草业学报 ›› 2024, Vol. 33 ›› Issue (6): 17-28.DOI: 10.11686/cyxb2023243
姜海鑫1,2,3(), 周瑶1,2,3,4, 胡科5, 丁占胜5, 马红彬1,2,3,4()
收稿日期:
2023-07-13
修回日期:
2023-09-11
出版日期:
2024-06-20
发布日期:
2024-03-20
通讯作者:
马红彬
作者简介:
E-mail: ma_hb@nxu.edu.cn基金资助:
Hai-xin JIANG1,2,3(), Yao ZHOU1,2,3,4, Ke HU5, Zhan-sheng DING5, Hong-bin MA1,2,3,4()
Received:
2023-07-13
Revised:
2023-09-11
Online:
2024-06-20
Published:
2024-03-20
Contact:
Hong-bin MA
摘要:
研究放牧时间对草原土壤颗粒组成和分形维数的影响,有助于了解放牧干扰下草地土壤质量和草地生态状况,为草地适时放牧提供理论依据。以宁夏荒漠草原为对象,设置禁牧封育(FY)、传统时间轮牧(FG)、延迟开始轮牧(YG)、提前结束轮牧(TG)、延迟开始并提前结束轮牧(YT)5种不同时间放牧处理,研究了不同放牧时间下荒漠草原土壤颗粒组成及分形维数的变化及其影响因素。结果表明:各处理下荒漠草原土壤质地以粉粒、极细砂粒和细砂粒为主,0~40 cm土层处理间土壤颗粒组成差异显著(P<0.05),土壤颗粒分形维数变化范围为2.11~2.75,且随土层加深逐渐增大。总体上土壤YG粉粒含量、分形维数最高;0~10 cm土层除FY最低外,其余土层粉粒含量与分形维数均以FG处理最低。土壤分形维数与粉粒含量呈极显著正相关(P<0.01),与极细砂粒和细砂粒含量呈显著或极显著负相关(P<0.01,P<0.05),土壤颗粒分形维数与有机碳、总孔隙度呈正相关,与容重、速效钾、毛管孔隙度呈负相关。研究认为,分形维数可表征荒漠草原土壤质地变化,延迟放牧改善了土壤颗粒组成及分形维数,有利于土壤质量发展,可作为荒漠草原适时放牧的参考依据。
姜海鑫, 周瑶, 胡科, 丁占胜, 马红彬. 不同放牧时间对荒漠草原土壤颗粒组成及分形维数的影响[J]. 草业学报, 2024, 33(6): 17-28.
Hai-xin JIANG, Yao ZHOU, Ke HU, Zhan-sheng DING, Hong-bin MA. Effects of different grazing times on soil particle composition and fractal dimension in the desert steppe[J]. Acta Prataculturae Sinica, 2024, 33(6): 17-28.
项目Item | FY | FG | YG | TG | YT |
---|---|---|---|---|---|
容重Bulk density (g·cm-3) | 1.40±0.03ab | 1.45±0.01a | 1.35±0.03b | 1.41±0.01ab | 1.38±0.02b |
毛管孔隙度Capillary porosity (%) | 38.74±0.64a | 38.59±0.70a | 37.32±0.46a | 37.62±0.54a | 37.28±0.75a |
总孔隙度Total porosity (%) | 43.96±0.55a | 42.27±0.64b | 43.33±0.48ab | 42.89±0.52ab | 42.91±0.34ab |
pH | 8.83±0.03a | 8.85±0.06a | 8.87±0.02a | 8.87±0.02a | 8.91±0.02a |
土壤有机碳Soil organic carbon (g·kg-1) | 5.38±0.32ab | 4.88±0.33b | 5.41±0.37ab | 4.70±0.18b | 5.80±0.16a |
全氮Total nitrogen (g·kg-1) | 0.29±0.01ab | 0.27±0.01b | 0.27±0.01b | 0.28±0.02b | 0.32±0.01a |
全磷Total phosphorus (g·kg-1) | 0.24±0.02b | 0.28±0.00a | 0.30±0.01a | 0.22±0.02b | 0.18±0.01c |
速效钾Available potassium (mg·kg-1) | 151.11±18.73a | 121.75±17.80a | 137.86±23.42a | 109.04±17.80a | 114.21±15.37a |
速效氮Alkaline nitrogen (mg·kg-1) | 14.36±0.79a | 11.97±0.51a | 12.98±0.85a | 12.91±0.69a | 13.54±0.88a |
地上生物量Aboveground biomass (g·m-2) | 56.28±7.88a | 43.22±2.01b | 39.78±5.66b | 35.32±4.42b | 34.99±2.49b |
地下生物量Belowground biomass (g·m-2) | 291.40±4.22b | 353.86±10.73a | 267.69±10.70b | 280.59±8.58b | 269.55±3.63b |
植被盖度Plant coverage (%) | 66.17±4.84a | 60.17±2.80ab | 50.17±3.26bc | 49.00±4.06c | 45.50±3.24c |
表1 试验区土壤性状与植被特征
Table 1 Soil properties and vegetation characteristics
项目Item | FY | FG | YG | TG | YT |
---|---|---|---|---|---|
容重Bulk density (g·cm-3) | 1.40±0.03ab | 1.45±0.01a | 1.35±0.03b | 1.41±0.01ab | 1.38±0.02b |
毛管孔隙度Capillary porosity (%) | 38.74±0.64a | 38.59±0.70a | 37.32±0.46a | 37.62±0.54a | 37.28±0.75a |
总孔隙度Total porosity (%) | 43.96±0.55a | 42.27±0.64b | 43.33±0.48ab | 42.89±0.52ab | 42.91±0.34ab |
pH | 8.83±0.03a | 8.85±0.06a | 8.87±0.02a | 8.87±0.02a | 8.91±0.02a |
土壤有机碳Soil organic carbon (g·kg-1) | 5.38±0.32ab | 4.88±0.33b | 5.41±0.37ab | 4.70±0.18b | 5.80±0.16a |
