草业学报 ›› 2025, Vol. 34 ›› Issue (5): 12-26.DOI: 10.11686/cyxb2024246
邓文辉1(
), 宋珂辰1, 张浩1, 管思雨1, 雍嘉仪1, 胡海英1,2(
)
收稿日期:2024-06-24
修回日期:2024-09-05
出版日期:2025-05-20
发布日期:2025-03-20
通讯作者:
胡海英
作者简介:E-mail: haiying@nxu.edu.cn基金资助:
Wen-hui DENG1(
), Ke-chen SONG1, Hao ZHANG1, Si-yu GUAN1, Jia-yi YONG1, Hai-ying HU1,2(
)
Received:2024-06-24
Revised:2024-09-05
Online:2025-05-20
Published:2025-03-20
Contact:
Hai-ying HU
摘要:
通过探究荒漠草原优势种植物根际土壤微生物对降水变化的响应,以期为荒漠草原植物根系与微生物互作机制提供理论依据。以宁夏荒漠草原优势种植物短花针茅、牛枝子、银灰旋花为研究对象,设置了增雨50%、增雨30%、对照组、减雨30%、减雨50%共5个处理,采用高通量测序的方法,研究了不同降水量下,荒漠草原优势种植物根际微生物群落结构与多样性差异。结果表明:荒漠草原优势种植物的地上生物量随着降水的增加而增加,与土壤含水量呈显著正相关(P<0.05)。3种优势植物根际土壤中,细菌群落的优势菌门主要包括放线菌门、变形菌门、酸杆菌门以及拟杆菌门;真菌群落的优势菌门有子囊菌门和担子菌门。在所有降水变化处理中,根际细菌群落对水分的敏感性均高于真菌群落。其中,在减雨30%处理下,优势物种的真菌与细菌OTUs数量均达到最大值,其根际土壤微生物活动最为强烈。银灰旋花根际细菌群落中的蓝藻门、拟杆菌门相对丰度高于牛枝子和短花针茅,浮霉菌门、酸杆菌门的相对丰度低于牛枝子和短花针茅。牛枝子和短花针茅根际微生物群落的组成具有较高相似性,而银灰旋花与牛枝子和短花针茅根际微生物群落相似度较低。在土壤理化性质中,全磷与短花针茅根际土壤细菌群落多样性显著负相关(P<0.05);全钾与银灰旋花根际细菌群落的多样性呈显著正相关(P<0.05),与短花针茅真菌群落的多样性呈显著负相关(P<0.05);土壤pH值与牛枝子根际土壤细菌群落的多样性显著正相关(P<0.05),与银灰旋花根际土壤真菌群落多样性显著负相关(P<0.05)。短花针茅和牛枝子根际土壤微生物群落物种之间具有显著相关关系,存在一定的互补共生效应。
邓文辉, 宋珂辰, 张浩, 管思雨, 雍嘉仪, 胡海英. 降水变化条件下荒漠草原优势植物根际微生物群落结构和多样性特征研究[J]. 草业学报, 2025, 34(5): 12-26.
Wen-hui DENG, Ke-chen SONG, Hao ZHANG, Si-yu GUAN, Jia-yi YONG, Hai-ying HU. Structure and diversity characteristics of the rhizosphere microbial community of dominant plants on the desert steppe under changing precipitation[J]. Acta Prataculturae Sinica, 2025, 34(5): 12-26.
