草业学报 ›› 2023, Vol. 32 ›› Issue (7): 38-48.DOI: 10.11686/cyxb2022335
路欣(), 祁娟(), 师尚礼, 车美美, 李霞, 独双双, 赛宁刚, 贾燕伟
收稿日期:
2022-08-17
修回日期:
2022-10-31
出版日期:
2023-07-20
发布日期:
2023-05-26
通讯作者:
祁娟
作者简介:
E-mail: qijuan@gsau.edu.cn基金资助:
Xin LU(), Juan QI(), Shang-li SHI, Mei-mei CHE, Xia LI, Shuang-shuang DU, Ning-gang SAI, Yan-wei JIA
Received:
2022-08-17
Revised:
2022-10-31
Online:
2023-07-20
Published:
2023-05-26
Contact:
Juan QI
摘要:
以甘南高寒草甸为研究对象,通过探究不同浓度阔叶类草抑制剂(0、0.9、1.5和2.1 kg·hm-2)和不同梯度氮素(0、75、150和225 kg·hm-2)配施对高寒草甸土壤养分及酶活性的影响,旨在筛选适宜于高寒草甸的最佳抑制剂浓度与氮肥用量的配比,为高寒区草地畜牧业的可持续发展提供科学的理论依据。结果表明:喷施较高浓度抑制剂(Y3, 2.1 kg·hm-2)后,土壤碱解氮、速效钾和有效磷含量均显著低于对照(P<0.05),分别较对照降低了4.89%、11.52%和14.19%,而土壤有机质含量提高了11.74%,对土壤pH影响不显著;单独氮素添加下,土壤碱解氮、有效磷含量和土壤脲酶活性均显著高于对照(P<0.05),且在施氮量为225 kg·hm-2时,碱解氮、有效磷含量和脲酶活性较高,分别较对照高出4.98%、53.01%和11.28%,对土壤有机质、速效钾和土壤pH影响不显著;抑制剂与氮素添加的交互作用对除土壤pH外的各指标均存在显著或极显著影响,但较高浓度抑制剂(Y3)明显降低了氮素添加的作用效果,各施氮处理后的土壤各指标均有所降低。经灰色关联度综合分析得出,0.9 kg·hm-2抑制剂与225 kg·hm-2氮素配施可以明显提高土壤肥力,是一种适宜在青藏高原高寒草甸区推广的草地管理模式。
路欣, 祁娟, 师尚礼, 车美美, 李霞, 独双双, 赛宁刚, 贾燕伟. 阔叶类草抑制剂与氮素配施对高寒草甸土壤特性的影响[J]. 草业学报, 2023, 32(7): 38-48.
Xin LU, Juan QI, Shang-li SHI, Mei-mei CHE, Xia LI, Shuang-shuang DU, Ning-gang SAI, Yan-wei JIA. Effects of broad-leaved grass inhibitors combined with nitrogen on soil characteristics of alpine meadow[J]. Acta Prataculturae Sinica, 2023, 32(7): 38-48.
有机质 Organic matter (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) | 碱解氮 Available N (mg·kg-1) | 有效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) |
---|---|---|---|---|---|---|
72.67 | 3.96 | 0.49 | 8.98 | 278.87 | 13.31 | 154.76 |
表1 试验地土壤基础化学性质
Table 1 Basic chemical properties of soil at the test site
有机质 Organic matter (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) | 碱解氮 Available N (mg·kg-1) | 有效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) |
---|---|---|---|---|---|---|
72.67 | 3.96 | 0.49 | 8.98 | 278.87 | 13.31 | 154.76 |
处理 Treatments | 抑制剂 Inhibitors (kg·hm-2) | 氮素 Nitrogen (kg·hm-2) |
---|---|---|
Y0N0 | 0.0 | 0 |
Y0N1 | 0.0 | 75 |
Y0N2 | 0.0 | 150 |
Y0N3 | 0.0 | 225 |
Y1N0 | 0.9 | 0 |
Y1N1 | 0.9 | 75 |
Y1N2 | 0.9 | 150 |
Y1N3 | 0.9 | 225 |
Y2N0 | 1.5 | 0 |
Y2N1 | 1.5 | 75 |
Y2N2 | 1.5 | 150 |
Y2N3 | 1.5 | 225 |
Y3N0 | 2.1 | 0 |
Y3N1 | 2.1 | 75 |
Y3N2 | 2.1 | 150 |
Y3N3 | 2.1 | 225 |
表2 抑制剂浓度及施氮量
Table 2 Inhibitor concentration and nitrogen application rate
处理 Treatments | 抑制剂 Inhibitors (kg·hm-2) | 氮素 Nitrogen (kg·hm-2) |
---|---|---|
Y0N0 | 0.0 | 0 |
Y0N1 | 0.0 | 75 |
Y0N2 | 0.0 | 150 |
Y0N3 | 0.0 | 225 |
Y1N0 | 0.9 | 0 |
Y1N1 | 0.9 | 75 |
Y1N2 | 0.9 | 150 |
Y1N3 | 0.9 | 225 |
Y2N0 | 1.5 | 0 |
Y2N1 | 1.5 | 75 |
Y2N2 | 1.5 | 150 |
Y2N3 | 1.5 | 225 |
Y3N0 | 2.1 | 0 |
Y3N1 | 2.1 | 75 |
Y3N2 | 2.1 | 150 |
Y3N3 | 2.1 | 225 |
因素 Factor | F值 F value | ||||
---|---|---|---|---|---|
pH | 有机质 Soil organic matter | 碱解氮 Available N | 有效磷 Available P | 速效钾 Available K | |
Y | 6.824 | 18.639** | 5.593* | 6.510* | 14.560** |
N | 1.042 | 1.545 | 5.664** | 76.435** | 2.151 |
Y×N | 1.986 | 5.862** | 9.417** | 44.735** | 3.796** |
表3 抑制剂和氮素及其交互作用对土壤化学性质的方差分析
Table 3 Variance analysis of inhibitors, nitrogen and their interactions on soil chemical properties
因素 Factor | F值 F value | ||||
---|---|---|---|---|---|
pH | 有机质 Soil organic matter | 碱解氮 Available N | 有效磷 Available P | 速效钾 Available K | |
Y | 6.824 | 18.639** | 5.593* | 6.510* | 14.560** |
N | 1.042 | 1.545 | 5.664** | 76.435** | 2.151 |
Y×N | 1.986 | 5.862** | 9.417** | 44.735** | 3.796** |
因素 Factor | pH | 有机质 Soil organic matter (g·kg-1) | 碱解氮 Available N (mg·kg-1) | 有效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) |
---|---|---|---|---|---|
Y0 | 7.10±0.02a | 66.14±1.40b | 317.07±4.28ab | 14.74±1.11a | 274.18±6.21a |
Y1 | 7.10±0.02a | 76.04±1.42a | 328.66±6.69a | 12.80±1.82b | 273.27±5.94a |
Y2 | 7.06±0.05a | 77.14±1.66a | 315.88±5.72ab | 14.62±1.86a | 270.72±3.68a |
Y3 | 7.05±0.03a | 73.91±1.35a | 301.58±3.55b | 12.91±1.65b | 242.62±4.61b |
表4 抑制剂对土壤化学性质的影响
Table 4 Effects of inhibitors on soil chemical properties
因素 Factor | pH | 有机质 Soil organic matter (g·kg-1) | 碱解氮 Available N (mg·kg-1) | 有效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) |
---|---|---|---|---|---|
Y0 | 7.10±0.02a | 66.14±1.40b | 317.07±4.28ab | 14.74±1.11a | 274.18±6.21a |
Y1 | 7.10±0.02a | 76.04±1.42a | 328.66±6.69a | 12.80±1.82b | 273.27±5.94a |
Y2 | 7.06±0.05a | 77.14±1.66a | 315.88±5.72ab | 14.62±1.86a | 270.72±3.68a |
Y3 | 7.05±0.03a | 73.91±1.35a | 301.58±3.55b | 12.91±1.65b | 242.62±4.61b |
因素 Factor | pH | 有机质 Soil organic matter (g·kg-1) | 碱解氮 Available N (mg·kg-1) | 有效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) |
---|---|---|---|---|---|
N0 | 7.08 | 75.15±1.09a | 306.57 | 12.50 | 265.23 |
N1 | 7.05 | 72.16±2.46a | 315.03 | 10.73 | 258.64 |
N2 | 7.02 | 72.87±2.20a | 319.75 | 12.68 | 265.14 |
N3 | 7.03 | 73.06±1.73a | 321.84 | 19.14 | 271.77 |
表5 氮素对土壤化学性质的影响
Table 5 Effects of nitrogen on soil chemical properties
因素 Factor | pH | 有机质 Soil organic matter (g·kg-1) | 碱解氮 Available N (mg·kg-1) | 有效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) |
---|---|---|---|---|---|
N0 | 7.08 | 75.15±1.09a | 306.57 | 12.50 | 265.23 |
N1 | 7.05 | 72.16±2.46a | 315.03 | 10.73 | 258.64 |
N2 | 7.02 | 72.87±2.20a | 319.75 | 12.68 | 265.14 |
N3 | 7.03 | 73.06±1.73a | 321.84 | 19.14 | 271.77 |
因素 Factor | pH | 有机质 Soil organic matter (g·kg-1) | 碱解氮 Available N (mg·kg-1) | 有效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) |
---|---|---|---|---|---|
Y0N0 | 7.06±0.02ab | 72.68±1.10cde | 299.67±10.82d | 16.05±0.798bc | 263.12±7.18bcd |
Y0N1 | 7.11±0.03ab | 60.83±0.20h | 321.32±1.59bc | 15.14±0.226c | 279.26±6.92abc |
Y0N2 | 7.17±0.02a | 65.26±2.82gh | 321.99±2.94bc | 18.57±1.648b | 281.09±5.30abc |
Y0N3 | 7.06±0.02ab | 65.79±1.67fgh | 325.29±6.36bc | 9.19±0.402efg | 273.27±12.59bcd |
Y1N0 | 7.11±0.02ab | 72.96±2.62cde | 308.51±3.89cd | 11.01±1.213def | 285.39±3.48ab |
Y1N1 | 7.10±0.07ab | 71.18±1.69defg | 305.37±0.63cd | 8.51±0.007fgh | 257.14±5.35cde |
Y1N2 | 7.12±0.04ab | 81.01±1.00ab | 350.07±2.64a | 8.74±1.142fgh | 253.18±5.34def |
Y1N3 | 7.06±0.06ab | 79.01±0.49abc | 350.68±4.14a | 22.92±0.409a | 297.34±3.48a |
Y2N0 | 7.09±0.06ab | 76.90±1.71abcd | 313.91±6.92cd | 11.47±0.995de | 281.37±5.34abc |
Y2N1 | 6.97±0.14bc | 83.18±0.87a | 338.78±9.49ab | 6.90±0.604gh | 263.14±8.78bcd |
Y2N2 | 6.84±0.03bc | 76.37±4.05bcd | 297.59±2.83d | 16.97±0.239bc | 273.24±3.43bcd |
Y2N3 | 6.86±0.07bc | 72.11±3.04cdef | 313.21±11.75cd | 23.12±0.926a | 265.24±8.80bcd |
Y3N0 | 7.06±0.04ab | 78.06±1.96abcd | 304.18±10.22cd | 11.49±0.825de | 231.04±12.57f |
Y3N1 | 7.04±0.04ab | 73.43±1.73cde | 294.63±3.88d | 12.39±0.222d | 235.01±5.32ef |
Y3N2 | 6.96±0.01bc | 68.82±2.09efg | 309.34±7.47cd | 6.45±0.393h | 253.16±4.04def |
Y3N3 | 7.12±0.07ab | 75.32±2.54bcde | 298.17±6.26d | 21.31±1.385a | 251.24±8.75def |
表6 抑制剂和氮素处理对土壤化学性质的耦合效应
Table 6 Coupling effects of inhibitor and nitrogen on soil chemical properties
因素 Factor | pH | 有机质 Soil organic matter (g·kg-1) | 碱解氮 Available N (mg·kg-1) | 有效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) |
---|---|---|---|---|---|
Y0N0 | 7.06±0.02ab | 72.68±1.10cde | 299.67±10.82d | 16.05±0.798bc | 263.12±7.18bcd |
Y0N1 | 7.11±0.03ab | 60.83±0.20h | 321.32±1.59bc | 15.14±0.226c | 279.26±6.92abc |
Y0N2 | 7.17±0.02a | 65.26±2.82gh | 321.99±2.94bc | 18.57±1.648b | 281.09±5.30abc |
Y0N3 | 7.06±0.02ab | 65.79±1.67fgh | 325.29±6.36bc | 9.19±0.402efg | 273.27±12.59bcd |
Y1N0 | 7.11±0.02ab | 72.96±2.62cde | 308.51±3.89cd | 11.01±1.213def | 285.39±3.48ab |
Y1N1 | 7.10±0.07ab | 71.18±1.69defg | 305.37±0.63cd | 8.51±0.007fgh | 257.14±5.35cde |
Y1N2 | 7.12±0.04ab | 81.01±1.00ab | 350.07±2.64a | 8.74±1.142fgh | 253.18±5.34def |
Y1N3 | 7.06±0.06ab | 79.01±0.49abc | 350.68±4.14a | 22.92±0.409a | 297.34±3.48a |
Y2N0 | 7.09±0.06ab | 76.90±1.71abcd | 313.91±6.92cd | 11.47±0.995de | 281.37±5.34abc |
Y2N1 | 6.97±0.14bc | 83.18±0.87a | 338.78±9.49ab | 6.90±0.604gh | 263.14±8.78bcd |
Y2N2 | 6.84±0.03bc | 76.37±4.05bcd | 297.59±2.83d | 16.97±0.239bc | 273.24±3.43bcd |
Y2N3 | 6.86±0.07bc | 72.11±3.04cdef | 313.21±11.75cd | 23.12±0.926a | 265.24±8.80bcd |
Y3N0 | 7.06±0.04ab | 78.06±1.96abcd | 304.18±10.22cd | 11.49±0.825de | 231.04±12.57f |
Y3N1 | 7.04±0.04ab | 73.43±1.73cde | 294.63±3.88d | 12.39±0.222d | 235.01±5.32ef |
Y3N2 | 6.96±0.01bc | 68.82±2.09efg | 309.34±7.47cd | 6.45±0.393h | 253.16±4.04def |
Y3N3 | 7.12±0.07ab | 75.32±2.54bcde | 298.17±6.26d | 21.31±1.385a | 251.24±8.75def |
因素 Factor | F值 F value | ||
---|---|---|---|
脲酶 Urease | 蔗糖酶 Sucrase | 碱性磷酸酶 Alkaline phosphatase | |
Y | 27.356** | 29.421** | 3.845 |
N | 10.472** | 19.590** | 0.915 |
Y×N | 14.190** | 20.835** | 3.064* |
表7 抑制剂和氮素及其交互作用对土壤酶活性的方差分析
Table 7 Variance analysis of inhibitors, nitrogen and their interactions on soil enzyme activity
因素 Factor | F值 F value | ||
---|---|---|---|
脲酶 Urease | 蔗糖酶 Sucrase | 碱性磷酸酶 Alkaline phosphatase | |
Y | 27.356** | 29.421** | 3.845 |
N | 10.472** | 19.590** | 0.915 |
Y×N | 14.190** | 20.835** | 3.064* |
因素 Factor | 脲酶 Urease | 蔗糖酶 Sucrase | 碱性磷酸酶 Alkaline phosphatase |
---|---|---|---|
Y0 | 19.28±0.67c | 9.96±0.08a | 2.51±0.12b |
Y1 | 21.33±0.69b | 10.25±0.11a | 2.96±0.08a |
Y2 | 21.23±0.59b | 9.29±0.21b | 2.78±0.13ab |
Y3 | 24.05±1.01a | 9.03±0.27b | 2.79±0.09ab |
表8 抑制剂对土壤酶活性的影响
Table 8 Effects of inhibitors on soil enzyme activity (mg·g-1)
因素 Factor | 脲酶 Urease | 蔗糖酶 Sucrase | 碱性磷酸酶 Alkaline phosphatase |
---|---|---|---|
Y0 | 19.28±0.67c | 9.96±0.08a | 2.51±0.12b |
Y1 | 21.33±0.69b | 10.25±0.11a | 2.96±0.08a |
Y2 | 21.23±0.59b | 9.29±0.21b | 2.78±0.13ab |
Y3 | 24.05±1.01a | 9.03±0.27b | 2.79±0.09ab |
因素 Factor | 脲酶 Urease | 蔗糖酶 Sucrase | 碱性磷酸酶 Alkaline phosphatase |
---|---|---|---|
N0 | 20.21±0.84b | 9.30±0.31b | 2.85±0.12a |
N1 | 20.72±0.64b | 9.72±0.15ab | 2.77±0.12a |
N2 | 22.47±1.22a | 9.47±0.26ab | 2.78±0.09a |
N3 | 22.49±0.62a | 10.03±0.12a | 2.63±0.13a |
表9 氮素添加对土壤酶活性的影响
Table 9 Effects of nitrogen addition on soil enzyme activity (mg·g-1)
因素 Factor | 脲酶 Urease | 蔗糖酶 Sucrase | 碱性磷酸酶 Alkaline phosphatase |
---|---|---|---|
N0 | 20.21±0.84b | 9.30±0.31b | 2.85±0.12a |
N1 | 20.72±0.64b | 9.72±0.15ab | 2.77±0.12a |
N2 | 22.47±1.22a | 9.47±0.26ab | 2.78±0.09a |
N3 | 22.49±0.62a | 10.03±0.12a | 2.63±0.13a |
图1 抑制剂和氮素添加配施对土壤酶活性的影响不同小写字母表示处理间差异显著(P<0.05)。Different lowercase letters indicate significant differences at 0.05 level.
Fig.1 Coupling effects of inhibitor and nitrogen addition on soil enzyme activity
处理 Treatments | pH | 有机质 Soil organic matter | 碱解氮 Available N | 速效钾 Available K | 有效磷 Available P | 脲酶 Urease | 蔗糖酶 Sucrase | 碱性磷酸酶 Alkaline phosphatase | 关联值 Correlation value | 排序 Rank |
---|---|---|---|---|---|---|---|---|---|---|
Y0N0 | 0.959 | 0.740 | 0.712 | 0.758 | 0.541 | 0.450 | 0.875 | 0.550 | 0.723 | 12 |
Y0N1 | 0.977 | 0.573 | 0.811 | 0.856 | 0.511 | 0.483 | 0.951 | 0.549 | 0.742 | 9 |
Y0N2 | 1.000 | 0.626 | 0.815 | 0.868 | 0.647 | 0.566 | 0.903 | 0.781 | 0.796 | 5 |
Y0N3 | 0.959 | 0.633 | 0.833 | 0.816 | 0.374 | 0.578 | 0.811 | 0.586 | 0.726 | 11 |
Y1N0 | 0.977 | 0.746 | 0.750 | 0.900 | 0.407 | 0.529 | 0.999 | 0.817 | 0.797 | 4 |
Y1N1 | 0.974 | 0.714 | 0.736 | 0.727 | 0.363 | 0.537 | 0.822 | 0.663 | 0.720 | 14 |
Y1N2 | 0.981 | 0.932 | 0.995 | 0.708 | 0.367 | 0.537 | 0.989 | 0.818 | 0.824 | 3 |
Y1N3 | 0.959 | 0.878 | 1.000 | 1.000 | 0.977 | 0.713 | 0.999 | 0.855 | 0.930 | 1 |
Y2N0 | 0.970 | 0.827 | 0.774 | 0.870 | 0.417 | 0.629 | 0.706 | 0.777 | 0.769 | 8 |
Y2N1 | 0.928 | 1.000 | 0.914 | 0.758 | 0.339 | 0.604 | 0.889 | 1.000 | 0.832 | 2 |
Y2N2 | 0.887 | 0.815 | 0.704 | 0.816 | 0.575 | 0.511 | 0.652 | 0.580 | 0.709 | 15 |
Y2N3 | 0.893 | 0.730 | 0.771 | 0.769 | 1.000 | 0.540 | 0.856 | 0.579 | 0.772 | 7 |
Y3N0 | 0.959 | 0.854 | 0.731 | 0.618 | 0.417 | 0.576 | 0.597 | 0.851 | 0.721 | 13 |
Y3N1 | 0.952 | 0.754 | 0.693 | 0.632 | 0.437 | 0.603 | 0.717 | 0.705 | 0.707 | 16 |
Y3N2 | 0.925 | 0.676 | 0.753 | 0.708 | 0.333 | 1.000 | 0.716 | 0.671 | 0.737 | 10 |
Y3N3 | 0.981 | 0.792 | 0.706 | 0.699 | 0.821 | 0.629 | 0.949 | 0.620 | 0.787 | 6 |
表10 灰色关联度综合分析
Table 10 Comprehensive analysis of grey correlation degree
处理 Treatments | pH | 有机质 Soil organic matter | 碱解氮 Available N | 速效钾 Available K | 有效磷 Available P | 脲酶 Urease | 蔗糖酶 Sucrase | 碱性磷酸酶 Alkaline phosphatase | 关联值 Correlation value | 排序 Rank |
---|---|---|---|---|---|---|---|---|---|---|
Y0N0 | 0.959 | 0.740 | 0.712 | 0.758 | 0.541 | 0.450 | 0.875 | 0.550 | 0.723 | 12 |
Y0N1 | 0.977 | 0.573 | 0.811 | 0.856 | 0.511 | 0.483 | 0.951 | 0.549 | 0.742 | 9 |
Y0N2 | 1.000 | 0.626 | 0.815 | 0.868 | 0.647 | 0.566 | 0.903 | 0.781 | 0.796 | 5 |
Y0N3 | 0.959 | 0.633 | 0.833 | 0.816 | 0.374 | 0.578 | 0.811 | 0.586 | 0.726 | 11 |
Y1N0 | 0.977 | 0.746 | 0.750 | 0.900 | 0.407 | 0.529 | 0.999 | 0.817 | 0.797 | 4 |
Y1N1 | 0.974 | 0.714 | 0.736 | 0.727 | 0.363 | 0.537 | 0.822 | 0.663 | 0.720 | 14 |
Y1N2 | 0.981 | 0.932 | 0.995 | 0.708 | 0.367 | 0.537 | 0.989 | 0.818 | 0.824 | 3 |
Y1N3 | 0.959 | 0.878 | 1.000 | 1.000 | 0.977 | 0.713 | 0.999 | 0.855 | 0.930 | 1 |
Y2N0 | 0.970 | 0.827 | 0.774 | 0.870 | 0.417 | 0.629 | 0.706 | 0.777 | 0.769 | 8 |
Y2N1 | 0.928 | 1.000 | 0.914 | 0.758 | 0.339 | 0.604 | 0.889 | 1.000 | 0.832 | 2 |
Y2N2 | 0.887 | 0.815 | 0.704 | 0.816 | 0.575 | 0.511 | 0.652 | 0.580 | 0.709 | 15 |
Y2N3 | 0.893 | 0.730 | 0.771 | 0.769 | 1.000 | 0.540 | 0.856 | 0.579 | 0.772 | 7 |
Y3N0 | 0.959 | 0.854 | 0.731 | 0.618 | 0.417 | 0.576 | 0.597 | 0.851 | 0.721 | 13 |
Y3N1 | 0.952 | 0.754 | 0.693 | 0.632 | 0.437 | 0.603 | 0.717 | 0.705 | 0.707 | 16 |