全氮Total nitrogen (g·kg-1) | 0.29±0.01ab | 0.27±0.01b | 0.27±0.01b | 0.28±0.02b | 0.32±0.01a |
全磷Total phosphorus (g·kg-1) | 0.24±0.02b | 0.28±0.00a | 0.30±0.01a | 0.22±0.02b | 0.18±0.01c |
速效钾Available potassium (mg·kg-1) | 151.11±18.73a | 121.75±17.80a | 137.86±23.42a | 109.04±17.80a | 114.21±15.37a |
速效氮Alkaline nitrogen (mg·kg-1) | 14.36±0.79a | 11.97±0.51a | 12.98±0.85a | 12.91±0.69a | 13.54±0.88a |
地上生物量Aboveground biomass (g·m-2) | 56.28±7.88a | 43.22±2.01b | 39.78±5.66b | 35.32±4.42b | 34.99±2.49b |
地下生物量Belowground biomass (g·m-2) | 291.40±4.22b | 353.86±10.73a | 267.69±10.70b | 280.59±8.58b | 269.55±3.63b |
植被盖度Plant coverage (%) | 66.17±4.84a | 60.17±2.80ab | 50.17±3.26bc | 49.00±4.06c | 45.50±3.24c |
处理Treatments | 土层深度Soil depth(cm) | 颗粒分布 Particle size distribution (%) | ||||
---|---|---|---|---|---|---|
粉粒Silt (< 50 μm) | 极细砂粒Very fine sand (50~100 μm) | 细砂粒Fine sand (100~250 μm) | 中砂粒Medium sand (250~500 μm) | 粗砂粒Coarse sand (500~2000 μm) | ||
FY | 0~10 | 11.49±3.02Bc | 38.39±15.69Aa | 35.18±1.34Aa | 8.67±7.75Aa | 6.27±6.26Aa |
10~20 | 33.18±1.48Bb | 41.62±1.30ABa | 22.88±0.38BCb | 2.12±0.16Aa | 0.21±0.04Aa | |
20~30 | 41.12±1.71Aab | 35.69±1.28Aa | 20.19±0.58Bbc | 2.59±0.10ABa | 0.41±0.05Ba | |
30~40 | 51.54±7.09Aa | 28.45±5.87Aa | 16.36±2.15Ac | 2.81±0.46Aa | 0.84±0.47Aa | |
0~40 | 35.08±5.15AB | 36.01±3.26A | 23.27±2.42AB | 3.88±1.58AB | 1.76±1.35AB | |
FG | 0~10 | 14.22±4.62ABb | 38.06±13.70Aab | 34.72±2.53Aa | 7.84±6.48Aa | 5.16±5.13Aa |
10~20 | 10.79±0.94Db | 52.44±2.38Aa | 35.38±2.63Aa | 1.36±0.39Aa | 0.03±0.01Aa | |
20~30 | 21.26±3.62Bb | 29.21±6.75Ab | 29.93±2.36Aa | 10.69±3.02Aa | 8.91±3.18Aa | |
30~40 | 41.33±4.72Aa | 28.59±3.23Ab | 20.61±2.01Ab | 5.65±2.73Aa | 3.82±3.20Aa | |
0~40 | 22.49±3.85B | 36.34±4.07A | 29.76±2.02A | 6.62±1.73A | 4.79±1.68A | |
YG | 0~10 | 19.36±1.29Ac | 48.94±1.10Aa | 29.83±1.02Aa | 1.79±0.25Ab | 0.09±0.03Ac |
10~20 | 43.18±1.88Ab | 36.79±0.85Bb | 18.02±1.29Cb | 1.81±0.34Ab | 0.22±0.07Abc | |
20~30 | 54.81±4.20Aa | 24.42±1.54Ac | 15.80±1.92Bb | 3.60±0.68ABa | 1.38±0.35ABa | |
30~40 | 52.86±1.94Aa | 27.94±1.34Ac | 15.83±0.72Ab | 2.69±0.16Aab | 0.69±0.10Ab | |
0~40 | 40.77±4.42A | 35.63±2.90A | 20.63±1.87B | 2.42±0.27B | 0.55±0.16B | |
TG | 0~10 | 19.29±1.04Ab | 42.51±8.96Aab | 29.60±0.63Aa | 5.32±4.05Aa | 3.28±3.24Aa |
10~20 | 22.74±2.85Cb | 49.45±1.26Aa | 26.43±1.65Ba | 1.33±0.04Aa | 0.05±0.01Aa | |
20~30 | 47.23±4.03Aa | 32.18±0.59Aab | 17.61±2.48Bb | 2.50±0.75Ba | 0.48±0.21ABa | |
30~40 | 51.37±6.34Aa | 27.61±3.49Ab | 16.92±2.61Ab | 3.19±0.29Aa | 0.91±0.05Aa | |
0~40 | 32.33±4.86AB | 39.55±3.70A | 23.71±1.94AB | 3.13±1.18AB | 1.28±0.95AB | |
YT | 0~10 | 14.09±0.43ABb | 46.12±5.53Aa | 35.28±2.75Aa | 3.88±2.46Aa | 0.62±0.58Aa |
10~20 | 28.33±2.47BCb | 37.91±5.44Bab | 25.59±1.91Bb | 4.93±2.63Aa | 3.24±3.01Aa | |
20~30 | 45.79±8.34Aa | 24.66±1.99Abc | 18.35±4.22Bb | 6.27±3.04ABa | 4.94±3.06ABa | |
30~40 | 55.59±5.33Aa | 19.06±0.64Ac | 15.57±1.97Ab | 5.54±1.26Aa | 4.24±1.47Aa | |
0~40 | 33.68±4.93AB | 33.51±3.66A | 24.53±2.51AB | 5.10±1.19AB | 3.18±1.24AB |
