Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (2): 201-209.DOI: 10.11686/cyxb2022055
Liu-xing XU(), Yuan-yan MENG, Chang-fen LUO, Qi-wang QI, Jin-jing ZHENG, Ji-wang ZHANG, