±0.12b | 4.23±0.18a |
POD | 1.29±0.02d | 1.44±0.05c | 1.73±0.05a | 1.60±0.02b | 0.91±0.02e |
SP | 0.13±0.00a | 0.07±0.02d | 0.12±0.01b | 0.09±0.00c | 0.13±0.00a |
SS | 0.89±0.02a | 0.31±0.13c | 0.13±0.02cd | 0.02±0.01d | 0.57±0.04b |
Pro | 3.73±0.19c | 4.59±0.02b | 6.45±0.07a | 6.46±0.06a | 6.43±0.13a |
Na+ | 3.08±0.10d | 4.32±0.42bc | 3.67±0.22cd | 5.06±0.41b | 6.32±0.34a |
K+ | 0.75±0.00ab | 0.73±0.00ab | 0.82±0.00a | 0.70±0.01b | 0.72±0.00ab |
SH | 0.80±0.10a | 0.79±0.04a | 0.82±0.06a | 0.73±0.00a | 0.65±0.00a |
RL | 0.61±0.05ab | 0.44±0.03b | 0.54±0.06ab | 0.50±0.08ab | 0.62±0.03a |
RWC-R | 1.09±0.10a | 1.01±0.02a | 1.14±0.05a | 1.10±0.03a | 0.95±0.02a |
RWC-S | 1.02±0.01a | 1.00±0.01a | 1.01±0.03a | 1.02±0.01a | 1.01±0.01a |
表1 不同海水浓度下冰草幼苗耐盐系数
Table 1 Saline tolerance coefficient for the seeding stage of Agropyron under different seawater concentration
指标 Index | 蒙冰Mengnong No.1 | ||||
---|---|---|---|---|---|
30% | 40% | 50% | 60% | 70% | |
MDA | 1.04±0.05b | 1.22±0.04b | 0.71±0.13b | 2.37±0.35a | 2.42±0.31a |
SOD | 3.33±0.06d | 4.79±0.04c | 7.98±0.28b | 8.21±0.18b | 9.02±0.32a |
POD | 1.20±0.02d | 1.42±0.04c | 1.67±0.05a | 1.56±0.03b | 0.97±0.02e |
SP | 0.03±0.00ab | 0.02±0.00bc | 0.02±0.00c | 0.02±0.00bc | 0.03±0.00a |
SS | 0.85±0.02a | 0.30±0.01c | 0.11±0.01d | 0.02±0.01e | 0.58±0.04b |
Pro | 1.38±0.02c | 2.72±0.08b | 2.88±0.08b | 4.40±0.02a | 4.43±0.08a |
Na+ | 6.97±0.23e | 14.91±1.69c | 10.70±0.67d | 20.55±0.32b | 24.79±0.87a |
K+ | 0.76±0.00ab | 0.68±0.00ab | 0.77±0.00a | 0.66±0.00bc | 0.57±0.00c |
SH | 0.91±0.05a | 0.82±0.07a | 0.93±0.04a | 0.79±0.05a | 0.57±0.07b |
RL | 0.72±0.09b | 1.14±0.11a | 1.27±0.14a | 0.94±0.01ab | 0.92±0.07ab |
RWC-R | 1.14±0.02a | 1.14±0.05a | 1.01±0.03b | 1.12±0.03ab | 1.15±0.01a |
RWC-S | 1.04±0.03a | 1.03±0.05a | 0.89±0.11a | 0.92±0.06a | 1.03±0.02a |
指标 Index | 蒙农Hycrest-Mengnong | ||||
30% | 40% | 50% | 60% | 70% | |
MDA | 1.12±0.06b | 1.00±0.21b | 0.94±0.02b | 1.54±0.05a | 1.69±0.07a |
SOD | 1.59±0.08d | 2.44±0.08c | 3.77±0.11b | 3.82±0.12b | 4.23±0.18a |
POD | 1.29±0.02d | 1.44±0.05c | 1.73±0.05a | 1.60±0.02b | 0.91±0.02e |
SP | 0.13±0.00a | 0.07±0.02d | 0.12±0.01b | 0.09±0.00c | 0.13±0.00a |
SS | 0.89±0.02a | 0.31±0.13c | 0.13±0.02cd | 0.02±0.01d | 0.57±0.04b |
Pro | 3.73±0.19c | 4.59±0.02b | 6.45±0.07a | 6.46±0.06a | 6.43±0.13a |
Na+ | 3.08±0.10d | 4.32±0.42bc | 3.67±0.22cd | 5.06±0.41b | 6.32±0.34a |
K+ | 0.75±0.00ab | 0.73±0.00ab | 0.82±0.00a | 0.70±0.01b | 0.72±0.00ab |
SH | 0.80±0.10a | 0.79±0.04a | 0.82±0.06a | 0.73±0.00a | 0.65±0.00a |
RL | 0.61±0.05ab | 0.44±0.03b | 0.54±0.06ab | 0.50±0.08ab | 0.62±0.03a |
RWC-R | 1.09±0.10a | 1.01±0.02a | 1.14±0.05a | 1.10±0.03a | 0.95±0.02a |
RWC-S | 1.02±0.01a | 1.00±0.01a | 1.01±0.03a | 1.02±0.01a | 1.01±0.01a |
指标Indexes | SOD | POD | SS | RWC-R | RWC-S | Pro | Na+ | K+ | MDA | SP | RL |
---|---|---|---|---|---|---|---|---|---|---|---|
POD | 0.296 | ||||||||||
SS | -0.560* | -0.643** | |||||||||
RWC-R | -0.051 | 0.598* | -0.176 | ||||||||
RWC-S | -0.201 | 0.131 | -0.056 | -0.180 | |||||||
Pro | 0.485 | 0.130 | -0.662** | 0.002 | 0.048 | ||||||
Na+ | 0.212 | -0.489 | -0.149 | -0.331 | -0.053 | 0.574* | |||||
K+ | 0.002 | 0.338 | -0.008 | 0.501 | -0.058 | 0.001 | -0.169 | ||||
MDA | -0.107 | -0.500 | 0.099 | -0.254 | 0.170 | 0.422 | 0.805** | -0.337 | |||
SP | -0.304 | 0.394 | 0.284 | 0.360 | 0.037 | -0.562* | -0.938** | 0.436 | -0.764** | ||
RL | -0.321 | -0.431 | 0.431 | -0.204 | -0.120 | 0.082 | -0.020 | -0.226 | 0.241 | 0.091 | |
SH | -0.115 | 0.381 | -0.053 | 0.500 | 0.044 | -0.305 | -0.594* | 0.291 | -0.558* | 0.570* | -0.393 |
表2 各耐盐指标的相关性分析
Table 2 Correlation analysis of salt tolerance coefficients
指标Indexes | SOD | POD | SS | RWC-R | RWC-S | Pro | Na+ | K+ | MDA | SP | RL |
---|---|---|---|---|---|---|---|---|---|---|---|
POD | 0.296 | ||||||||||
SS | -0.560* | -0.643** | |||||||||
RWC-R | -0.051 | 0.598* | -0.176 | ||||||||
RWC-S | -0.201 | 0.131 | -0.056 | -0.180 | |||||||
Pro | 0.485 | 0.130 | -0.662** | 0.002 | 0.048 | ||||||
Na+ | 0.212 | -0.489 | -0.149 | -0.331 | -0.053 | 0.574* | |||||
K+ | 0.002 | 0.338 | -0.008 | 0.501 | -0.058 | 0.001 | -0.169 | ||||
MDA | -0.107 | -0.500 | 0.099 | -0.254 | 0.170 | 0.422 | 0.805** | -0.337 | |||
SP | -0.304 | 0.394 | 0.284 | 0.360 | 0.037 | -0.562* | -0.938** | 0.436 | -0.764** | ||
RL | -0.321 | -0.431 | 0.431 | -0.204 | -0.120 | 0.082 | -0.020 | -0.226 | 0.241 | 0.091 | |
SH | -0.115 | 0.381 | -0.053 | 0.500 | 0.044 | -0.305 | -0.594* | 0.291 | -0.558* | 0.570* | -0.393 |
主成分 Principal component | 特征值 Eigenvalues | 贡献率 Contribution (%) | 累积贡献率 Cumulative contribution (%) |
---|---|---|---|
PC1 | 3.705 | 30.874 | 30.874 |
PC2 | 2.449 | 20.411 | 51.285 |
PC3 | 2.007 | 16.727 | 68.012 |
PC4 | 1.286 | 10.713 | 78.725 |
表3 主成分分析
Table 3 The result of principal component analysis
主成分 Principal component | 特征值 Eigenvalues | 贡献率 Contribution (%) | 累积贡献率 Cumulative contribution (%) |
---|---|---|---|
PC1 | 3.705 | 30.874 | 30.874 |
PC2 | 2.449 | 20.411 | 51.285 |
PC3 | 2.007 | 16.727 | 68.012 |
PC4 | 1.286 | 10.713 | 78.725 |
指标 Indexes | 主成分 Principal component | |||
---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | |
SOD | 0.746 | -0.402 | -0.316 | -0.122 |
POD | 0.472 | 0.528 | -0.544 | 0.328 |
SS | -0.116 | -0.214 | 0.926 | -0.119 |
RWC-R | -0.203 | 0.202 | 0.129 | 0.874 |
RWC-S | 0.097 | -0.402 | 0.447 | 0.349 |
Pro | 0.325 | -0.698 | -0.553 | 0.095 |
Na+ | -0.908 | 0.075 | -0.205 | 0.187 |
K+ | 0.743 | 0.333 | 0.129 | -0.015 |
MDA | -0.718 | -0.400 | -0.254 | 0.216 |
SP | 0.618 | -0.103 | 0.264 | 0.322 |
SH | 0.360 | 0.792 | 0.138 | 0.057 |
RL | -0.593 | 0.601 | -0.143 | -0.254 |
表4 各因子载荷矩阵
Table 4 Factor loading
指标 Indexes | 主成分 Principal component | |||
---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | |
SOD | 0.746 | -0.402 | -0.316 | -0.122 |
POD | 0.472 | 0.528 | -0.544 | 0.328 |
SS | -0.116 | -0.214 | 0.926 | -0.119 |
RWC-R | -0.203 | 0.202 | 0.129 | 0.874 |
RWC-S | 0.097 | -0.402 | 0.447 | 0.349 |
Pro | 0.325 | -0.698 | -0.553 | 0.095 |
Na+ | -0.908 | 0.075 | -0.205 | 0.187 |
K+ | 0.743 | 0.333 | 0.129 | -0.015 |
MDA | -0.718 | -0.400 | -0.254 | 0.216 |
SP | 0.618 | -0.103 | 0.264 | 0.322 |
SH | 0.360 | 0.792 | 0.138 | 0.057 |
RL | -0.593 | 0.601 | -0.143 | -0.254 |
编号 Number | 综合指标值 Comprehensive index value | 隶属函数值 Subordinative function value | D值 D value | 预测值 Prediction value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CI1 | CI2 | CI3 | CI4 | μ1 | μ2 | μ3 | μ4 | |||
T1 | -1.993 | -0.487 | -1.922 | 2.449 | 0.690 | 1.000 | 0.995 | 0.069 | 0.751 | 0.781 |
T2 | -5.068 | -0.864 | -4.449 | 3.783 | 0.357 | 0.871 | 0.532 | 0.520 | 0.550 | 0.524 |
T3 | -1.592 | -1.614 | -4.814 | 2.598 | 0.734 | 0.613 | 0.465 | 0.119 | 0.562 | 0.575 |
T4 | -6.450 | -2.491 | -7.152 | 4.758 | 0.208 | 0.313 | 0.036 | 0.850 | 0.286 | 0.289 |
T5 | -8.367 | -2.945 | -7.350 | 5.201 | 0.000 | 0.157 | 0.000 | 1.000 | 0.177 | 0.175 |
T6 | -0.387 | -1.373 | -1.895 | 2.245 | 0.864 | 0.696 | 1.000 | 0.000 | 0.732 | 0.700 |