表2 不同放牧时间下土壤颗粒组成
Table 2 Soil particle composition at different grazing times
处理Treatments | 土层深度Soil depth(cm) | 颗粒分布 Particle size distribution (%) | ||||
---|---|---|---|---|---|---|
粉粒Silt (< 50 μm) | 极细砂粒Very fine sand (50~100 μm) | 细砂粒Fine sand (100~250 μm) | 中砂粒Medium sand (250~500 μm) | 粗砂粒Coarse sand (500~2000 μm) | ||
FY | 0~10 | 11.49±3.02Bc | 38.39±15.69Aa | 35.18±1.34Aa | 8.67±7.75Aa | 6.27±6.26Aa |
10~20 | 33.18±1.48Bb | 41.62±1.30ABa | 22.88±0.38BCb | 2.12±0.16Aa | 0.21±0.04Aa | |
20~30 | 41.12±1.71Aab | 35.69±1.28Aa | 20.19±0.58Bbc | 2.59±0.10ABa | 0.41±0.05Ba | |
30~40 | 51.54±7.09Aa | 28.45±5.87Aa | 16.36±2.15Ac | 2.81±0.46Aa | 0.84±0.47Aa | |
0~40 | 35.08±5.15AB | 36.01±3.26A | 23.27±2.42AB | 3.88±1.58AB | 1.76±1.35AB | |
FG | 0~10 | 14.22±4.62ABb | 38.06±13.70Aab | 34.72±2.53Aa | 7.84±6.48Aa | 5.16±5.13Aa |
10~20 | 10.79±0.94Db | 52.44±2.38Aa | 35.38±2.63Aa | 1.36±0.39Aa | 0.03±0.01Aa | |
20~30 | 21.26±3.62Bb | 29.21±6.75Ab | 29.93±2.36Aa | 10.69±3.02Aa | 8.91±3.18Aa | |
30~40 | 41.33±4.72Aa | 28.59±3.23Ab | 20.61±2.01Ab | 5.65±2.73Aa | 3.82±3.20Aa | |
0~40 | 22.49±3.85B | 36.34±4.07A | 29.76±2.02A | 6.62±1.73A | 4.79±1.68A | |
YG | 0~10 | 19.36±1.29Ac | 48.94±1.10Aa | 29.83±1.02Aa | 1.79±0.25Ab | 0.09±0.03Ac |
10~20 | 43.18±1.88Ab | 36.79±0.85Bb | 18.02±1.29Cb | 1.81±0.34Ab | 0.22±0.07Abc | |
20~30 | 54.81±4.20Aa | 24.42±1.54Ac | 15.80±1.92Bb | 3.60±0.68ABa | 1.38±0.35ABa | |
30~40 | 52.86±1.94Aa | 27.94±1.34Ac | 15.83±0.72Ab | 2.69±0.16Aab | 0.69±0.10Ab | |
0~40 | 40.77±4.42A | 35.63±2.90A | 20.63±1.87B | 2.42±0.27B | 0.55±0.16B | |
TG | 0~10 | 19.29±1.04Ab | 42.51±8.96Aab | 29.60±0.63Aa | 5.32±4.05Aa | 3.28±3.24Aa |
10~20 | 22.74±2.85Cb | 49.45±1.26Aa | 26.43±1.65Ba | 1.33±0.04Aa | 0.05±0.01Aa | |
20~30 | 47.23±4.03Aa | 32.18±0.59Aab | 17.61±2.48Bb | 2.50±0.75Ba | 0.48±0.21ABa | |
30~40 | 51.37±6.34Aa | 27.61±3.49Ab | 16.92±2.61Ab | 3.19±0.29Aa | 0.91±0.05Aa | |
0~40 | 32.33±4.86AB | 39.55±3.70A | 23.71±1.94AB | 3.13±1.18AB | 1.28±0.95AB | |
YT | 0~10 | 14.09±0.43ABb | 46.12±5.53Aa | 35.28±2.75Aa | 3.88±2.46Aa | 0.62±0.58Aa |
10~20 | 28.33±2.47BCb | 37.91±5.44Bab | 25.59±1.91Bb | 4.93±2.63Aa | 3.24±3.01Aa | |
20~30 | 45.79±8.34Aa | 24.66±1.99Abc | 18.35±4.22Bb | 6.27±3.04ABa | 4.94±3.06ABa | |
30~40 | 55.59±5.33Aa | 19.06±0.64Ac | 15.57±1.97Ab | 5.54±1.26Aa | 4.24±1.47Aa | |
0~40 | 33.68±4.93AB | 33.51±3.66A | 24.53±2.51AB | 5.10±1.19AB | 3.18±1.24AB |
图1 不同放牧时间下土壤颗粒分形维数特征FY:禁牧封育;YT:延迟开始并提前结束轮牧;YG:延迟开始轮牧;TG:提前结束轮牧;FG:传统时间轮牧;不同大写字母表示同一土层不同处理间差异显著(P<0.05),不同小写字母表示同一处理下不同土层间差异显著(P<0.05)。FY:Forbidden grazing;YT:Delayed start and early end rotational grazing;YG:Delayed start rotational grazing;TG:Early end rotational grazing;FG:Traditional time rotational grazing;Different uppercase letters indicated that there were significant differences among different treatments in the same soil layer at 0.05 level, and different lowercase letters indicated that there were significant differences among different soil layers under the same treatment at 0.05 level.
Fig.1 Fractal dimension characteristics of soil particles under different grazing time
