Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (3): 200-211.DOI: 10.11686/cyxb2022083
Han MIAO1,2(), Lai WEI1,2, Yan-ping YANG1,2, Yong-he CHE1,2()
Received:
2022-02-19
Revised:
2022-04-25
Online:
2023-03-20
Published:
2022-12-30
Contact:
Yong-he CHE
Han MIAO, Lai WEI, Yan-ping YANG, Yong-he CHE. Comprehensive screening of Agropyron cultivars for tolerance to salt stress at the seedling stage[J]. Acta Prataculturae Sinica, 2023, 32(3): 200-211.
Fig.1 Morphological indexes and relative water content of Agropyron under different seawater concentrationDifferent letters represent the significant differences (P<0.05) of the same material of Agropyron under different seawater treatment, the same below.
指标 Index | 蒙冰Mengnong No.1 | ||||
---|---|---|---|---|---|
30% | 40% | 50% | 60% | 70% | |
MDA | 1.04±0.05b | 1.22±0.04b | 0.71±0.13b | 2.37±0.35a | 2.42±0.31a |
SOD | 3.33±0.06d | 4.79±0.04c | 7.98±0.28b | 8.21±0.18b | 9.02±0.32a |
POD | 1.20±0.02d | 1.42±0.04c | 1.67±0.05a | 1.56±0.03b | 0.97±0.02e |
SP | 0.03±0.00ab | 0.02±0.00bc | 0.02±0.00c | 0.02±0.00bc | 0.03±0.00a |
SS | 0.85±0.02a | 0.30±0.01c | 0.11±0.01d | 0.02±0.01e | 0.58±0.04b |
Pro | 1.38±0.02c | 2.72±0.08b | 2.88±0.08b | 4.40±0.02a | 4.43±0.08a |
Na+ | 6.97±0.23e | 14.91±1.69c | 10.70±0.67d | 20.55±0.32b | 24.79±0.87a |
K+ | 0.76±0.00ab | 0.68±0.00ab | 0.77±0.00a | 0.66±0.00bc | 0.57±0.00c |
SH | 0.91±0.05a | 0.82±0.07a | 0.93±0.04a | 0.79±0.05a | 0.57±0.07b |
RL | 0.72±0.09b | 1.14±0.11a | 1.27±0.14a | 0.94±0.01ab | 0.92±0.07ab |
RWC-R | 1.14±0.02a | 1.14±0.05a | 1.01±0.03b | 1.12±0.03ab | 1.15±0.01a |
RWC-S | 1.04±0.03a | 1.03±0.05a | 0.89±0.11a | 0.92±0.06a | 1.03±0.02a |
指标 Index | 蒙农Hycrest-Mengnong | ||||
30% | 40% | 50% | 60% | 70% | |
MDA | 1.12±0.06b | 1.00±0.21b | 0.94±0.02b | 1.54±0.05a | 1.69±0.07a |
SOD | 1.59±0.08d | 2.44±0.08c | 3.77±0.11b | 3.82±0.12b | 4.23±0.18a |
POD | 1.29±0.02d | 1.44±0.05c | 1.73±0.05a | 1.60±0.02b | 0.91±0.02e |
SP | 0.13±0.00a | 0.07±0.02d | 0.12±0.01b | 0.09±0.00c | 0.13±0.00a |
SS | 0.89±0.02a | 0.31±0.13c | 0.13±0.02cd | 0.02±0.01d | 0.57±0.04b |
Pro | 3.73±0.19c | 4.59±0.02b | 6.45±0.07a | 6.46±0.06a | 6.43±0.13a |
Na+ | 3.08±0.10d | 4.32±0.42bc | 3.67±0.22cd | 5.06±0.41b | 6.32±0.34a |
K+ | 0.75±0.00ab | 0.73±0.00ab | 0.82±0.00a | 0.70±0.01b | 0.72±0.00ab |
SH | 0.80±0.10a | 0.79±0.04a | 0.82±0.06a | 0.73±0.00a | 0.65±0.00a |
RL | 0.61±0.05ab | 0.44±0.03b | 0.54±0.06ab | 0.50±0.08ab | 0.62±0.03a |
RWC-R | 1.09±0.10a | 1.01±0.02a | 1.14±0.05a | 1.10±0.03a | 0.95±0.02a |
RWC-S | 1.02±0.01a | 1.00±0.01a | 1.01±0.03a | 1.02±0.01a | 1.01±0.01a |
Table 1 Saline tolerance coefficient for the seeding stage of Agropyron under different seawater concentration
指标 Index | 蒙冰Mengnong No.1 | ||||
---|---|---|---|---|---|
30% | 40% | 50% | 60% | 70% | |
MDA | 1.04±0.05b | 1.22±0.04b | 0.71±0.13b | 2.37±0.35a | 2.42±0.31a |
SOD | 3.33±0.06d | 4.79±0.04c | 7.98±0.28b | 8.21±0.18b | 9.02±0.32a |
POD | 1.20±0.02d | 1.42±0.04c | 1.67±0.05a | 1.56±0.03b | 0.97±0.02e |
SP | 0.03±0.00ab | 0.02±0.00bc | 0.02±0.00c | 0.02±0.00bc | 0.03±0.00a |
SS | 0.85±0.02a | 0.30±0.01c | 0.11±0.01d | 0.02±0.01e | 0.58±0.04b |
Pro | 1.38±0.02c | 2.72±0.08b | 2.88±0.08b | 4.40±0.02a | 4.43±0.08a |
Na+ | 6.97±0.23e | 14.91±1.69c | 10.70±0.67d | 20.55±0.32b | 24.79±0.87a |
K+ | 0.76±0.00ab | 0.68±0.00ab | 0.77±0.00a | 0.66±0.00bc | 0.57±0.00c |
SH | 0.91±0.05a | 0.82±0.07a | 0.93±0.04a | 0.79±0.05a | 0.57±0.07b |
RL | 0.72±0.09b | 1.14±0.11a | 1.27±0.14a | 0.94±0.01ab | 0.92±0.07ab |
RWC-R | 1.14±0.02a | 1.14±0.05a | 1.01±0.03b | 1.12±0.03ab | 1.15±0.01a |
RWC-S | 1.04±0.03a | 1.03±0.05a | 0.89±0.11a | 0.92±0.06a | 1.03±0.02a |
指标 Index | 蒙农Hycrest-Mengnong | ||||
30% | 40% | 50% | 60% | 70% | |
MDA | 1.12±0.06b | 1.00±0.21b | 0.94±0.02b | 1.54±0.05a | 1.69±0.07a |
SOD | 1.59±0.08d | 2.44±0.08c | 3.77±0.11b | 3.82±0.12b | 4.23±0.18a |
POD | 1.29±0.02d | 1.44±0.05c | 1.73±0.05a | 1.60±0.02b | 0.91±0.02e |
SP | 0.13±0.00a | 0.07±0.02d | 0.12±0.01b | 0.09±0.00c | 0.13±0.00a |
SS | 0.89±0.02a | 0.31±0.13c | 0.13±0.02cd | 0.02±0.01d | 0.57±0.04b |
Pro | 3.73±0.19c | 4.59±0.02b | 6.45±0.07a | 6.46±0.06a | 6.43±0.13a |
Na+ | 3.08±0.10d | 4.32±0.42bc | 3.67±0.22cd | 5.06±0.41b | 6.32±0.34a |
K+ | 0.75±0.00ab | 0.73±0.00ab | 0.82±0.00a | 0.70±0.01b | 0.72±0.00ab |
SH | 0.80±0.10a | 0.79±0.04a | 0.82±0.06a | 0.73±0.00a | 0.65±0.00a |
RL | 0.61±0.05ab | 0.44±0.03b | 0.54±0.06ab | 0.50±0.08ab | 0.62±0.03a |
RWC-R | 1.09±0.10a | 1.01±0.02a | 1.14±0.05a | 1.10±0.03a | 0.95±0.02a |
RWC-S | 1.02±0.01a | 1.00±0.01a | 1.01±0.03a | 1.02±0.01a | 1.01±0.01a |
指标Indexes | SOD | POD | SS | RWC-R | RWC-S | Pro | Na+ | K+ | MDA | SP | RL |
---|---|---|---|---|---|---|---|---|---|---|---|
POD | 0.296 | ||||||||||
SS | -0.560* | -0.643** | |||||||||
RWC-R | -0.051 | 0.598* | -0.176 | ||||||||
RWC-S | -0.201 | 0.131 | -0.056 | -0.180 | |||||||
Pro | 0.485 | 0.130 | -0.662** | 0.002 | 0.048 | ||||||
Na+ | 0.212 | -0.489 | -0.149 | -0.331 | -0.053 | 0.574* | |||||
K+ | 0.002 | 0.338 | -0.008 | 0.501 | -0.058 | 0.001 | -0.169 | ||||
MDA | -0.107 | -0.500 | 0.099 | -0.254 | 0.170 | 0.422 | 0.805** | -0.337 | |||
SP | -0.304 | 0.394 | 0.284 | 0.360 | 0.037 | -0.562* | -0.938** | 0.436 | -0.764** | ||
RL | -0.321 | -0.431 | 0.431 | -0.204 | -0.120 | 0.082 | -0.020 | -0.226 | 0.241 | 0.091 | |
SH | -0.115 | 0.381 | -0.053 | 0.500 | 0.044 | -0.305 | -0.594* | 0.291 | -0.558* | 0.570* | -0.393 |
Table 2 Correlation analysis of salt tolerance coefficients
指标Indexes | SOD | POD | SS | RWC-R | RWC-S | Pro | Na+ | K+ | MDA | SP | RL |
---|---|---|---|---|---|---|---|---|---|---|---|
POD | 0.296 | ||||||||||
SS | -0.560* | -0.643** | |||||||||
RWC-R | -0.051 | 0.598* | -0.176 | ||||||||
RWC-S | -0.201 | 0.131 | -0.056 | -0.180 | |||||||
Pro | 0.485 | 0.130 | -0.662** | 0.002 | 0.048 | ||||||
Na+ | 0.212 | -0.489 | -0.149 | -0.331 | -0.053 | 0.574* | |||||
K+ | 0.002 | 0.338 | -0.008 | 0.501 | -0.058 | 0.001 | -0.169 | ||||
MDA | -0.107 | -0.500 | 0.099 | -0.254 | 0.170 | 0.422 | 0.805** | -0.337 | |||
SP | -0.304 | 0.394 | 0.284 | 0.360 | 0.037 | -0.562* | -0.938** | 0.436 | -0.764** | ||
RL | -0.321 | -0.431 | 0.431 | -0.204 | -0.120 | 0.082 | -0.020 | -0.226 | 0.241 | 0.091 | |
SH | -0.115 | 0.381 | -0.053 | 0.500 | 0.044 | -0.305 | -0.594* | 0.291 | -0.558* | 0.570* | -0.393 |
主成分 Principal component | 特征值 Eigenvalues | 贡献率 Contribution (%) | 累积贡献率 Cumulative contribution (%) |
---|---|---|---|
PC1 | 3.705 | 30.874 | 30.874 |
PC2 | 2.449 | 20.411 | 51.285 |
PC3 | 2.007 | 16.727 | 68.012 |
PC4 | 1.286 | 10.713 | 78.725 |
Table 3 The result of principal component analysis
主成分 Principal component | 特征值 Eigenvalues | 贡献率 Contribution (%) | 累积贡献率 Cumulative contribution (%) |
---|---|---|---|
PC1 | 3.705 | 30.874 | 30.874 |
PC2 | 2.449 | 20.411 | 51.285 |
PC3 | 2.007 | 16.727 | 68.012 |
PC4 | 1.286 | 10.713 | 78.725 |
指标 Indexes | 主成分 Principal component | |||
---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | |
SOD | 0.746 | -0.402 | -0.316 | -0.122 |
POD | 0.472 | 0.528 | -0.544 | 0.328 |
SS | -0.116 | -0.214 | 0.926 | -0.119 |
RWC-R | -0.203 | 0.202 | 0.129 | 0.874 |
RWC-S | 0.097 | -0.402 | 0.447 | 0.349 |
Pro | 0.325 | -0.698 | -0.553 | 0.095 |
Na+ | -0.908 | 0.075 | -0.205 | 0.187 |
K+ | 0.743 | 0.333 | 0.129 | -0.015 |
MDA | -0.718 | -0.400 | -0.254 | 0.216 |
SP | 0.618 | -0.103 | 0.264 | 0.322 |
SH | 0.360 | 0.792 | 0.138 | 0.057 |
RL | -0.593 | 0.601 | -0.143 | -0.254 |
Table 4 Factor loading
指标 Indexes | 主成分 Principal component | |||
---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | |
SOD | 0.746 | -0.402 | -0.316 | -0.122 |
POD | 0.472 | 0.528 | -0.544 | 0.328 |
SS | -0.116 | -0.214 | 0.926 | -0.119 |
RWC-R | -0.203 | 0.202 | 0.129 | 0.874 |
RWC-S | 0.097 | -0.402 | 0.447 | 0.349 |
Pro | 0.325 | -0.698 | -0.553 | 0.095 |
Na+ | -0.908 | 0.075 | -0.205 | 0.187 |
K+ | 0.743 | 0.333 | 0.129 | -0.015 |
MDA | -0.718 | -0.400 | -0.254 | 0.216 |
SP | 0.618 | -0.103 | 0.264 | 0.322 |
SH | 0.360 | 0.792 | 0.138 | 0.057 |
RL | -0.593 | 0.601 | -0.143 | -0.254 |
编号 Number | 综合指标值 Comprehensive index value | 隶属函数值 Subordinative function value | D值 D value | 预测值 Prediction value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CI1 | CI2 | CI3 | CI4 | μ1 | μ2 | μ3 | μ4 | |||
T1 | -1.993 | -0.487 | -1.922 | 2.449 | 0.690 | 1.000 | 0.995 | 0.069 | 0.751 | 0.781 |
T2 | -5.068 | -0.864 | -4.449 | 3.783 | 0.357 | 0.871 | 0.532 | 0.520 | 0.550 | 0.524 |
T3 | -1.592 | -1.614 | -4.814 | 2.598 | 0.734 | 0.613 | 0.465 | 0.119 | 0.562 | 0.575 |
T4 | -6.450 | -2.491 | -7.152 | 4.758 | 0.208 | 0.313 | 0.036 | 0.850 | 0.286 | 0.289 |
T5 | -8.367 | -2.945 | -7.350 | 5.201 | 0.000 | 0.157 | 0.000 | 1.000 | 0.177 | 0.175 |
T6 | -0.387 | -1.373 | -1.895 | 2.245 | 0.864 | 0.696 | 1.000 | 0.000 | 0.732 | 0.700 |
T7 | -0.354 | -1.825 | -3.032 | 2.462 | 0.868 | 0.541 | 0.792 | 0.073 | 0.659 | 0.645 |
T8 | 0.870 | -2.819 | -4.157 | 2.548 | 1.000 | 0.200 | 0.585 | 0.103 | 0.582 | 0.565 |
T9 | -0.050 | -3.019 | -4.527 | 2.812 | 0.900 | 0.132 | 0.517 | 0.192 | 0.523 | 0.541 |
T10 | -0.794 | -3.403 | -4.233 | 2.586 | 0.820 | 0.000 | 0.571 | 0.115 | 0.459 | 0.486 |
Table 5 The values of the comprehensive index value, subordinative function value, D value, and prediction value under different seawater treatment
编号 Number | 综合指标值 Comprehensive index value | 隶属函数值 Subordinative function value | D值 D value | 预测值 Prediction value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CI1 | CI2 | CI3 | CI4 | μ1 | μ2 | μ3 | μ4 | |||
T1 | -1.993 | -0.487 | -1.922 | 2.449 | 0.690 | 1.000 | 0.995 | 0.069 | 0.751 | 0.781 |
T2 | -5.068 | -0.864 | -4.449 | 3.783 | 0.357 | 0.871 | 0.532 | 0.520 | 0.550 | 0.524 |
T3 | -1.592 | -1.614 | -4.814 | 2.598 | 0.734 | 0.613 | 0.465 | 0.119 | 0.562 | 0.575 |
T4 | -6.450 | -2.491 | -7.152 | 4.758 | 0.208 | 0.313 | 0.036 | 0.850 | 0.286 | 0.289 |
T5 | -8.367 | -2.945 | -7.350 | 5.201 | 0.000 | 0.157 | 0.000 | 1.000 | 0.177 | 0.175 |
T6 | -0.387 | -1.373 | -1.895 | 2.245 | 0.864 | 0.696 | 1.000 | 0.000 | 0.732 | 0.700 |
T7 | -0.354 | -1.825 | -3.032 | 2.462 | 0.868 | 0.541 | 0.792 | 0.073 | 0.659 | 0.645 |
T8 | 0.870 | -2.819 | -4.157 | 2.548 | 1.000 | 0.200 | 0.585 | 0.103 | 0.582 | 0.565 |
T9 | -0.050 | -3.019 | -4.527 | 2.812 | 0.900 | 0.132 | 0.517 | 0.192 | 0.523 | 0.541 |
T10 | -0.794 | -3.403 | -4.233 | 2.586 | 0.820 | 0.000 | 0.571 | 0.115 | 0.459 | 0.486 |
编号 Number | D值 D value | 预测值 Prediction value | 差值 Difference value | 估计精度 Evaluation accuracy (%) |
---|---|---|---|---|
T1 | 0.751 | 0.781 | 0.030 | 96.02 |
T2 | 0.550 | 0.524 | 0.026 | 95.39 |
T3 | 0.562 | 0.575 | 0.013 | 97.68 |
T4 | 0.286 | 0.289 | 0.003 | 98.73 |
T5 | 0.177 | 0.175 | 0.002 | 99.24 |
T6 | 0.732 | 0.700 | 0.032 | 95.66 |
T7 | 0.659 | 0.645 | 0.014 | 97.89 |
T8 | 0.582 | 0.565 | 0.017 | 97.06 |
T9 | 0.523 | 0.541 | 0.018 | 96.60 |
T10 | 0.459 | 0.486 | 0.027 | 94.13 |
Table 6 Analysis of estimation precision of regression equation
编号 Number | D值 D value | 预测值 Prediction value | 差值 Difference value | 估计精度 Evaluation accuracy (%) |
---|---|---|---|---|
T1 | 0.751 | 0.781 | 0.030 | 96.02 |
T2 | 0.550 | 0.524 | 0.026 | 95.39 |
T3 | 0.562 | 0.575 | 0.013 | 97.68 |
T4 | 0.286 | 0.289 | 0.003 | 98.73 |
T5 | 0.177 | 0.175 | 0.002 | 99.24 |
T6 | 0.732 | 0.700 | 0.032 | 95.66 |
T7 | 0.659 | 0.645 | 0.014 | 97.89 |
T8 | 0.582 | 0.565 | 0.017 | 97.06 |
T9 | 0.523 | 0.541 | 0.018 | 96.60 |
T10 | 0.459 | 0.486 | 0.027 | 94.13 |
1 | Jiang Y Q, Deyolks M K. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BioMed Central Plant Biology, 2006, 6: 25. |
2 | Liu Y Y, Wu J Z, Xu Z Y, et al. Identification methods of salt-tolerance at germination and seedling stage of wheat under artificial sea water stress. Plant Physiology Journal, 2014, 50(2): 214-222. |
刘妍妍, 吴纪中, 许璋阳, 等. 人工海水胁迫下小麦芽期和苗期的耐盐性鉴定方法. 植物生理学报, 2014, 50(2): 214-222. | |
3 | Ma Z S, Tan J L, Wei T. The variation of salt-tolerance of crops in different regions irrigated with brackish water in China. Journal of Irrigation and Drainage, 2019, 38(3): 70-75. |
马中昇, 谭军利, 魏童. 中国微咸水利用的地区和作物适应性研究进展. 灌溉排水学报, 2019, 38(3): 70-75. | |
4 | Zhang Y Q, Kendy E, Yu Q, et al. Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain. Helia, 2004, 64(35): 107-122. |
5 | Ren Y J, Li J L, Wang X Y, et al. The combination of salt water treatment and precision irrigation: Advantage analysis. Chinese Agricultural Science Bulletin, 2021, 37(25): 92-96. |
任玉洁, 李俊林, 王向誉, 等. 基于咸水处理和精准灌溉相结合的优势分析. 中国农学通报, 2021, 37(25): 92-96. | |
6 | Liu J, Cai H, Liu Y, et al. A study on physiological characteristics and comparison of salt tolerance of two Medicago sativa at the seedling stage. Acta Prataculturae Sinica, 2013, 22(2): 250-256. |
刘晶, 才华, 刘莹, 等. 两种紫花苜蓿苗期耐盐生理特性的初步研究及其耐盐性比较. 草业学报, 2013, 22(2): 250-256. | |
7 | Su Y B, Liu L J, Qi D M, et al. Effect of seawater stress on seed germination and seedling growth of two red-spotted stonecrops. Chinese Agricultural Science Bulletin, 2017, 33(3): 88-93. |
苏彦宾, 刘鲁江, 亓德明, 等. 海水胁迫对2种景天种子萌发及幼苗生长的影响. 中国农学通报, 2017, 33(3): 88-93. | |
8 | Yang Y Y, Mao G L, Ma D M, et al. Germination characteristics of four forage seeds under different concentrations of NaCl or NaHCO3 stress. Acta Prataculturae Sinica, 2022, 30(3): 637-645. |
杨迎月, 毛桂莲, 麻冬梅, 等. 四种牧草种子在不同浓度NaCl或NaHCO3胁迫下的萌发特性. 草业学报, 2022, 30(3): 637-645. | |
9 | Jia Z M, Qiu Y L, Lin Z S, et al. Research progress on wheat improvement by using desirable genes from its relative species. Crops, 2021, 37(2): 1-14. |
贾子苗, 邱玉亮, 林志姗, 等. 利用近缘种属优良基因改良小麦研究进展. 作物杂志, 2021, 37(2): 1-14. | |
10 | Che Y H, Yang Y P, Yang X M, et al. Phylogenetic relationship and diversity among Agropyron germplasm using SSRs markers. Plant Systematics & Evolution, 2014, 301(1): 163-170. |
11 | Barkworth M E, Dewey D R. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. Gene Manipulation in Plant Breeding, 1984, 35(1): 202. |
12 | Li X Q. Investigation and analysis on agronomic characters and salt tolerance of F1 hybrids of Agropyron Gaertn. Qinhuangdao: Hebei Normal University of Science and Technology, 2018. |
李旭青. 冰草属种间杂种F1代群体农艺性状与耐盐性调查与分析. 秦皇岛: 河北科技师范学院, 2018. | |
13 | Wang X L, Li H, Mi F G, et al. Evaluation on salt tolerance of three species of wheatgrass seeds at the germination stage. Heilongjiang Animal Science and Veterinary Medicine, 2021(13): 97-101. |
王晓龙, 李红, 米福贵, 等. 3种冰草种子萌发期耐盐性评价. 黑龙江畜牧兽医, 2021(13): 97-101. | |
14 | Huang H Y, Liu S S, Wang S R, et al. Study on salt tolerance of 15 germplasm materials of Agropyron intermedium (Host) Nevski. Crops, 2015, 7(1): 36-42. |
黄海燕, 刘帅帅, 王生荣, 等. 中间冰草种质材料苗期耐盐性研究. 作物杂志, 2015, 7(1): 36-42. | |
15 | Shen W Y, Tuerxunnayi R, Xueretijiang M, et al. Selection of salt tolerance of 12 forage species in Xinjiang during germination period. Xinjiang Agricultural Sciences, 2020, 57(10): 1912-1920. |
申吴燕, 吐尔逊娜依·热依木, 雪热提江·麦提努日, 等. 12种植物萌发期耐盐性筛选. 新疆农业科学, 2020, 57(10): 1912-1920. | |
16 | Yuan Q H, Zhao L X, Gao H W. Descriptors and data standard for wheatgrass [Agropyron cristatum (L.) ]. Beijing: China Agriculture Press, 2007: 79-80. |
袁庆华, 赵来喜, 高洪文. 冰草种质资源描述规范和数据标准. 北京: 中国农业出版社, 2007: 79-80. | |
17 | Che Y H, Li L H, He B R. Sampling strategy for genetic diversity in Agropyron based on gliadin. Journal of Plant Genetic Resources, 2004(3): 216-221. |
车永和, 李立会, 何蓓如. 冰草属(Agropyron )植物遗传多样性取样策略基于醇溶蛋白的研究. 植物遗传资源学报, 2004(3): 216-221. | |
18 | Xiao L T, Wang S G. Plant physiology experiment technology. Beijing: China Agriculture Press, 2005: 172-174. |
萧浪涛, 王三根. 植物生理学试验技术. 北京: 中国农业出版社, 2005: 172-174. | |
19 | Zhang D Z, Pei H, Zhao H X. Determination of the content of free proline in wheat leave. Plant Physiology Communications, 1990, 26(4): 62-65. |
张殿忠, 沛红, 赵慧贤. 测定小麦叶片游离脯氨酸含量的方法. 植物生理学通讯, 1990, 26(4): 62-65. | |
20 | Georgiou C D, Grintzalis K, Zervoudakis G, et al. Mechanism of Coomassie brilliant blue G-250 binding to protein: A hydrophobic assay for nanogram quantities of proteins. Analytical and Bioanalytical Chemistry, 2008, 391: 391-403. |
21 | Li H S. Principles and techniques of plant physiological biochemical experiment. Beijing: Higher Education Press, 2000: 258-260. |
李合生. 植物生理生化试验原理和技术. 北京: 高等教育出版社, 2000: 258-260. | |
22 | Lachica M, Aguilar A, Yanez J. Plant analysis, 2: Analytical methods used in the extraction experimental del zaidin. Anales de Edafologia Y Agrobiologia, 1973, 32: 11-12. |
23 | Zhang J L, Li H R, Guo S Y, et al. Research advances in higher plant adaptation to salt stress. Acta Prataculturae Sinica, 2015, 24(12): 220-236. |
张金林, 李惠茹, 郭姝媛, 等. 高等植物适应盐逆境研究进展. 草业学报, 2015, 24(12): 220-236. | |
24 | James R A, Blake C, Byrt C S, et al. Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. Journal of Experimental Botany, 2011, 62(8): 2939-2947. |
25 | Fu Y Y, Jiang X H, Shen X J, et al. The relationship between foliar K+ and Na+ concentrations and photosynthetic parameters of cotton seedlings under salt stress. Chinese Journal of Ecology, 2021, 40(6): 1716-1722. |
付媛媛, 江晓慧, 申孝军, 等. 盐胁迫下棉花幼苗叶片K+、Na+含量与光合参数的关系. 生态学杂志, 2021, 40(6): 1716-1722. | |
26 | Bihler H, Eing C, Hebeisen S, et al. TPK1 is a vacuolar ion channel different from the slow-vacuolar cation channel. Plant Physiology, 2005, 139(1): 417-424. |
27 | Ouertani R N, Arasappan D, Abid G, et al. Transcriptomic analysis of salt-stress-responsive genes in barley roots and leaves. International Journal of Molecular Sciences, 2021, 22(15): 1-17. |
28 | Maathuis F J, Amtmann A N. K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios. Annals of Botany, 1999, 84(2): 123-133. |
29 | Hasegawa P M. Sodium (Na+) homeostasis and salt tolerance of plants. Environmental and Experimental Botany, 2013, 92: 19-31. |
30 | Gong Z Z, Xiong L M, Shi H Z, et al. Plant abiotic stress response and nutrient use efficiency. Science China (Life Science), 2020, 63(5): 635-674. |
31 | Bohnert H J, Jensen R G. Strategies for engineering water-stress tolerance in plants. Trends in Biotechnology, 1996, 14(3): 89-97. |
32 | Qi W C, Zhang L, Xu H B, et al. Physiological and molecular characterization of the enhanced salt tolerance induced by low-dose gamma irradiation in Arabidopsis seedlings. Biochemical and Biophysical Research Communications, 2014, 450(2): 1010-1015. |
33 | Ji B, Xu J P, Shi L, et al. Salt resistance of 10 species of grass seeds grasses at germination stage. Xinjiang Agricultural Sciences, 2021, 58(2): 344-353. |
季波, 徐金鹏, 时龙, 等. 10种禾本科牧草种子萌发期耐盐性. 新疆农业科学, 2021, 58(2): 344-353. | |
34 | Zhao M D, Liu P, Yang C, et al. Effects of salt stress on physiological indexes of perennial forage seedlings in Qinghai-Tibet Plateau. Ecological Science, 2018, 37(3): 123-130. |
赵明德, 刘攀, 杨冲, 等. 盐胁迫对青藏高原多年生牧草幼苗生理指标的影响. 生态科学, 2018, 37(3): 123-130. | |
35 | Chen M, Li H Y, Lv F T. Research advances in mechanisms of plant salinity tolerance. Journal of Liaocheng University (Natural Science Edition), 2011, 24(3): 47-50. |
陈敏, 李海云, 吕福堂. 植物耐盐性研究进展. 聊城大学学报(自然科学版), 2011, 24(3): 47-50. |
[1] | Yuan WANG, Jing WANG, Shu-xia LI. Cloning of MsBBX24 from alfalfa (Medicago sativa) and determination of its role in salt tolerance [J]. Acta Prataculturae Sinica, 2023, 32(3): 107-117. |
[2] | Hai-feng HE, Na WU, Ji-li LIU, Xing XU. Effects of phosphorus application on the growth and salt resistance of switchgrass under saline alkali conditions [J]. Acta Prataculturae Sinica, 2022, 31(10): 64-74. |
[3] | Xin-tong ZHAO, Xiao-dong CHEN, Zi-ji LI, Ju-ming ZHANG, Tian-zeng LIU. An evaluation of the effects of the plant endophyte Enterobacter on the salt tolerance of bermudagrass [J]. Acta Prataculturae Sinica, 2021, 30(9): 127-136. |
[4] | Chuan-qi WANG, Wen-hui LIU, Yong-chao ZHANG, Qing-ping ZHOU. Studies on drought tolerance of wild Elymus sibiricus at the seedling stage [J]. Acta Prataculturae Sinica, 2021, 30(8): 127-136. |
[5] | Ye WANG, Hui-ping CHEN, Run-zhi LI, Zhen PENG, Xi-feng FAN, Ju-ying WU, Liu-sheng DUAN. A micropropagation system for Miscanthus×giganteus based on axillary buds and evaluation of its salt tolerance [J]. Acta Prataculturae Sinica, 2021, 30(6): 214-220. |
[6] | Ya-qi CHEN, Kai-qi SU, Tai-xiang CHEN, Chun-jie LI. Effects of complex saline-alkali stress on seed germination and seedling physiological characteristics of Achnatherum inebrians [J]. Acta Prataculturae Sinica, 2021, 30(3): 137-157. |
[7] | Qian LI, Xiao-xia LI, Li-qin CHENG, Shuang-yan CHEN, Dong-mei QI, Wei-guang YANG, Li-jun GAO, Ba-yin XIN, Gong-she LIU. Expression characteristics and functional analysis of the LcCBF6 gene from Leymus chinensis [J]. Acta Prataculturae Sinica, 2021, 30(10): 105-115. |
[8] | CHEN You-jun, DONG Quan-min, ZHOU Qing-ping. The impact of different soil moisture and sterilization treatments on root architecture and rhizosheath formation of Kengyilia hirsuta at the seedling stage [J]. Acta Prataculturae Sinica, 2020, 29(3): 60-69. |
[9] | XIONG Xue, GUI Wei-yang, LIU Mo-han, CHEN Ji-hui, ZHANG Ying-jun. Evaluation of salt tolerance in different alfalfa varieties under uniform and non-uniform salt stress [J]. Acta Prataculturae Sinica, 2018, 27(9): 67-76. |
[10] | KE Dan-xia, PENG Kun-peng, XIA Yuan-jun, ZHU Yu-ying, ZHANG Dan-dan. Cloning of salt-stressed responsive gene GmWRKY6 and salt resistance analysis of transgenic Lotus japonicus [J]. Acta Prataculturae Sinica, 2018, 27(8): 95-106. |
[11] | MI Yong-wei, WANG Guo-xiang, GONG Cheng-wen, CAI Zi-ping, WU Wei-guo. Effects of salt stress on growth and physiology of Isatis indigotica seedlings [J]. Acta Prataculturae Sinica, 2018, 27(6): 43-51. |
[12] | WU Guo-Qiang, FENG Rui-Jun, LI Shan-Jia, WANG Chun-Mei, JIAO Qi, LIU Hai-Long. Effects of salt treatments on growth and osmoregulatory substance accumulation in sugar beet (Beta vulgaris) [J]. Acta Prataculturae Sinica, 2017, 26(4): 169-177. |
[13] | LI Hui-Fang, WANG Yu, YUAN Qing-Hua, ZHAO Gui-Qin. Effects of lead stress on growth, physiology, and lead ion accumulation and transportation in gramineous forages [J]. Acta Prataculturae Sinica, 2015, 24(9): 163-172. |
[14] | JIA Xin-Ping, DENG Yan-Ming, SUN Xiao-Bo, LIANG Li-Jian. Impacts of salt stress on the growth and physiological characteristics of Paspalum vaginatum [J]. Acta Prataculturae Sinica, 2015, 24(12): 204-212. |
[15] | ZHANG Jin-Lin, LI Hui-Ru, GUO Shu-Yuan, WANG Suo-Min, SHI Hua-Zhong, HAN Qing-Qing, BAO Ai-Ke, MA Qing. Research advances in higher plant adaptation to salt stress [J]. Acta Prataculturae Sinica, 2015, 24(12): 220-236. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||