物种 Species | 重要值Important values | ||||
|---|---|---|---|---|---|
| +50% | +30% | CK | -30% | -50% | |
| 短花针茅S.breviflora | 0.74±0.09 | 0.68±0.24 | 0.69±0.08 | 0.94±0.03 | 0.95±0.13 |
| 牛枝子L.potaninii | 0.44±0.06 | 0.31±0.07 | 0.21±0.01 | 0.47±0.03 | 0.19±0.08 |
| 银灰旋花C. ammannii | 0.10±0.04 | 0.16±0.04 | 0.30±0.05 | 0.20±0.02 | 0.21±0.06 |
| 米口袋Gueldenstaedtia verna | 0.26±0.03 | 0.07±0.01 | 0.12±0.06 | 0.08±0.01 | 0.12±0.07 |
| 砂珍棘豆Oxytropis racemosa | 0.18±0.05 | 0.02±0.01 | 0.10±0.06 | 0.05±0.04 | 0.06±0.02 |
| 二裂委陵菜Potentilla bifurca | 0.07±0.05 | 0.05±0.03 | 0.18±0.10 | 0.06±0.05 | 0.08±0.07 |
| 远志Polygala tenuifolia | 0.13±0.01 | 0.19±0.08 | 0.07±0.02 | 0.11±0.06 | 0.25±0.07 |
| 骆驼蒿Peganum nigellastrum | 0.18±0.08 | 0.12±0.04 | 0.06±0.02 | 0.17±0.09 | 0.14±0.09 |
| 赖草Leymus secalinus | 0.31±0.16 | 0.56±0.28 | 0.22±0.21 | - | 0.18±0.17 |
| 白草Pennisetum flaccidum | 0.24±0.13 | 0.08±0.04 | 0.40±0.08 | 0.03±0.01 | 0.22±0.16 |
| 猪毛蒿Artemisia scoparia | 0.45±0.03 | 0.15±0.05 | 0.42±0.21 | - | - |
| 猫头刺Oxytropis aciphylla | 0.02±0.01 | 0.08±0.07 | 0.23±0.03 | - | 0.02±0.01 |
| 老瓜头Vincetoxicum mongolicum | - | 0.01±0.00 | - | 0.16±0.05 | - |
| 地锦草Euphorbia humifusa | 0.06±0.04 | - | - | - | 0.04±0.01 |
| 甘草Glycyrrhiza uralensis | - | - | - | 0.25±0.14 | 0.13±0.03 |
| 乳浆大戟Euphorbia esula | 0.12±0.04 | 0.04±0.01 | - | 0.11±0.04 | - |
表1 荒漠草原植物群落物种组成与重要值
Table 1 Species composition and importance values of desert steppe plant communities
物种 Species | 重要值Important values | ||||
|---|---|---|---|---|---|
| +50% | +30% | CK | -30% | -50% | |
| 短花针茅S.breviflora | 0.74±0.09 | 0.68±0.24 | 0.69±0.08 | 0.94±0.03 | 0.95±0.13 |
| 牛枝子L.potaninii | 0.44±0.06 | 0.31±0.07 | 0.21±0.01 | 0.47±0.03 | 0.19±0.08 |
| 银灰旋花C. ammannii | 0.10±0.04 | 0.16±0.04 | 0.30±0.05 | 0.20±0.02 | 0.21±0.06 |
| 米口袋Gueldenstaedtia verna | 0.26±0.03 | 0.07±0.01 | 0.12±0.06 | 0.08±0.01 | 0.12±0.07 |
| 砂珍棘豆Oxytropis racemosa | 0.18±0.05 | 0.02±0.01 | 0.10±0.06 | 0.05±0.04 | 0.06±0.02 |
| 二裂委陵菜Potentilla bifurca | 0.07±0.05 | 0.05±0.03 | 0.18±0.10 | 0.06±0.05 | 0.08±0.07 |
| 远志Polygala tenuifolia | 0.13±0.01 | 0.19±0.08 | 0.07±0.02 | 0.11±0.06 | 0.25±0.07 |
| 骆驼蒿Peganum nigellastrum | 0.18±0.08 | 0.12±0.04 | 0.06±0.02 | 0.17±0.09 | 0.14±0.09 |
| 赖草Leymus secalinus | 0.31±0.16 | 0.56±0.28 | 0.22±0.21 | - | 0.18±0.17 |
| 白草Pennisetum flaccidum | 0.24±0.13 | 0.08±0.04 | 0.40±0.08 | 0.03±0.01 | 0.22±0.16 |
| 猪毛蒿Artemisia scoparia | 0.45±0.03 | 0.15±0.05 | 0.42±0.21 | - | - |
| 猫头刺Oxytropis aciphylla | 0.02±0.01 | 0.08±0.07 | 0.23±0.03 | - | 0.02±0.01 |
| 老瓜头Vincetoxicum mongolicum | - | 0.01±0.00 | - | 0.16±0.05 | - |
| 地锦草Euphorbia humifusa | 0.06±0.04 | - | - | - | 0.04±0.01 |
| 甘草Glycyrrhiza uralensis | - | - | - | 0.25±0.14 | 0.13±0.03 |
| 乳浆大戟Euphorbia esula | 0.12±0.04 | 0.04±0.01 | - | 0.11±0.04 | - |
项目 Item | 土层深度 Soil depth (cm) | 处理Treatment | ||||
|---|---|---|---|---|---|---|
| +50% | +30% | CK | -30% | -50% | ||