图2 不同放牧时间土壤颗粒组成体积百分含量与分形维数的关系FY:禁牧封育;YT:延迟开始并提前结束轮牧;YG:延迟开始轮牧;TG:提前结束轮牧;FG:传统时间轮牧;*表示差异显著(P<0.05),**表示差异极显著(P<0.01)。FY:Forbidden grazing;YT:Delayed start and early end rotational grazing;YG:Delayed start rotational grazing;TG:Early end rotational grazing;FG:Traditional time rotational grazing; * means significant difference at 0.05 level, ** means extremely significant difference at 0.01 level.
Fig.2 Relationship between volume percentage of soil particle composition and fractal dimension in different grazing time
图 3 土壤颗粒组成及分形维数与土壤性状RDA分析及特征重要性排序D:分形维数 Fractal dimension;Silt:粉粒;Very Fine sand:极细砂粒;Find sand:细砂粒;Medium sand:中砂粒;Coarse sand:粗砂粒;BD:容重Bulk density;CP:毛管孔隙度Capillary porosity;TP:总孔隙度Total porosity;TN:全氮Total nitrogen;AK:速效钾Available potassium;AN:速效氮Alkaline nitrogen;SOC:土壤有机碳Soil organic carbon;TPP:全磷Total phosphorus;AGB:地上生物量Aboveground biomass;BGB:地下生物量Belowground biomass;PC:植被盖度Plant coverage.
Fig.3 Soil particle composition and fractal dimension and soil properties RDA analysis and feature importance ranking
1 | Scott W T, Stephen W W. Application of fractal mathematics to soil water retention estimation. Soil Science Society of America Journal, 1989, 53(4): 987-996. |
2 | Montero E. Rényi dimensions analysis of soil particle size distributions. Ecological Modelling, 2005, 182(3/4): 305-315. |
3 | Tyler S W, Wheatcraft S W. Fractal scaling of soil particle-size distributions: analysis and limitations. Soil Science Society of America Journal, 1992, 56(2): 362-369. |
4 | Li Y, Li M, Horton R. Single and joint multifractal analysis of soil particle size distributions. Pedosphere, 2011, 21(1): 75-83. |
5 | Dong Z J, Zhan X L, Ding X H. Fractal features of soil particles under different land uses in the southwestern edge of the Mu Us Sandy Land. Research of Soil and Water Conservation, 2022, 29(3): 43-48. |
董智今, 展秀丽, 丁小花. 毛乌素沙地西南缘不同土地利用类型土壤颗粒分形特征. 水土保持研究, 2022, 29(3): 43-48. | |
6 | Xu G C, Li Z B, Li P. Fractal features of soil particle-size distribution and total soil nitrogen distribution in a typical watershed in the source area of the middle Dan River, China. Catena, 2013, 101: 17-23. |
7 | Kohler F, Hamelin J, Gillet F, et al. Soil microbial community changes in Wooded Mountain Pastures due to simulated effects of cattle grazing. Plant and Soil, 2005, 278(1/2): 327-340. |
8 | Wang R D, Gao Y, Dang X H, et al. Characteristics of soil fractals and the influencing factors of different plant communities in the XiLamuren grassland. Research of Soil and Water Conservation, 2020, 27(3): 51-56. |
王瑞东, 高永, 党晓宏, 等. 希拉穆仁天然草地不同群落土壤分形特征及其影响因素. 水土保持研究, 2020, 27(3): 51-56. | |
9 | Su Y Z, Zhao H L. Fractal features of soil particle size distribution in the desertification process of the farmland in Horqin Sandy Land. Acta Ecologica Sinica, 2004, 24(1): 71-74. |
苏永中, 赵哈林. 科尔沁沙地农田沙漠化演变中土壤颗粒分形特征. 生态学报, 2004, 24(1): 71-74. | |
10 | Lin H L, Ren J Z. Integrated influence of experimental trampling and simulated precipitation on fractal dimension of soil particle size distributions in the steppes of Huanxian County in Eastern Gansu Province, China. Acta Prataculturae Sinica, 2009, 18(4): 202-209. |