Y3N2 | 0.925 | 0.676 | 0.753 | 0.708 | 0.333 | 1.000 | 0.716 | 0.671 | 0.737 | 10 |
Y3N3 | 0.981 | 0.792 | 0.706 | 0.699 | 0.821 | 0.629 | 0.949 | 0.620 | 0.787 | 6 |
1 | Li X P, Li J H, Liu Y G, et al. The vegetation and soil microorganism characteristics of different degrade grassland in Gannan steppe. Acta Agrestia Sinica, 2020, 28(5): 1252-1259. |
李雪萍, 李建宏, 刘永刚, 等. 甘南草原不同退化草地植被和土壤微生物特性. 草地学报, 2020, 28(5): 1252-1259. | |
2 | Liu Y H, Wei W D, Yang Y W, et al. Characteristics of plant functional groups of degraded alpine meadow in the source region of Three Rivers, China. Jiangsu Agricultural Sciences, 2019, 47(1): 286-291. |
刘育红, 魏卫东, 杨元武, 等. 三江源区退化高寒草甸植物功能群特征. 江苏农业科学, 2019, 47(1): 286-291. | |
3 | Liu Q, Wurenqiqige, Xi Q H, et al. Study on the effects of root cutting and fertilizer regulation on vegetation improvement in degraded Leymus chinensis meadow steppe. Chinese Journal of Grassland, 2021, 43(10): 18-28. |
刘琼, 乌仁其其格, 席青虎, 等. 切根与肥力调控对退化羊草草甸草原植被改良效果研究. 中国草地学报, 2021, 43(10): 18-28. | |
4 | De K J. Effect of fertilization on primary productivity and soil nutrients of alpine meadow in Three River Source Region. Lanzhou: Gansu Agricultural University, 2014. |
德科加. 施肥对三江源区高寒草甸初级生产力和土壤养分的影响. 兰州: 甘肃农业大学, 2014. | |
5 | Xue Y W. Effects of fertilization on vegetation and soil of degraded grassland on Northern Tibetan Plateau. Lhasa: Tibet University, 2011. |
薛永伟. 施肥对藏北退化草地植被特征和土壤的影响. 拉萨: 西藏大学, 2011. | |
6 | Wang P, Zhu W W, Niu Y B, et al. Effects of nitrogen addition on plant community composition and microbial biomass ecological stoichiometry in a desert steppe in China. Chinese Journal of Plant Ecology, 2019, 43(5): 427-436. |
王攀, 朱湾湾, 牛玉斌, 等. 氮添加对荒漠草原植物群落组成与微生物生物量生态化学计量特征的影响. 植物生态学报, 2019, 43(5): 427-436. | |
7 | He D, Li X L, Wan L Q, et al. Effect of nitrogen fertilizer on biomass and the important values of the main species in degraded grassland. Chinese Journal of Grassland, 2009, 31(5): 42-46. |
何丹, 李向林, 万里强, 等. 施氮对退化天然草地主要物种地上生物量和重要值的影响. 中国草地学报, 2009, 31(5): 42-46. | |
8 | Zhou J. Influence of long term nitrogen fertilization on microorganisms and major N-cycling related communities in black soil in Northeast China. Beijing: China Agricultural University, 2017. |
周晶. 长期施氮对东北黑土微生物及主要氮循环菌群的影响. 北京: 中国农业大学, 2017. | |
9 | Yun H F. Effects of soil loosening and fertilization on characteristics of plant communities and soil in degraded meadow steppe in Xilingol. Hohhot: Inner Mongolia University, 2021. |
云海峰. 松土与施肥对锡林郭勒退化草甸草原植物群落和土壤及酶活性的影响. 呼和浩特: 内蒙古大学, 2021. | |
10 | Tong S P. Effects of different improvement measures on biomass and plant community diversity of alpine degraded grassland in Northern Tibet. Lhasa: Tibet University, 2019. |
仝淑萍. 不同改良措施对藏北高寒退化草地生物量和植物群落多样性的影响. 拉萨: 西藏大学, 2019. | |
11 | Che M M. Effects of inhibitors and nitrogen addition on community characteristics, quality and seed yield of Elymus nutans in alpine meadow. Lanzhou: Gansu Agricultural University, 2022. |
车美美. 抑制剂和氮素添加对高寒草甸群落特征、垂穗披碱草品质及种子产量的影响. 兰州: 甘肃农业大学, 2022. | |