全氮Total nitrogen (TN, mg·kg-1) | 0~10 | 0.63±0.10aA | 0.53±0.06aA | 0.59±0.12aA | 0.56±0.07aA | 0.57±0.13aA |
| 10~20 | 0.45±0.08bA | 0.46±0.08abA | 0.33±0.06bA | 0.39±0.11abA | 0.40±0.02bA | |
| 20~40 | 0.36±0.05bA | 0.35±0.02bA | 0.42±0.03bA | 0.37±0.06bA | 0.37±0.03bA | |
| 全磷Total phosphorus (TP, mg·kg-1) | 0~10 | 0.59±0.07aA | 0.53±0.04abA | 0.51±0.04bA | 0.52±0.05abA | 0.51±0.07aA |
| 10~20 | 0.45±0.05bA | 0.46±0.07bA | 0.38±0.03cA | 0.42±0.06bA | 0.42±0.03aA | |
| 20~40 | 0.58±0.07abA | 0.56±0.03aA | 0.60±0.04aA | 0.57±0.04aA | 0.52±0.07aA | |
| 全钾Total patassium (TK, mg·kg-1) | 0~10 | 18.36±0.79aA | 18.08±0.25aA | 19.11±1.35aA | 17.53±0.28aA | 17.87±0.05aA |
| 10~20 | 18.55±0.44aA | 17.38±0.30aA | 18.74±0.38aA | 17.69±0.20aA | 17.96±0.39aA | |
| 20~40 | 18.13±0.75aA | 17.95±0.42aA | 18.99±0.53aA | 17.43±0.37aA | 17.70±0.49aA | |
| pH | 0~10 | 8.95±0.07aA | 8.87±0.17abA | 7.62±1.84aA | 8.79±0.40aA | 9.02±0.16aA |
| 10~20 | 9.15±0.75aA | 8.76±0.04bA | 8.78±0.11aA | 8.98±0.22aA | 8.98±0.14aA | |
| 20~40 | 8.99±0.18aAB | 9.01±0.05aAB | 8.83±0.09aB | 9.08±0.12aA | 9.08±0.07aA | |
土壤含水量 Soil moisture content (GWC, %) | 0~10 | 9.81±2.45aA | 3.14±0.64cB | 1.87±0.28cBC | 1.85±0.20abBC | 1.16±0.14cC |
| 10~20 | 6.06±0.19bA | 6.23±0.04bA | 3.31±0.13bB | 2.33±0.13aC | 4.07±0.53bB | |
| 20~40 | 10.29±0.49aB | 14.92±1.46aA | 4.94±0.08aC | 3.81±0.16aC | 4.81±0.43aC | |
表3 降水变化对土壤理化性质、土壤含水量的影响
Table 3 Effects of precipitation changes on soil physicochemical properties and soil moisture content
项目 Item | 土层深度 Soil depth (cm) | 处理Treatment | ||||
|---|---|---|---|---|---|---|
| +50% | +30% | CK | -30% | -50% | ||
全氮Total nitrogen (TN, mg·kg-1) | 0~10 | 0.63±0.10aA | 0.53±0.06aA | 0.59±0.12aA | 0.56±0.07aA | 0.57±0.13aA |
| 10~20 | 0.45±0.08bA | 0.46±0.08abA | 0.33±0.06bA | 0.39±0.11abA | 0.40±0.02bA | |
| 20~40 | 0.36±0.05bA | 0.35±0.02bA | 0.42±0.03bA | 0.37±0.06bA | 0.37±0.03bA | |
| 全磷Total phosphorus (TP, mg·kg-1) | 0~10 | 0.59±0.07aA | 0.53±0.04abA | 0.51±0.04bA | 0.52±0.05abA | 0.51±0.07aA |
| 10~20 | 0.45±0.05bA | 0.46±0.07bA | 0.38±0.03cA | 0.42±0.06bA | 0.42±0.03aA | |
| 20~40 | 0.58±0.07abA | 0.56±0.03aA | 0.60±0.04aA | 0.57±0.04aA | 0.52±0.07aA | |
| 全钾Total patassium (TK, mg·kg-1) | 0~10 | 18.36±0.79aA | 18.08±0.25aA | 19.11±1.35aA | 17.53±0.28aA | 17.87±0.05aA |
| 10~20 | 18.55±0.44aA | 17.38±0.30aA | 18.74±0.38aA | 17.69±0.20aA | 17.96±0.39aA | |
| 20~40 | 18.13±0.75aA | 17.95±0.42aA | 18.99±0.53aA | 17.43±0.37aA | 17.70±0.49aA | |
| pH | 0~10 | 8.95±0.07aA | 8.87±0.17abA | 7.62±1.84aA | 8.79±0.40aA | 9.02±0.16aA |
| 10~20 | 9.15±0.75aA | 8.76±0.04bA | 8.78±0.11aA | 8.98±0.22aA | 8.98±0.14aA | |
| 20~40 | 8.99±0.18aAB | 9.01±0.05aAB | 8.83±0.09aB | 9.08±0.12aA | 9.08±0.07aA | |
土壤含水量 Soil moisture content (GWC, %) | 0~10 | 9.81±2.45aA | 3.14±0.64cB | 1.87±0.28cBC | 1.85±0.20abBC | 1.16±0.14cC |
| 10~20 | 6.06±0.19bA | 6.23±0.04bA | 3.31±0.13bB | 2.33±0.13aC | 4.07±0.53bB | |
| 20~40 | 10.29±0.49aB | 14.92±1.46aA | 4.94±0.08aC | 3.81±0.16aC | 4.81±0.43aC | |
图1 根际土壤细菌群落相对丰度差异与韦恩图a: 不同物种根际细菌群落门水平相对丰度Relative abundance of rhizosphere bacterial community at phylum levels of different species; b: 不同降水处理根际细菌群落门水平相对丰度Relative abundance of rhizosphere bacterial community at phylum levels under different precipitation treatments; c: 不同物种根际土壤细菌群落的韦恩图Venn diagram of rhizosphere soil bacterial community of different species; d: 不同降水处理根际土壤细菌群落的韦恩图Venn diagram of rhizosphere soil bacterial community under different precipitation treatments. NZZ: 牛枝子L. potaninii; ZM: 短花针茅S. breviflora; YHXH: 银灰旋花C. ammannii. Actinobacteriota: 放线菌门; Proteobacteria: 变形菌门; Acidobacteriota: 酸杆菌门; Bacteroidota: 拟杆菌门; Chloroflexi: 绿弯菌门; Planctomycetota: 浮霉菌门; Cyanobacteria: 蓝藻门; Gemmatimonadota: 芽单胞菌门; Myxomycota: 粘菌门; Armatimonadota: 装甲菌门; Verrucomicrobiota: 疣微菌门; Unassigned: 未分类菌门; Firmicutes: 厚壁菌门; Methylomirabilota: 巴纽尔斯菌门; Abditibacteriota: 芽枝霉门; Others: 其他门类。下同The same below.
Fig.1 Differences in the relative abundance of bacterial communities in rhizosphere soil and Venn diagram
图2 根际土壤真菌群落相对丰度差异与韦恩图a: 不同物种根际真菌群落门水平相对丰度Relative abundance of rhizosphere fungal community at phylum level of different species; b: 不同降水处理根际真菌群落门水平相对丰度Relative abundance of rhizosphere fungal community at phylum levels under different precipitation treatments; c: 不同物种根际土壤真菌群落的韦恩图Venn diagram of rhizosphere soil fungal communities of different species; d: 不同降水处理根际土壤真菌群落的韦恩图Venn diagram of the fungal community in rhizosphere soil under different precipitation treatments. Ascomycota: 子囊菌门; Basidiomycota: 担子菌门; Glomeromycota: 球囊菌门; Chytridiomycota: 壶菌门; Mortierellomycota: 被孢菌门; Rozellomycota: 隐真菌门. 下同The same below.
Fig.2 Differences in the relative abundance of fungal communities in rhizosphere soil and Venn diagram
图3 降水变化对细菌微生物群落多样性指数的影响s: 物种Species; t: 处理Treatment. *代表有显著影响(P<0.05);**代表有极显著影响(P<0.01);***代表极显著差异(P<0.001);ns代表无显著影响。* represents significant influence (P<0.05); ** represents extremely significant influence (P<0.01); *** represents extremely significant difference (P<0.001); ns represents no significant influence (P≥0.05). 下同The same below.
Fig.3 Effect of precipitation change on bacterial microbial community diversity index
图5 不同植物与不同降水处理下根际土壤细菌、真菌群落结构的主坐标分析a: 不同物种根际细菌群落Rhizosphere bacterial communities of different species; b: 不同降水处理根际细菌群落Rhizosphere bacterial community under different precipitation treatments; c: 不同物种根际真菌群落Rhizosphere fungal communities of different species; d: 不同降水处理根际真菌群落Rhizosphere fungal communities under different precipitation treatments.
Fig.5 Principal coordinate analysis of bacterial and fungal community structure in rhizosphere soil under different plant and precipitation treatments
图6 优势植物根际土壤微生物群落多样性与植物地上生物量及其环境因子的相关性分析a: 短花针茅S. breviflora; b: 牛枝子L. potaninii; c: 银灰旋花C. ammannii. ACE(xj): 细菌群落的ACE指数ACE index of bacterial communities; ACE(zj): 真菌群落的ACE指数ACE index of fungal communities; TN: 全氮Total nitrogen; TP: 全磷Total phosphorus; TK: 全钾Total potassium; GWC: 土壤含水量Soil moisture content; DW: 地上生物量Aboveground biomass.