T7 | -0.354 | -1.825 | -3.032 | 2.462 | 0.868 | 0.541 | 0.792 | 0.073 | 0.659 | 0.645 |
T8 | 0.870 | -2.819 | -4.157 | 2.548 | 1.000 | 0.200 | 0.585 | 0.103 | 0.582 | 0.565 |
T9 | -0.050 | -3.019 | -4.527 | 2.812 | 0.900 | 0.132 | 0.517 | 0.192 | 0.523 | 0.541 |
T10 | -0.794 | -3.403 | -4.233 | 2.586 | 0.820 | 0.000 | 0.571 | 0.115 | 0.459 | 0.486 |
表5 不同海水浓度处理下各指标的综合指标值、隶属函数值、耐盐综合评价值D及预测值
Table 5 The values of the comprehensive index value, subordinative function value, D value, and prediction value under different seawater treatment
编号 Number | 综合指标值 Comprehensive index value | 隶属函数值 Subordinative function value | D值 D value | 预测值 Prediction value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CI1 | CI2 | CI3 | CI4 | μ1 | μ2 | μ3 | μ4 | |||
T1 | -1.993 | -0.487 | -1.922 | 2.449 | 0.690 | 1.000 | 0.995 | 0.069 | 0.751 | 0.781 |
T2 | -5.068 | -0.864 | -4.449 | 3.783 | 0.357 | 0.871 | 0.532 | 0.520 | 0.550 | 0.524 |
T3 | -1.592 | -1.614 | -4.814 | 2.598 | 0.734 | 0.613 | 0.465 | 0.119 | 0.562 | 0.575 |
T4 | -6.450 | -2.491 | -7.152 | 4.758 | 0.208 | 0.313 | 0.036 | 0.850 | 0.286 | 0.289 |
T5 | -8.367 | -2.945 | -7.350 | 5.201 | 0.000 | 0.157 | 0.000 | 1.000 | 0.177 | 0.175 |
T6 | -0.387 | -1.373 | -1.895 | 2.245 | 0.864 | 0.696 | 1.000 | 0.000 | 0.732 | 0.700 |
T7 | -0.354 | -1.825 | -3.032 | 2.462 | 0.868 | 0.541 | 0.792 | 0.073 | 0.659 | 0.645 |
T8 | 0.870 | -2.819 | -4.157 | 2.548 | 1.000 | 0.200 | 0.585 | 0.103 | 0.582 | 0.565 |
T9 | -0.050 | -3.019 | -4.527 | 2.812 | 0.900 | 0.132 | 0.517 | 0.192 | 0.523 | 0.541 |
T10 | -0.794 | -3.403 | -4.233 | 2.586 | 0.820 | 0.000 | 0.571 | 0.115 | 0.459 | 0.486 |
编号 Number | D值 D value | 预测值 Prediction value | 差值 Difference value | 估计精度 Evaluation accuracy (%) |
---|---|---|---|---|
T1 | 0.751 | 0.781 | 0.030 | 96.02 |
T2 | 0.550 | 0.524 | 0.026 | 95.39 |
T3 | 0.562 | 0.575 | 0.013 | 97.68 |
T4 | 0.286 | 0.289 | 0.003 | 98.73 |
T5 | 0.177 | 0.175 | 0.002 | 99.24 |
T6 | 0.732 | 0.700 | 0.032 | 95.66 |
T7 | 0.659 | 0.645 | 0.014 | 97.89 |
T8 | 0.582 | 0.565 | 0.017 | 97.06 |
T9 | 0.523 | 0.541 | 0.018 | 96.60 |
T10 | 0.459 | 0.486 | 0.027 | 94.13 |
表6 回归方程的估计精度分析
Table 6 Analysis of estimation precision of regression equation
编号 Number | D值 D value | 预测值 Prediction value | 差值 Difference value | 估计精度 Evaluation accuracy (%) |
---|---|---|---|---|
T1 | 0.751 | 0.781 | 0.030 | 96.02 |
T2 | 0.550 | 0.524 | 0.026 | 95.39 |
T3 | 0.562 | 0.575 | 0.013 | 97.68 |
T4 | 0.286 | 0.289 | 0.003 | 98.73 |
T5 | 0.177 | 0.175 | 0.002 | 99.24 |
T6 | 0.732 | 0.700 | 0.032 | 95.66 |
T7 | 0.659 | 0.645 | 0.014 | 97.89 |
T8 | 0.582 | 0.565 | 0.017 | 97.06 |
T9 | 0.523 | 0.541 | 0.018 | 96.60 |
T10 | 0.459 | 0.486 | 0.027 | 94.13 |
1 | Jiang Y Q, Deyolks M K. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BioMed Central Plant Biology, 2006, 6: 25. |
2 | Liu Y Y, Wu J Z, Xu Z Y, et al. Identification methods of salt-tolerance at germination and seedling stage of wheat under artificial sea water stress. Plant Physiology Journal, 2014, 50(2): 214-222. |
刘妍妍, 吴纪中, 许璋阳, 等. 人工海水胁迫下小麦芽期和苗期的耐盐性鉴定方法. 植物生理学报, 2014, 50(2): 214-222. | |
3 | Ma Z S, Tan J L, Wei T. The variation of salt-tolerance of crops in different regions irrigated with brackish water in China. Journal of Irrigation and Drainage, 2019, 38(3): 70-75. |
马中昇, 谭军利, 魏童. 中国微咸水利用的地区和作物适应性研究进展. 灌溉排水学报, 2019, 38(3): 70-75. | |
4 | Zhang Y Q, Kendy E, Yu Q, et al. Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain. Helia, 2004, 64(35): 107-122. |
5 | Ren Y J, Li J L, Wang X Y, et al. The combination of salt water treatment and precision irrigation: Advantage analysis. Chinese Agricultural Science Bulletin, 2021, 37(25): 92-96. |
任玉洁, 李俊林, 王向誉, 等. 基于咸水处理和精准灌溉相结合的优势分析. 中国农学通报, 2021, 37(25): 92-96. | |
6 | Liu J, Cai H, Liu Y, et al. A study on physiological characteristics and comparison of salt tolerance of two Medicago sativa at the seedling stage. Acta Prataculturae Sinica, 2013, 22(2): 250-256. |
刘晶, 才华, 刘莹, 等. 两种紫花苜蓿苗期耐盐生理特性的初步研究及其耐盐性比较. 草业学报, 2013, 22(2): 250-256. | |
7 | Su Y B, Liu L J, Qi D M, et al. Effect of seawater stress on seed germination and seedling growth of two red-spotted stonecrops. Chinese Agricultural Science Bulletin, 2017, 33(3): 88-93. |
苏彦宾, 刘鲁江, 亓德明, 等. 海水胁迫对2种景天种子萌发及幼苗生长的影响. 中国农学通报, 2017, 33(3): 88-93. | |
8 | Yang Y Y, Mao G L, Ma D M, et al. Germination characteristics of four forage seeds under different concentrations of NaCl or NaHCO3 stress. Acta Prataculturae Sinica, 2022, 30(3): 637-645. |
杨迎月, 毛桂莲, 麻冬梅, 等. 四种牧草种子在不同浓度NaCl或NaHCO3胁迫下的萌发特性. 草业学报, 2022, 30(3): 637-645. | |
9 | Jia Z M, Qiu Y L, Lin Z S, et al. Research progress on wheat improvement by using desirable genes from its relative species. Crops, 2021, 37(2): 1-14. |
贾子苗, 邱玉亮, 林志姗, 等. 利用近缘种属优良基因改良小麦研究进展. 作物杂志, 2021, 37(2): 1-14. | |
10 | Che Y H, Yang Y P, Yang X M, et al. Phylogenetic relationship and diversity among Agropyron germplasm using SSRs markers. Plant Systematics & Evolution, 2014, 301(1): 163-170. |
11 | Barkworth M E, Dewey D R. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. Gene Manipulation in Plant Breeding, 1984, 35(1): 202. |
12 | Li X Q. Investigation and analysis on agronomic characters and salt tolerance of F1 hybrids of Agropyron Gaertn. Qinhuangdao: Hebei Normal University of Science and Technology, 2018. |
李旭青. 冰草属种间杂种F1代群体农艺性状与耐盐性调查与分析. 秦皇岛: 河北科技师范学院, 2018. | |
13 | Wang X L, Li H, Mi F G, et al. Evaluation on salt tolerance of three species of wheatgrass seeds at the germination stage. Heilongjiang Animal Science and Veterinary Medicine, 2021(13): 97-101. |
王晓龙, 李红, 米福贵, 等. 3种冰草种子萌发期耐盐性评价. 黑龙江畜牧兽医, 2021(13): 97-101. | |
14 | Huang H Y, Liu S S, Wang S R, et al. Study on salt tolerance of 15 germplasm materials of Agropyron intermedium (Host) Nevski. Crops, 2015, 7(1): 36-42. |
黄海燕, 刘帅帅, 王生荣, 等. 中间冰草种质材料苗期耐盐性研究. 作物杂志, 2015, 7(1): 36-42. | |
15 | Shen W Y, Tuerxunnayi R, Xueretijiang M, et al. Selection of salt tolerance of 12 forage species in Xinjiang during germination period. Xinjiang Agricultural Sciences, 2020, 57(10): 1912-1920. |
申吴燕, 吐尔逊娜依·热依木, 雪热提江·麦提努日, 等. 12种植物萌发期耐盐性筛选. 新疆农业科学, 2020, 57(10): 1912-1920. | |
16 | Yuan Q H, Zhao L X, Gao H W. Descriptors and data standard for wheatgrass [Agropyron cristatum (L.) ]. Beijing: China Agriculture Press, 2007: 79-80. |
袁庆华, 赵来喜, 高洪文. 冰草种质资源描述规范和数据标准. 北京: 中国农业出版社, 2007: 79-80. | |
17 | Che Y H, Li L H, He B R. Sampling strategy for genetic diversity in Agropyron based on gliadin. Journal of Plant Genetic Resources, 2004(3): 216-221. |
车永和, 李立会, 何蓓如. 冰草属(Agropyron )植物遗传多样性取样策略基于醇溶蛋白的研究. 植物遗传资源学报, 2004(3): 216-221. | |
18 | Xiao L T, Wang S G. Plant physiology experiment technology. Beijing: China Agriculture Press, 2005: 172-174. |
萧浪涛, 王三根. 植物生理学试验技术. 北京: 中国农业出版社, 2005: 172-174. | |
19 | Zhang D Z, Pei H, Zhao H X. Determination of the content of free proline in wheat leave. Plant Physiology Communications, 1990, 26(4): 62-65. |