12 | Bao S D. Soil agrochemistry analysis. Beijing: China Agriculture Press, 2000: 25-114. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000: 25-114. | |
13 | Guan S Y. Soil enzyme and its methodology. Beijing: China Agriculture Press, 1986: 19-40. |
关松荫. 土壤酶及其研究方法. 北京: 农业出版社, 1986: 19-40. | |
14 | Yue L N, Shi S L, Qi J, et al. Effects of no-tillage reseeding on productivity and nutritional quality of degraded grassland in Northern China. Acta Agrestia Sinica, 2021, 29(11): 2583-2590. |
岳丽楠, 师尚礼, 祁娟, 等. 免耕补播对北方退化草地生产力及营养品质的影响. 草地学报, 2021, 29(11): 2583-2590. | |
15 | She T, Tian Y. Effects of litter diversity on decomposition process and soil microbial characteristics in forest ecosystems. Ecological Science, 2020, 39(1): 213-223. |
佘婷, 田野. 森林生态系统凋落物多样性对分解过程和土壤微生物特性影响研究进展. 生态科学, 2020, 39(1): 213-223. | |
16 | Wang N. Effect of N dosage on the soil microbial characteristics and its organic C components from a corn field. Changchun: Jilin Agricultural University, 2015. |
王楠. 氮素用量对玉米田土壤微生物学特性及有机碳组分特征影响. 长春: 吉林农业大学, 2015. | |
17 | Walker M D, Webber P J, Arnold E H, et al. Effects of interannual climate variation on aboveground phytomass in alpine vegetation. Ecology, 1994, 75(2): 393-408. |
18 | Cao W X, Li W, Li X L, et al. Effects of nitrogen fertilization on plant community structure and soil nutrient in alpine meadow-steppe. Journal of Desert Research, 2015, 35(3): 658-666. |
曹文侠, 李文, 李小龙, 等. 施氮对高寒草甸草原植物群落和土壤养分的影响. 中国沙漠, 2015, 35(3): 658-666. | |
19 | Baoyintaogetao, Liu M L, Bao Q H, et al. Effect of N addition on plant community structure and index of grassland quality of typical steppe mown grassland. Acta Prataculturae Sinica, 2011, 20(1): 7-14. |
宝音陶格涛, 刘美玲, 包青海, 等. 氮素添加对典型草原区割草场植物群落结构及草场质量指数的影响. 草业学报, 2011, 20(1): 7-14. | |
20 | Jiang L G, Huang M, Song Q Y, et al. Research on nitrogen fertilizer application recommended method based on soil organic matter in dryland wheat production. Scientia Agricultura Sinica, 2020, 53(10): 2020-2033. |
蒋龙刚, 黄明, 宋庆赟, 等. 基于土壤有机质含量推荐的旱地冬小麦施氮量研究. 中国农业科学, 2020, 53(10): 2020-2033. | |
21 | Dai J Z. Effects of root-cutting and fertilization on vegetation and soil in mowing pasture of Leymus chinensis meadow steppe. Hohhot: Inner Mongolia Agricultural University, 2016. |
代景忠. 切根与施肥对羊草草甸草原割草场植被与土壤的影响. 呼和浩特: 内蒙古农业大学, 2016. | |
22 | Du Q F. The responses of degraded typical steppe vegetation and soil to nitrogen and phosphorus fertilizations in Inner Mongolia. Chongqing: Southwest University, 2017. |
杜青峰. 内蒙古退化典型草原植被和土壤对氮磷肥配施的响应. 重庆: 西南大学, 2017. | |
23 | Zhang C J, Shi S L, Kang W J, et al. Characteristics of soil enzyme activity and its relationship with chemical properties under different rotation pattern. Chinese Journal of Grassland, 2020, 42(5): 92-102. |
张成君, 师尚礼, 康文娟, 等. 不同轮作模式土壤酶活性特征及与化学性质的关系. 中国草地学报, 2020, 42(5): 92-102. | |
24 | Qin Y, Liu W H, He F, et al. Influence of fertilization and root cutting on soil physicochemical properties and enzyme activities in a degraded Leymus chinensis steppe. Acta Prataculturae Sinica, 2019, 28(1): 5-14. |
秦燕, 刘文辉, 何峰, 等. 施肥与切根对退化羊草草原土壤理化性质和酶活性的影响. 草业学报, 2019, 28(1): 5-14. | |