Fig.6 Correlation analysis of soil microbial community diversity in the rhizosphere of dominant plants, aboveground biomass of plants and their environmental factors
| 1 | Luo S P, He B H, Zeng Q P, et al. Effects of seasonal variation on soil microbial community structure and enzyme activity in a Masson pine forest in Southwest China. Journal of Mountain Science, 2020, 17(6): 1398-1409. |
| 2 | Yang X, Zhu K, Loik M E, et al. Differential responses of soil bacteria and fungi to altered precipitation in a meadow steppe. Geoderma, 2021, 384: 114812. |
| 3 | Smilauer P, Kosnar J, Kotilínek M, et al.Contrasting effects of host identity, plant community, and local species pool on the composition and colonization levels of arbuscular mycorrhizal fungal community in a temperate grassland. New Phytologist, 2020, 225(1): 461-473. |
| 4 | Mi Y, Guo R, Wang Y, et al. Responses of soil bacterial and fungal communities to precipitation in the desert steppe ecosystem of Ningxia. Acta Prataculturae Sinica, 2023, 32(11): 81-92. |
| 米扬, 郭蓉, 王媛, 等. 宁夏荒漠草原土壤细菌与真菌群落对降水变化的响应. 草业学报, 2023, 32(11): 81-92. | |
| 5 | Du Y X, Xie B M, Cai H S, et al. Structural and functional diversity of rhizosphere microbial community of nine plant species in the Daqing saline-alkali soil region. Acta Ecologica Sinica, 2016, 36(3): 740-747. |
| 杜滢鑫, 谢宝明, 蔡洪生, 等. 大庆盐碱地九种植物根际土壤微生物群落结构及功能多样性. 生态学报, 2016, 36(3): 740-747. | |
| 6 | Lauber C L, Hamady M, Knight R, et al. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 2009, 75(15): 5111-5120. |
| 7 | Shao J Z, Guo X, Yuan X Y, et al. A study on screening and biocontrol effect of antagonistic actinomycetes against tomato early blight. Journal of Zhejiang Normal University (Natural Sciences), 2023, 46(4): 416-424. |
| 邵嘉朱, 郭鑫, 袁歆瑜, 等. 抗番茄早疫病放线菌的筛选与防效研究. 浙江师范大学学报(自然科学版), 2023, 46(4): 416-424. | |
| 8 | Zhang W, Wang R Z, Li T T, et al. Responses of bacterial and fungal community to long-term nitrogen application in Loess Plateau. Journal of Plant Nutrition and Fertilizers, 2024, 30(2): 232-241. |
| 张薇, 王润泽, 李彤彤, 等. 黄土区农田土壤细菌和真菌群落对长期施氮的响应特征. 植物营养与肥料学报, 2024, 30(2): 232-241. | |
| 9 | Bailey V L, Smith J L, Jr H B. Novel antibiotics as inhibitors for the selective respiratory inhibition method of measuring fungal: bacterial ratios in soil. Biology & Fertility of Soils, 2003, 38(3): 154-160. |
| 10 | Teng F, Guo G P, Zhao Y, et al. Study of the tolerance difference between gram positive and gram negative bacteria to potassium sorbate. Journal of Food Science and Biotechnology, 2012, 31(4): 417-422. |
| 滕菲, 郭桂萍, 赵勇, 等. 革兰氏阳性菌和阴性菌对山梨酸钾的耐受差异性. 食品与生物技术学报, 2012, 31(4): 417-422. | |
| 11 | Wang G H, Liu J J, Yu Z H, et al. Research progress of Acidobacteria ecology in soils. Biotechnology Bulletin, 2016, 32(2): 14-20. |
| 王光华, 刘俊杰, 于镇华, 等. 土壤酸杆菌门细菌生态学研究进展. 生物技术通报, 2016, 32(2): 14-20. | |
| 12 | Song K C, Wang X, Xu D M, et al. Effects of short-term nitrogen addition on soil biological properties in desert steppe. Journal of Soil and Water Conservation, 2022, 36(3): 303-310, 318. |
| 宋珂辰, 王星, 许冬梅, 等. 短期氮添加对荒漠草原土壤微生物特征的影响.水土保持学报, 2022, 36(3): 303-310, 318. | |
| 13 | Bao S D. Soil agrochemical analysis. Beijing: China Agriculture Press, 2000. |
| 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. | |
| 14 | Al-Arjani A B F, Hashem A, Abd_Allah E F. Arbuscular mycorrhizal fungi modulates dynamics tolerance expression to mitigate drought stress in Ephedra foliata Boiss. Saudi Journal of Biological Sciences, 2020, 27(1): 380-394. |
| 15 | Tuo Y F, Shen F Y, Yang C P, et al. Effects of rainfall on phosphorus, organic matter and pH in different land use types in Middle Yunnan Plateau. Ecology and Environmental Sciences, 2020, 29(5): 942-950. |
| 脱云飞, 沈方圆, 杨翠萍, 等. 滇中高原降雨对不同地类土壤磷素、有机质和pH变化的影响. 生态环境学报, 2020, 29(5): 942-950. | |
| 16 | Chen J, Wang P, Wang C, et al.Fungal community demonstrates stronger dispersal limitation and less network connectivity than bacterial community in sediments along a large river. Environmental Microbiology, 2020, 22(3): 3121-3131. |
| 17 | Zhao Y, Ye H, Wu Z D, et al. Effects of nitrogen deposition and precipitation changes on the soil ammonia-oxidizing bacteria community in desert steppe. China Environmental Science, 2024, 44(10): 5757-5765. |
| 赵宇, 叶贺, 武振丹, 等. 氮沉降和降水变化对荒漠草原土壤氨氧化细菌群落的影响. 中国环境科学, 2024, 44(10): 5757-5765. | |
| 18 | Li B, Zhu W W, Han C, et al. Soil respiration and its influencing factors in a desert steppe in northwestern China under changing precipitation regimes. Chinese Journal of Plant Ecology, 2023, 47(9): 1310-1321. |
| 李冰, 朱湾湾, 韩翠, 等. 降水量变化下荒漠草原土壤呼吸及其影响因素. 植物生态学报, 2023, 47(9): 1310-1321. | |
| 19 | Liu C. Response of soil microbial community to simulated precipitation in Stipa breviflora desert steppe. Hohhot: Inner Mongolia Agricultural University, 2021. |
| 刘晨. 短花针茅荒漠草原土壤微生物群落对模拟降水的响应. 呼和浩特: 内蒙古农业大学, 2021. | |
| 20 | Zuo Y, Hu Q, Zhang K, et al. Host and tissue affiliations of culturable endophytic fungi associated with xerophytic plants in the desert region of northwest China. Agronomy, 2022, 12(3): 12030727. |
| 21 | Manzoni S, Schimel J P, Porporato A. Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology, 2012, 93(4): 930-938. |
| 22 | Ventura M, Canchaya C, Tauch A, et al. Genomics of Actinobacteria: Tracing the evolutionary history of an ancient phylum. Microbiology and Molecular Biology Reviews, 2007, 71(3): 495-548. |
| 23 | Guo R, Wu X D, Wang Z J, et al. Responses of soil bacterial and fungal communities to altered precipitation in a desert steppe. Chinese Journal of Applied Ecology, 2023, 34(6): 1500-1508. |
| 郭蓉, 吴旭东, 王占军, 等. 荒漠草原土壤细菌和真菌群落对降水变化的响应. 应用生态学报, 2023, 34(6): 1500-1508. | |
| 24 | Huang Q, Jiao F, Huang Y, et al.Response of soil fungal community composition and functions on the alteration of precipitation in the grassland of Loess Plateau. Science of the Total Environment, 2021, 751: 142273. |
| 25 | Cui Z L, Ye X F, Zhang Y, et al. The rhizosphere microbiome assembly and plant health. Journal of Microbiology, 2022, 42(6): 1-9. |