林慧龙, 任继周. 践踏和降水对环县典型草原土壤颗粒分维特征的影响. 草业学报, 2009, 18(4): 202-209. | |
11 | Dong L, Wang J, Li J R, et al. Assessing the impact of grazing management on wind erosion risk in grasslands: A case study on how grazing affects aboveground biomass and soil particle composition in Inner Mongolia. Global Ecology and Conservation, 2022, 40: e02344. |
12 | Geng L S, Li H L, Dong Z, et al. Distribution characteristics of soil particle size in Xilamuren grassland with different grazing intensities. Journal of Arid Land Resources and Environment, 2021, 35(12): 121-126. |
耿林昇, 李红丽, 董智, 等. 放牧对希拉穆仁草原土壤粒度特征的影响. 干旱区资源与环境, 2021, 35(12): 121-126. | |
13 | Zhang B, Zhao T Q, He Q S, et al. Effects of grazing on soil aggregate composition and stability in Stipa breviflora desert steppe. Chinese Journal of Applied Ecology, 2022, 33(12): 3263-3270. |
张彬, 赵天启, 贺启珅, 等. 放牧对短花针茅荒漠草原土壤团聚体组成及稳定性的影响. 应用生态学报, 2022, 33(12): 3263-3270. | |
14 | Yang Y N, Yang Z Q, Guo J Y. Effects of grazing intensity on features of vegetation, soil and its erosion in a steppe desert. Bulletin of Soil and Water Conservation, 2022, 42(4): 66-73. |
杨雅楠, 杨振奇, 郭建英. 放牧强度对荒漠草原植被、土壤及其侵蚀特征的影响. 水土保持通报, 2022, 42(4): 66-73. | |
15 | Li H, Jiang K W, Yang Y Q, et al. Response of vegetation characteristics and soil nutrients to grazing in mountain meadows on the north slope of the Tianshan Mountains. Pratacultural Science, 2023, 40(4): 874-884. |
李宏, 江康威, 杨永强, 等. 天山北坡山地草甸植被特征和土壤养分对放牧的响应. 草业科学, 2023, 40(4): 874-884. | |
16 | Zuo W Q, Wang Y H, Wang F Y, et al. Effects of enclosure on the community characteristics of Leymus chinensis in degenerated steppe. Acta Prataculturae Sinica, 2009, 18(3): 12-19. |
左万庆, 王玉辉, 王风玉, 等. 围栏封育措施对退化羊草草原植物群落特征影响研究. 草业学报, 2009, 18(3): 12-19. | |
17 | Bryan B A, Gao L, Ye Y, et al. China’s response to a national land-system sustainability emergency. Nature, 2018, 559(7713): 193-204. |
18 | Zhao L P, Tan S T, Bai X, et al. Effects of enclosure duration on plant propagation and vegetation regeneration in the semiarid steppe of Yunwu Mountain. Acta Prataculturae Sinica, 2017, 26(10): 1-9. |
赵凌平, 谭世图, 白欣, 等. 封育年限对云雾山典型草原植物繁殖与植被更新的影响. 草业学报, 2017, 26(10): 1-9. | |
19 | Shi M M, Niu D C, Wang Y, et al. Effect of fencing and grazing management on the plant functional traits and functional diversity in an alpine meadow on the Tibetan Plateau. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(6): 1216-1225. |
石明明, 牛得草, 王莹, 等. 围封与放牧管理对高寒草甸植物功能性状和功能多样性的影响. 西北植物学报, 2017, 37(6): 1216-1225. | |
20 | Pan J C, Dong Z, Li H L, et al. Multi-fractal characteristics of soil particles and soil physicochemical properties in responses to grazing intensity in desert steppe. Journal of Arid Land Resources and Environment, 2021, 35(8): 93-99. |
潘嘉琛, 董智, 李红丽, 等. 短花针茅荒漠草原土壤颗粒多重分形及理化性质对放牧强度的响应. 干旱区资源与环境, 2021, 35(8): 93-99. | |