25 | Qin J H, Zhang Y, Zhao Y C, et al. Soil physicochemical properties and variations of nutrients and enzyme activity in the degrading grasslands in the upper reaches of the Heihe River, Qilian Mountains. Journal of Glaciology and Geocryology, 2014, 36(2): 335-346. |
秦嘉海, 张勇, 赵芸晨, 等. 祁连山黑河上游不同退化草地土壤理化性质及养分和酶活性的变化规律. 冰川冻土, 2014, 36(2): 335-346. | |
26 | Cui H P, Zhao G Q, Liu H. Effects of herbicide on the activities of urease and alkaline phosphatase in oat field. Chinese Journal of Grassland, 2014, 36(1): 37-43. |
崔荟萍, 赵桂琴, 刘欢. 除草剂对燕麦田土壤脲酶和碱性磷酸酶活性的影响. 中国草地学报, 2014, 36(1): 37-43. | |
27 | Zhou X B, Zhang Y M, Tao Y, et al. Responses of soil enzyme activities and microbial biomass N to simulated N deposition in Gurbantunggut Desert. Acta Ecologica Sinica, 2011, 31(12): 3340-3349. |
周晓兵, 张元明, 陶冶, 等. 古尔班通古特沙漠土壤酶活性和微生物量氮对模拟氮沉降的响应. 生态学报, 2011, 31(12): 3340-3349. | |
28 | Cheng Y N, Wang Z D, Ren X J, et al. Impact of haloxyfop-R-methyl on microbial respiration and enzyme activities in fluvio-aquic soil. Journal of Agro-Environment Science, 2021, 40(5): 1026-1033. |
程亚南, 王振东, 任秀娟, 等. 高效氟吡甲禾灵对潮土微生物呼吸及酶活性的影响. 农业环境科学学报, 2021, 40(5): 1026-1033. | |
29 | Qin W X, Si G C, Lei T Z, et al. Influences of nitrogen fertilizer addition on soil microbial biomass and enzyme activities. Jiangsu Agricultural Sciences, 2021, 49(1): 170-175. |
秦玮玺, 斯贵才, 雷天柱, 等. 氮肥添加对土壤微生物生物量及酶活性的影响. 江苏农业科学, 2021, 49(1): 170-175. | |
30 | Zeng Y, Zhou L Q, Huang J S, et al. Enzymatic activity of mulberry garden soil using different nitrogen fertilizer treatments. Journal of Southern Agriculture, 2013, 44(2): 253-256. |
曾艳, 周柳强, 黄金生, 等. 不同氮肥处理对桑园土壤酶活性的影响. 南方农业学报, 2013, 44(2): 253-256. |
[1] | 廖小琴, 王长庭, 刘丹, 唐国, 毛军. 氮磷配施对高寒草甸植物根系特征的影响[J]. 草业学报, 2023, 32(7): 160-174. |
[2] | 张一龙, 李雯, 喻启坤, 李培英, 孙宗玖. 狗牙根叶与根氮代谢对不同干旱胁迫的响应机制[J]. 草业学报, 2023, 32(7): 175-187. |
[3] | 马嵩科, 霍克, 张冬霞, 张静, 张俊豪, 柴雪茹, 王贺正. 玉米秸秆还田配施氮肥对豫西旱地小麦土壤酶活性和氮肥利用效率的影响[J]. 草业学报, 2023, 32(6): 120-133. |
[4] | 刘彩凤, 段媛媛, 王玲玲, 王乙茉, 郭正刚. 高原鼠兔干扰对高寒草甸植物物种多样性与土壤生态化学计量比间关系的影响[J]. 草业学报, 2023, 32(6): 157-166. |
[5] | 孙玉, 杨永胜, 何琦, 王军邦, 张秀娟, 李慧婷, 徐兴良, 周华坤, 张宇恒. 三江源高寒草甸水源涵养功能及土壤理化性质对退化程度的响应[J]. 草业学报, 2023, 32(6): 16-29. |
[6] | 刘欢, 董凯, 仁增旺堆, 王敬龙, 刘云飞, 赵桂琴. 藏沙蒿与多年生禾草混播对西藏沙化草地植被及土壤真菌群落特征的影响[J]. 草业学报, 2023, 32(6): 45-57. |
[7] | 安晓霞, 张盈盈, 马春晖, 李曼, 张前兵. 施磷与接种丛枝菌根真菌对苜蓿产量和磷素利用效率的影响[J]. 草业学报, 2023, 32(6): 71-84. |
[8] | 李超男, 王磊, 周继强, 赵长兴, 谢晓蓉, 刘金荣. 微塑料对紫花苜蓿生长及生理特性的影响[J]. 草业学报, 2023, 32(5): 138-146. |
[9] | 史正军, 潘松, 冯世秀, 袁峰均. 园林废弃物地表覆盖处理对植物生长及土壤细菌群落的影响[J]. 草业学报, 2023, 32(4): 153-160. |
[10] | 周力, 侯生珍, 王志有, 杨葆春, 韩丽娟, 桂林生. 棕榈粕替代部分玉米对藏羊母羊小肠形态发育、消化酶活性及抗氧化功能的影响[J]. 草业学报, 2023, 32(3): 118-127. |
[11] | 王志婷, 刘廷玺, 童新, 段利民, 李东方, 刘小勇. 半干旱草甸草地不同处理下植被特征与土壤酶活性的变化[J]. 草业学报, 2023, 32(3): 41-55. |
[12] | 常文华, 马维伟, 李广, 徐国荣, 龙永春. 尕海湿地区沼泽草甸退化对土壤氮转化酶活性的影响[J]. 草业学报, 2023, 32(2): 54-64. |
[13] | 银敏华, 马彦麟, 康燕霞, 贾琼, 齐广平, 汪精海. 氮素添加对中国苜蓿产量与品质效应的Meta分析[J]. 草业学报, 2022, 31(9): 36-49. |
[14] | 游郭虹, 刘丹, 王艳丽, 王长庭. 高寒草甸植物叶片生态化学计量特征对长期氮肥添加的响应[J]. 草业学报, 2022, 31(9): 50-62. |
[15] | 周大梁, 石薇, 蒋紫薇, 魏正业, 梁欢欢, 贾倩民. 沟垄集雨下密度和施氮对黄土高原青贮玉米叶片酶活性及水氮利用的影响[J]. 草业学报, 2022, 31(8): 126-143. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||