| 崔中利, 叶现丰, 张宇, 等. 根际微生物组组装与植物健康. 微生物学杂志, 2022, 42(6): 1-9. | |
| 26 | Yang Y D, Ma J L, Ma H B, et al.Effects of grazing exclusion on root trait characteristics of dominant plants in the desert steppe. Pratacultural Science, 2023, 40(6): 1507-1517. |
| 杨彦东, 马静利, 马红彬, 等. 封育对荒漠草原优势植物根系性状特征的影响. 草业科学, 2023, 40(6): 1507-1517. | |
| 27 | Liu L D, Xie Y Z, Qiu K Y, et al. The soil enzyme activities of three plant communities in Yanchi, Ningxia. Journal of Arid Land Resources and Environment, 2014, 28(4): 153-156. |
| 刘丽丹, 谢应忠, 邱开阳, 等. 宁夏盐池沙地3种植物群落土壤酶活性变化的初步研究. 干旱区资源与环境, 2014, 28(4): 153-156. | |
| 28 | Zhang H, Jiang N, Fan L R, et al. Effects of long-term nutrient addition on microbial community in soil of Stipa baicalensis steppe in the Inner Mongolia, China. Acta Ecologica Sinica, 2024, 44(3): 1130-1139. |
| 张昊, 姜娜, 樊林染, 等. 长期养分添加对贝加尔针茅草原土壤微生物群落的影响. 生态学报, 2024, 44(3): 1130-1139. | |
| 29 | Zhang J Z, Wang Q, Ma W L, et al. A review on the effect of inorganic carbon on blue-green algae growth. Ecology and Environmental Sciences, 2015, 24(7): 1245-1252. |
| 张君枝, 王齐, 马文林, 等. 水体无机碳升高对蓝绿藻生长和种群竞争的影响研究进展. 生态环境学报, 2015, 24(7): 1245-1252. | |
| 30 | Wei Y C, Chen J X, Wang Y G, et al. Analysis of bacterial diversity in the rhizosphere soil of Salsola passerina and its correlation with the soil physical and chemical properties. Journal of Agricultural Science and Technology, 2022, 24(5): 209-217. |
| 魏艳晨, 陈吉祥, 王永刚, 等. 荒漠植物珍珠猪毛菜根际土壤细菌多样性与土壤理化性质相关性分析. 中国农业科技导报, 2022, 24(5): 209-217. | |
| 31 | Wang J F. Effect of controlled precipitation on soil bacterial community in desert steppe of western Loess Plateau. Lanzhou: Northwest Normal University, 2021. |
| 王军锋. 控制降水对黄土高原西部荒漠草原土壤细菌群落的影响研究. 兰州: 西北师范大学, 2021. | |
| 32 | Hu H Y, Li H X, Ni B, et al. Characteristic of typical vegetation community and water use efficiency of dominant plants in desert steppe of Ningxia. Journal of Zhejiang University (Agriculture & Life Sciences), 2019, 45(4): 460-471. |
| 胡海英, 李惠霞, 倪彪, 等. 宁夏荒漠草原典型群落的植被特征及其优势植物的水分利用效率. 浙江大学学报(农业与生命科学版), 2019, 45(4): 460-471. | |
| 33 | Jia Y, Gao X F.Microecological effects of root exudates from three plant on different ecological niche in Inner Mongolia desert steppe. Journal of Inner Mongolia Normal University (Natural Science Edition), 2019, 48(2): 167-170, 176. |
| 贾渊, 高雪峰. 内蒙古荒漠草原不同生态位三种植物根系分泌物的微生态效应研究. 内蒙古师范大学学报(自然科学汉文版), 2019, 48(2): 167-170, 176. | |
| 34 | Yang Y, Chen K L, Zhang N, et al.Responses of soil microbial community to different precipitation gradients in the alpine wetlands of Qinghai Lake Basin. Chinese Journal of Applied and Environmental Biology, 2022, 28(2): 290-299. |
| 杨阳, 陈克龙, 章妮, 等. 青海湖流域高寒湿地土壤微生物群落对不同降水梯度的响应. 应用与环境生物学报, 2022, 28(2): 290-299. | |
| 35 | Shang L R, Wan L Q, Li X L. Effects of organic fertilizer on soil bacterial community diversity in Leymus chinensis steppe. Scientia Agricultura Sinica, 2020, 53(13): 2614-2624. |
| 商丽荣, 万里强, 李向林. 有机肥对羊草草原土壤细菌群落多样性的影响. 中国农业科学, 2020, 53(13): 2614-2624. | |