张殿忠, 沛红, 赵慧贤. 测定小麦叶片游离脯氨酸含量的方法. 植物生理学通讯, 1990, 26(4): 62-65. | |
20 | Georgiou C D, Grintzalis K, Zervoudakis G, et al. Mechanism of Coomassie brilliant blue G-250 binding to protein: A hydrophobic assay for nanogram quantities of proteins. Analytical and Bioanalytical Chemistry, 2008, 391: 391-403. |
21 | Li H S. Principles and techniques of plant physiological biochemical experiment. Beijing: Higher Education Press, 2000: 258-260. |
李合生. 植物生理生化试验原理和技术. 北京: 高等教育出版社, 2000: 258-260. | |
22 | Lachica M, Aguilar A, Yanez J. Plant analysis, 2: Analytical methods used in the extraction experimental del zaidin. Anales de Edafologia Y Agrobiologia, 1973, 32: 11-12. |
23 | Zhang J L, Li H R, Guo S Y, et al. Research advances in higher plant adaptation to salt stress. Acta Prataculturae Sinica, 2015, 24(12): 220-236. |
张金林, 李惠茹, 郭姝媛, 等. 高等植物适应盐逆境研究进展. 草业学报, 2015, 24(12): 220-236. | |
24 | James R A, Blake C, Byrt C S, et al. Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. Journal of Experimental Botany, 2011, 62(8): 2939-2947. |
25 | Fu Y Y, Jiang X H, Shen X J, et al. The relationship between foliar K+ and Na+ concentrations and photosynthetic parameters of cotton seedlings under salt stress. Chinese Journal of Ecology, 2021, 40(6): 1716-1722. |
付媛媛, 江晓慧, 申孝军, 等. 盐胁迫下棉花幼苗叶片K+、Na+含量与光合参数的关系. 生态学杂志, 2021, 40(6): 1716-1722. | |
26 | Bihler H, Eing C, Hebeisen S, et al. TPK1 is a vacuolar ion channel different from the slow-vacuolar cation channel. Plant Physiology, 2005, 139(1): 417-424. |
27 | Ouertani R N, Arasappan D, Abid G, et al. Transcriptomic analysis of salt-stress-responsive genes in barley roots and leaves. International Journal of Molecular Sciences, 2021, 22(15): 1-17. |
28 | Maathuis F J, Amtmann A N. K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios. Annals of Botany, 1999, 84(2): 123-133. |
29 | Hasegawa P M. Sodium (Na+) homeostasis and salt tolerance of plants. Environmental and Experimental Botany, 2013, 92: 19-31. |
30 | Gong Z Z, Xiong L M, Shi H Z, et al. Plant abiotic stress response and nutrient use efficiency. Science China (Life Science), 2020, 63(5): 635-674. |
31 | Bohnert H J, Jensen R G. Strategies for engineering water-stress tolerance in plants. Trends in Biotechnology, 1996, 14(3): 89-97. |