21 | Zhong B, Sun G, Chen D M, et al. Effects of different restoration measures on soil microbial biomass carbon and nitrogen and soil enzymes in the process of restoration of the desertified grassland in Zoige. Ecology and Environmental Sciences, 2017, 26(3): 392-399. |
仲波, 孙庚, 陈冬明, 等. 不同恢复措施对若尔盖沙化退化草地恢复过程中土壤微生物生物量碳氮及土壤酶的影响. 生态环境学报, 2017, 26(3): 392-399. | |
22 | Liu H M. Effect of different rotational grazing time on the plant population and the soil of Desert Steppe. Hohhot: Inner Mongolia Agricultural University, 2007. |
刘红梅. 不同轮牧时间对荒漠草原植物群落和土壤理化性质的影响. 呼和浩特: 内蒙古农业大学, 2007. | |
23 | Ren J, Wei Y, Lv S J, et al. Effect of different grazing time on under-ground biomass of plant communities in desert steppe. Animal Husbandry and Feed Science, 2016, 37(10): 32-35. |
任佳, 卫媛, 吕世杰, 等. 不同放牧时间对荒漠草原群落地下生物量的影响. 畜牧与饲料科学, 2016, 37(10): 32-35. | |
24 | Ma H B, Xie Y Z. Study on plant compensatory growth under different grazing ways in desert steppe. Acta Agriculturae Boreali-Occidentalis Sinica, 2008, 17(1): 211-215. |
马红彬, 谢应忠. 不同放牧方式下荒漠草原植物补偿性生长研究. 西北农业学报, 2008, 17(1): 211-215. | |
25 | Yoshihara Y, Tatsuno Y, Miyasaka K, et al. Can complementarity in water use help explain diversity-productivity relationships in semi-arid grasslands? Journal of Arid Environments, 2020, 173: 103994. |
26 | Nanjing Soil Institute of Chinese Academy of Sciences. Soil physical properties analysis. Shanghai: Shanghai Science and Technology Press, 1978. |
中国科学院南京土壤研究所土壤物理研究室. 土壤物理性质测定法. 上海: 上海科技出版社, 1978. | |
27 | Bao S D. Soil agrochemistry analysis (The Third Edition). Beijing: China Agriculture Press, 2000: 25-114. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000: 25-114. | |
28 | Yang P L, Luo Y P, Shi Y C. Soil fractal characteristics measured by mass of particle-size distribution. Chinese Science Bulletin, 1993, 38(20): 1896-1899. |
杨培岭, 罗远培, 石元春. 用粒径的重量分布表征的土壤分形特征. 科学通报, 1993, 38(20): 1896-1899. | |
29 | Wang P J, Dai Q H, Ding G J, et al. Infiltration characteristics of soil and its affecting factors in the process of vegetation recovery in Karst region. Science of Soil and Water Conservation, 2012, 10(6): 12-18. |
王佩将, 戴全厚, 丁贵杰, 等. 喀斯特地区植被恢复过程中土壤渗透性能及其影响因素. 中国水土保持科学, 2012, 10(6): 12-18. | |
30 | Ta F, Dong Z B, Nan W G, et al. Study on the characteristics of aeolian sandy soils in plantation and natural stand of Sabina vulgaris. Research of Soil and Water Conservation, 2021, 28(2): 80-87. |
拓飞, 董治宝, 南维鸽, 等. 沙地柏人工林和天然林风沙土特性研究. 水土保持研究, 2021, 28(2): 80-87. | |
31 | Yan Y C, Wang X, Yang G X, et al. Review on mechanism of fine soil particles increase in enclosed grassland. Journal of Desert Research, 2011, 31(5): 1162-1166. |
闫玉春, 王旭, 杨桂霞, 等. 退化草地封育后土壤细颗粒增加机理探讨及研究展望. 中国沙漠, 2011, 31(5): 1162-1166. | |
32 | Xie L, Song N P, Meng C, et al. Time course of changes in soil particle size and carbon and nitrogen reserves after fencing Ningxia desert steppe. Acta Prataculturae Sinica, 2020, 29(2): 1-10. |
谢莉, 宋乃平, 孟晨, 等. 不同封育年限对宁夏荒漠草原土壤粒径及碳氮储量的影响. 草业学报, 2020, 29(2): 1-10. | |
33 | Wan Q, Wang J, Wang X T, et al. Effects of different meadow use types on the fractal characteristics of soil particle in the Qinghai-Tibet Plateau. Acta Ecologica Sinica, 2022, 42(5): 1716-1726. |