| 36 | Abbasi A O, Salazar A, Oh Y, et al.Reviews and syntheses: Soil responses to manipulated precipitation changes-an assessment of meta-analyses. Biogeosciences, 2020, 17(14): 3859-3873. |
| 37 | Lin H Y, Zhou J C, Zeng Q X, et al. Soil enzyme stoichiometry revealed the changes of soil microbial carbon and phosphorus limitation along an elevational gradient in a Pinus taiwanensis forest of Wuyi Mountains, Southeast China. Chinese Journal of Applied Ecology, 2022, 33(1): 33-41. |
| 林惠瑛, 周嘉聪, 曾泉鑫, 等. 土壤酶计量揭示了武夷山黄山松林土壤微生物沿海拔梯度的碳磷限制变化. 应用生态学报, 2022, 33(1): 33-41. | |
| 38 | Guan Y Q, Li G, Pan X, et al. Effects of changing rainfall frequency on the soil carbon, nitrogen, and phosphorus ecostochimetrics in the Gahai wet meadow, Gannan. Arid Zone Research, 2023, 40(6): 916-925. |
| 关宇淇, 李广, 潘雪, 等. 降雨频率对甘南尕海湿草甸土壤碳氮磷化学计量特征的影响. 干旱区研究, 2023, 40(6): 916-925. | |
| 39 | Li X, Qi Z, Yu X, et al. Soil pH drives the phylogenetic clustering of the arbuscular mycorrhizal fungal community across subtropical and tropical pepper fields of China. Applied Soil Ecology, 2021, 165: 103978. |
| 40 | Fernández-Calviño D, Bääth E. Growth response of the bacterial community to pH in soils differing in pH. FEMS Microbiology Ecology, 2010, 73(1): 149-156. |
| 41 | Jiang Y L, Lei Y B, Yang Y, et al. Divergent assemblage patterns and driving forces for bacterial and fungal communities along a glacier forefield chronosequence. Soil Biology and Biochemistry, 2018, 118: 207-216. |
| [1] | 王守兴, 周华坤, 欧立鹏, 李成先, 王雁鹤, 宁晓春, 谷强, 魏代军, 杨明新. 三江源不同草地类型植被及土壤微生物多样性与土壤因子特征的研究[J]. 草业学报, 2025, 34(4): 16-26. |
| [2] | 骆欣怡, 邱开阳, 金涛, 鲍平安, 黄业芸, 何毅, 谢应忠. 碳、氮、钾添加对荒漠草原凋落物分解特征的影响[J]. 草业学报, 2025, 34(2): 41-53. |
| [3] | 侯晓磊, 武春丽, 邓雅元, 麻文章, 赵廷宁, 曾文杰, 巩子涵, 芦治源, 吴国伟. 宁东煤炭基地排矸场人工植物群落优势种生态位和种间关系研究[J]. 草业学报, 2025, 34(1): 1-16. |
| [4] | 张振豪, 贾子玉, 李鑫宇, 程云湘. 荒漠草原混牧牛羊的放牧行为特征[J]. 草业学报, 2025, 34(1): 226-237. |
| [5] | 贺世龙, 叶贺, 李静, 张雅玲, 德海山, 红梅. 不同时限氮沉降和降水变化对荒漠草原中小型土壤节肢动物群落结构与多样性的影响[J]. 草业学报, 2024, 33(9): 140-154. |
| [6] | 曹颖, 聂明鹤, 沈艳, 胡艳, 马登宝, 李东, 候腾思, 方鹏, 王学琴. 宁夏干旱风沙区荒漠草原不同退化阶段植被土壤变化特征及其相关性[J]. 草业学报, 2024, 33(8): 1-14. |
| [7] | 候腾思, 沈艳, 马红彬, 方鹏, 曹颖. 柠条平茬对荒漠草原土壤水分特征及水量平衡的影响[J]. 草业学报, 2024, 33(8): 15-24. |
| [8] | 郑荣春, 南志标, 段廷玉. 四个品种红三叶种带真菌多样性研究[J]. 草业学报, 2024, 33(8): 170-180. |
| [9] | 佘洁, 沈爱红, 石云, 赵娜, 张风红, 何洪源, 吴涛, 李红霞, 马益婷, 朱晓雯. 基于无人机遥感影像和面向对象技术的荒漠草原植被分类[J]. 草业学报, 2024, 33(7): 1-14. |
| [10] | 姜海鑫, 周瑶, 胡科, 丁占胜, 马红彬. 不同放牧时间对荒漠草原土壤颗粒组成及分形维数的影响[J]. 草业学报, 2024, 33(6): 17-28. |
| [11] | 赵亚楠, 王红梅, 李志丽, 张振杰, 陈彦硕, 苏荣霞. 荒漠草原灌丛转变过程土壤水分亏缺空间特征及影响因素[J]. 草业学报, 2024, 33(4): 22-34. |
| [12] | 李俊瑶, 蒋星驰, 胡晋瑜, 魏栋光, 赵学勇, 王少昆. 生物有机肥施加对荒漠草原植被-土壤-微生物的影响[J]. 草业学报, 2024, 33(3): 34-45. |
| [13] | 鲍平安, 邱开阳, 黄业芸, 王思瑶, 崔璐瑶, 骆欣怡, 杨云涛, 谢应忠. 荒漠草原植物在氮磷添加下叶功能性状特征及其可塑性[J]. 草业学报, 2024, 33(3): 97-106. |
| [14] | 鲍平安, 季波, 孙果, 张娜, 吴旭东, 何建龙, 王占军, 田英. 光伏电站建设对植物群落与土壤特征的影响[J]. 草业学报, 2024, 33(12): 23-33. |
| [15] | 常怡然, 史佳梅, 许冬梅, 康如龙, 马媛. 荒漠草原不同自然种群蒙古冰草生物量和养分权衡特征[J]. 草业学报, 2024, 33(11): 186-197. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||