32 | Qi W C, Zhang L, Xu H B, et al. Physiological and molecular characterization of the enhanced salt tolerance induced by low-dose gamma irradiation in Arabidopsis seedlings. Biochemical and Biophysical Research Communications, 2014, 450(2): 1010-1015. |
33 | Ji B, Xu J P, Shi L, et al. Salt resistance of 10 species of grass seeds grasses at germination stage. Xinjiang Agricultural Sciences, 2021, 58(2): 344-353. |
季波, 徐金鹏, 时龙, 等. 10种禾本科牧草种子萌发期耐盐性. 新疆农业科学, 2021, 58(2): 344-353. | |
34 | Zhao M D, Liu P, Yang C, et al. Effects of salt stress on physiological indexes of perennial forage seedlings in Qinghai-Tibet Plateau. Ecological Science, 2018, 37(3): 123-130. |
赵明德, 刘攀, 杨冲, 等. 盐胁迫对青藏高原多年生牧草幼苗生理指标的影响. 生态科学, 2018, 37(3): 123-130. | |
35 | Chen M, Li H Y, Lv F T. Research advances in mechanisms of plant salinity tolerance. Journal of Liaocheng University (Natural Science Edition), 2011, 24(3): 47-50. |
陈敏, 李海云, 吕福堂. 植物耐盐性研究进展. 聊城大学学报(自然科学版), 2011, 24(3): 47-50. |
[1] | 王园, 王晶, 李淑霞. 紫花苜蓿MsBBX24基因的克隆及耐盐性分析[J]. 草业学报, 2023, 32(3): 107-117. |
[2] | 许浩宇, 赵颖, 阮倩, 朱晓林, 王宝强, 魏小红. 不同混合盐碱下藜麦幼苗的抗性研究[J]. 草业学报, 2023, 32(1): 122-130. |
[3] | 刘万龙, 许冬梅, 史佳梅, 许爱云. 不同群落生境蒙古冰草种群株丛结构和叶片功能性状的变化[J]. 草业学报, 2022, 31(8): 72-80. |
[4] | 王志恒, 魏玉清, 赵延蓉, 王悦娟. 基于转录组学比较研究甜高粱幼苗响应干旱和盐胁迫的生理特征[J]. 草业学报, 2022, 31(3): 71-84. |
[5] | 张鹏, 任茜, 孟思宇, 魏小星, 鲍根生. 内生真菌对盐胁迫下紫花针茅种子萌发和幼苗生长的研究[J]. 草业学报, 2022, 31(10): 110-121. |
[6] | 何海锋, 吴娜, 刘吉利, 许兴. 盐碱条件下施磷对柳枝稷生长发育及耐盐性的影响[J]. 草业学报, 2022, 31(10): 64-74. |
[7] | 吴雨涵, 刘文辉, 刘凯强, 张永超. 干旱胁迫对燕麦幼苗叶片光合特性及活性氧清除系统的影响[J]. 草业学报, 2022, 31(10): 75-86. |
[8] | 柳福智, 张迎芳, 陈垣. 外源海藻糖对NaHCO3胁迫下甘草幼苗生长调节及总黄酮含量的影响[J]. 草业学报, 2021, 30(7): 148-156. |
[9] | 王晔, 陈慧萍, 李润枝, 彭真, 范希峰, 武菊英, 段留生. 奇岗微繁技术建立及幼苗耐盐性评价[J]. 草业学报, 2021, 30(6): 214-220. |
[10] | 王龙, 樊婕, 魏畅, 李鸽子, 张静静, 焦秋娟, 陈果, 孙娈姿, 柳海涛. 外源抗坏血酸对铜胁迫菊苣幼苗生长的缓解效应[J]. 草业学报, 2021, 30(4): 150-159. |
[11] | 陈雅琦, 苏楷淇, 陈泰祥, 李春杰. 混合盐碱胁迫对醉马草种子萌发及幼苗生理特性的影响[J]. 草业学报, 2021, 30(3): 137-157. |
[12] | 闫慧芳, 孙娟. 含水量和劣变时间对高丹草种子活力及幼苗生长的影响[J]. 草业学报, 2021, 30(12): 152-160. |
[13] | 李倩, 李晓霞, 程丽琴, 陈双燕, 齐冬梅, 杨伟光, 高利军, 新巴音, 刘公社. 羊草LcCBF6基因的表达特性和功能研究[J]. 草业学报, 2021, 30(10): 105-115. |
[14] | 高玉莲, 常静, 王贻卉, 李锋, 李海平, 马崇勇. 瑞香狼毒根提取物对3种作物种子萌发和幼苗生长的化感作用[J]. 草业学报, 2021, 30(10): 83-91. |
[15] | 李冬, 申洪涛, 王艳芳, 王悦华, 王丽君, 赵世民, 刘领. 外源褪黑素对干旱胁迫下烟草幼苗光合碳同化和内源激素的影响[J]. 草业学报, 2021, 30(1): 130-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||