宛倩, 王杰, 王向涛, 等. 青藏高原不同草地利用方式对土壤粒径分形特征的影响. 生态学报, 2022, 42(5): 1716-1726. | |
34 | Lu Q, Ma H B, Yu H Q, et al. Effects of rotational grazing methods on soil aggregates and organic carbon characteristics in desert steppe. Chinese Journal of Applied Ecology, 2019, 30(9): 3028-3038. |
陆琪, 马红彬, 俞鸿千, 等. 轮牧方式对荒漠草原土壤团聚体及有机碳特征的影响. 应用生态学报, 2019, 30(9): 3028-3038. | |
35 | Wang Q L, Hua L M, Wang G Z, et al. Effects of deferred grazing on grassland community characteristics and productivity in alpine meadow. Acta Agrestia Sinica, 2015, 23(5): 1068-1072. |
王巧玲, 花立民, 王贵珍, 等. 春季延迟放牧对高寒草甸草地群落特征及生产力的影响. 草地学报, 2015, 23(5): 1068-1072. | |
36 | Wen H Y, Fu H, Zhao H L. Fractal features of soil particle size distribution in degraded sandy grassland during reclamation and enclosure. Chinese Journal of Applied Ecology, 2006, 17(1): 55-59. |
文海燕, 傅华, 赵哈林. 退化沙质草地开垦和围封过程中的土壤颗粒分形特征. 应用生态学报, 2006, 17(1): 55-59. | |
37 | Zhang Y, Li J P, Jing L. Effect of grazing enclosure on the fractal characteristics of deep soil of grassland on the loess plateau. Research of Soil and Water Conservation, 2018, 25(5): 131-135. |
张翼, 李建平, 井乐. 封育对天然草地深层土壤粒径分形特征的影响. 水土保持研究, 2018, 25(5): 131-135. | |
38 | Ma W F, Zhu Y P, Guo Q Q, et al. Fractal characteristics of soil particle compositions in soil profiles of typical vegetation types on Loess Hilly Region. Soils, 2019, 51(3): 578-585. |
马文芳, 朱云鹏, 郭倩倩, 等. 黄土丘陵区典型植被土壤剖面的颗粒分形特征. 土壤, 2019, 51(3): 578-585. | |
39 | Du D D, Gao R Z, Jia D B.Analys of fractal characteristics and spatial variablility of soil particles in the Jilantai Salt Lake Basin. Research of Soil and Water Conservation, 2023, 30(6): 1-9. |
杜丹丹, 高瑞忠, 贾德彬. 吉兰泰盐湖盆地土壤颗粒分形特征与空间变异分析. 水土保持研究, 2023, 30(6): 1-9. | |
40 | Diao E L, Cao G C, Yuan J, et al. Fractal characteristics of soil particles under different land use patterns in Xiangride-Chaidamu River Basin. Southwest China Journal of Agricultural Sciences, 2022, 35(10): 2353-2360. |
刁二龙, 曹广超, 袁杰, 等. 香日德-柴达木河流域不同土地利用方式下土壤颗粒分形特征. 西南农业学报, 2022, 35(10): 2353-2360. | |
41 | Sun Z C, Guo T D, Yu L, et al. Changes in soil particle size distribution and fractal characteristics across an anthropogenic transition from desert steppe grassland to shrubland in eastern Ningxia. Acta Prataculturae Sinica, 2021, 30(4): 34-45. |
孙忠超, 郭天斗, 于露, 等. 宁夏东部荒漠草原向灌丛地人为转变过程土壤粒径分形特征. 草业学报, 2021, 30(4): 34-45. | |
42 | Liu Y Y, Hu Y K, Gong Y M. Fractal dimensions of soil particles in different degenerate stages of alpine steppe. Bulletin of Soil and Water Conservation, 2013, 33(5): 138-142. |
柳妍妍, 胡玉昆, 公延明. 高寒草原不同退化阶段土壤颗粒分形特征. 水土保持通报, 2013, 33(5): 138-142. | |
43 | Jin Z, Dong Y S, Qi Y C, et al. Characterizing variations in soil particle-size distribution along a grass-desert shrub transition in the Ordos plateau of Inner Mongolia, China. Land Degradation & Development, 2013, 24(2): 141-146. |
44 | Luo Y X, Liu R T, Zhang J, et al. Soil particle composition, fractal dimension and their effects on soil properties following sand-binding revegetation within straw checkerboard in Tengger Desert, China. Chinese Journal of Applied Ecology, 2019, 30(2): 525-535. |
