欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2024, Vol. 33 ›› Issue (5): 143-154.DOI: 10.11686/cyxb2023240

• 研究论文 • 上一篇    

紫花苜蓿CAMTA基因家族鉴定及其在非生物胁迫下的表达模式分析

孔海明1(), 宋家兴1, 杨静1, 李倩2, 杨培志1, 曹玉曼1()   

  1. 1.西北农林科技大学草业与草原学院,陕西 杨凌 712100
    2.新疆农业大学草业学院,新疆 乌鲁木齐 830052
  • 收稿日期:2023-07-13 修回日期:2023-09-04 出版日期:2024-05-20 发布日期:2024-02-03
  • 通讯作者: 曹玉曼
  • 作者简介:E-mail: yumancao@nwafu.edu.cn
    孔海明(2000-),女,陕西西安人,在读硕士。E-mail: konghaimingm@163.com
  • 基金资助:
    科技创新2030(2022ZD04011);国家现代农业产业技术体系(CARS-34);陕西省重点研发计划项目(2022ZDLNY01-07)

Identification and transcript profiling of the CAMTA gene family under abiotic stress in alfalfa

Hai-ming KONG1(), Jia-xing SONG1, Jing YANG1, Qian LI2, Pei-zhi YANG1, Yu-man CAO1()   

  1. 1.College of Grassland Agriculture,Northwest A&F University,Yangling 712100,China
    2.College of Grassland Science,Xinjiang Agricultural University,Urumqi 830052,China
  • Received:2023-07-13 Revised:2023-09-04 Online:2024-05-20 Published:2024-02-03
  • Contact: Yu-man CAO

摘要:

钙调蛋白结合转录激活因子(CAMTA)是一类重要的钙调素结合蛋白,在激素信号转导、发育调控和环境胁迫耐受中发挥着重要作用。本研究采用生物信息学技术,基于紫花苜蓿“新疆大叶”参考基因组,对紫花苜蓿中CAMTA家族成员进行鉴定,并对这些基因的理化性质、系统发育树、保守结构域、染色体上位置、顺式作用元件、转录表达谱进行分析和验证。结果表明,共鉴定出17个MsCAMTA基因,MsCAMTA家族成员可划分为3个亚家族,亚家族成员在基因结构、保守基序位置上较为相似。染色体定位结果显示,MsCAMTA家族成员不均匀地分布在7条染色体上。启动子区具有大量响应低温、盐胁迫及植物激素信号相关的顺式作用元件。此外,采用RT-qPCR对盐(300 mmol·L-1 NaCl)、模拟干旱(400 mmol·L-1 甘露醇)、低温(10 ℃)和脱落酸(100 μmol·L-1)处理下紫花苜蓿叶片中MsCAMTA1MsCAMTA3MsCAMTA11MsCAMTA12的表达模式进行了初步研究。结果表明,4个MsCAMTA候选基因在各胁迫处理下均有一定程度的响应,且在盐胁迫下的表达量都呈上调趋势,表明MsCAMTA基因可能通过整合多种逆境应激信号,参与紫花苜蓿响应各非生物胁迫的应答过程。本研究结果将为进一步探索MsCAMTA基因在植物应对逆境胁迫中的功能提供参考。

关键词: 紫花苜蓿, CAMTA基因, 生物信息学分析, 基因表达

Abstract:

Calmodulin-binding transcription activating factors (CAMTA) are calmodulin-binding proteins that play important roles in hormone signal transduction, developmental regulation, and environmental stress tolerance. In this study, bioinformatic methods were used to identify members of the CAMTA family in alfalfa (Medicago sativa) based on the reference genome of M. sativa “XinjiangDaye”. A phylogenetic analysis was conducted to evaluate relationships among the MsCAMTA genes. The physicochemical properties and conserved domains of the putative proteins were determined. The chromosomal positions of MsCAMTA genes were mapped, and cis-acting elements were identified in their promoter regions. The transcriptional profiles of MsCAMTA genes under various stress conditions were analyzed and validated. Seventeen MsCAMTA genes were identified, and the MsCAMTA family members grouped into three subfamilies in the phylogenetic analysis. Members of the same subfamily had relatively similar gene structures and positions of conserved motifs. The chromosomal localization results showed that members of the MsCAMTA family were unevenly distributed on seven chromosomes. A large number of cis-acting elements that respond to low temperature, salt stress, and plant hormone signals were identified in the promoter regions of these genes. We conducted RT-qPCR analyses to determine the transcript levels of MsCAMTA1MsCAMTA3MsCAMTA11, and MsCAMTA12 in alfalfa leaves under salt (300 mmol·L-1 NaCl), simulated drought (400 mmol·L-1 mannitol), low temperature (10 ℃), and abscisic acid (100 μmol·L-1) treatments. All four MsCAMTA candidate genes responded to various stressors to varying degrees. All four were up-regulated under salt stress. The results suggested that MsCAMTA may participate in the responses of alfalfa to various abiotic stresses by integrating multiple stress signals. The results of this study provide a reference for further studies on the functions of MsCAMTA genes in plant response to stress.

Key words: alfalfa, CAMTA gene, bioinformatics analysis, gene expression