罗雅曦, 刘任涛, 张静, 等. 腾格里沙漠草方格固沙林土壤颗粒组成、分形维数及其对土壤性质的影响. 应用生态学报, 2019, 30(2): 525-535. | |
45 | Lv S Q, Gao P, Geng G P, et al. Characteristics of soil particles and their correlation with soil organic matter in lowlands of the Yellow River Delta. Journal of Soil and Water Conservation, 2011, 25(6): 134-138. |
吕圣桥, 高鹏, 耿广坡, 等. 黄河三角洲滩地土壤颗粒分形特征及其与土壤有机质的关系. 水土保持学报, 2011, 25(6): 134-138. | |
46 | Lin L, Zhang D G, Cao G M, et al. Responses of soil nutrient traits to grazing intensities in alpine Kobresia meadows. Acta Ecologica Sinica, 2016, 36(15): 4664-4671. |
林丽, 张德罡, 曹广民, 等. 放牧强度对高寒嵩草草甸土壤养分特性的影响. 生态学报, 2016, 36(15): 4664-4671. | |
47 | Shan G M, Zhang C P, Liu X, et al. Grain structure and nutrient degradation characteristics of soil from small watershed’s sloping lands in Yimeng Mountainous areas. Science of Soil and Water Conservation, 2013, 11(5): 76-82. |
单桂梅, 张春平, 刘霞, 等. 沂蒙山区小流域坡耕地土壤颗粒结构与养分退化特征. 中国水土保持科学, 2013, 11(5): 76-82. | |
48 | Zhang N. Effects of grazing intensity on vegetation community characteristics and soil physical and chemical properties of typical steppe. Beijing: Chinese Academy of Agricultural Sciences, 2020. |
张娜. 不同放牧强度对典型草原植被群落特征及土壤理化性状的影响. 北京: 中国农业科学院, 2020. | |
49 | Song C G, Zhang M Y, He Q, et al. Effects of grazing prohibition on vegetation community structure and soil moisture characteristics of alpine meadows on the southern slope of the Qilian Mountains. Chinese Journal of Grassland, 2023, 45(4): 22-32. |
宋成刚, 张铭洋, 何琦, 等. 禁牧封育对祁连山南麓高寒草甸植被群落结构及土壤水分特征的影响. 中国草地学报, 2023, 45(4): 22-32. |
[1] | 赵亚楠, 王红梅, 李志丽, 张振杰, 陈彦硕, 苏荣霞. 荒漠草原灌丛转变过程土壤水分亏缺空间特征及影响因素[J]. 草业学报, 2024, 33(4): 22-34. |
[2] | 李俊瑶, 蒋星驰, 胡晋瑜, 魏栋光, 赵学勇, 王少昆. 生物有机肥施加对荒漠草原植被-土壤-微生物的影响[J]. 草业学报, 2024, 33(3): 34-45. |
[3] | 鲍平安, 邱开阳, 黄业芸, 王思瑶, 崔璐瑶, 骆欣怡, 杨云涛, 谢应忠. 荒漠草原植物在氮磷添加下叶功能性状特征及其可塑性[J]. 草业学报, 2024, 33(3): 97-106. |
[4] | 赵敏, 赵坤, 王赟博, 殷国梅, 刘思博, 闫宝龙, 孟卫军, 吕世杰, 韩国栋. 长期放牧干扰降低了短花针茅荒漠草原植物多样性[J]. 草业学报, 2023, 32(9): 39-49. |
[5] | 刘欣雷, 杜鹤强, 刘秀帆, 范亚伟. 内蒙古荒漠草原地表风沙活动对放牧强度的响应[J]. 草业学报, 2023, 32(7): 1-11. |
[6] | 陈彦硕, 马彦平, 王红梅, 赵亚楠, 李志丽, 张振杰. 荒漠草原不同年限灌丛引入过程土壤细菌碳源利用特征[J]. 草业学报, 2023, 32(6): 30-44. |
[7] | 胡宇霞, 龚吉蕊, 朱趁趁, 矢佳昱, 张子荷, 宋靓苑, 张魏圆. 基于生态系统服务簇的内蒙古荒漠草原生态系统服务的空间分布特征[J]. 草业学报, 2023, 32(4): 1-14. |
[8] | 黄业芸, 邱开阳, 朱亚超, 谢应忠, 刘王锁, 杨壹, 王思瑶, 崔璐瑶, 鲍平安. 贺兰山不同海拔植被生物量与土壤分形特征和土壤水分的相关关系[J]. 草业学报, 2023, 32(12): 24-35. |
[9] | 李江文, 裴婧宏, 韩国栋, 何邦印, 李彩. 基于植物功能性状分析异常降水对不同载畜率下荒漠草原功能群多样性的影响[J]. 草业学报, 2023, 32(11): 212-222. |
[10] | 吴旭东, 蒋齐, 王占军, 季波, 任小玢. 降水对荒漠草原地上生物量稳定性的影响[J]. 草业学报, 2023, 32(11): 30-39. |
[11] | 米扬, 郭蓉, 王媛, 王占军, 蒋齐, 俞鸿千, 马琨. 宁夏荒漠草原土壤细菌与真菌群落对降水变化的响应[J]. 草业学报, 2023, 32(11): 81-92. |
[12] | 苏荣霞, 马彦平, 王红梅, 赵亚楠, 李志丽. 荒漠草原不同间距灌丛引入对土壤细菌碳源利用和胞外酶活性的影响[J]. 草业学报, 2023, 32(11): 93-105. |
[13] | 牛伟玲, 陈辉, 侯慧新, 郭晨睿, 马娇林, 武建双. 10年禁牧未改变藏西北高寒荒漠植物水氮利用效率[J]. 草业学报, 2022, 31(8): 35-48. |
[14] | 刘万龙, 许冬梅, 史佳梅, 许爱云. 不同群落生境蒙古冰草种群株丛结构和叶片功能性状的变化[J]. 草业学报, 2022, 31(8): 72-80. |
[15] | 郭文章, 井长青, 邓小进, 陈宸, 赵苇康, 侯志雄, 王公鑫. 新疆天山北坡荒漠草原碳通量特征及其对环境因子的响应[J]. 草业学报, 2022, 31(5): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||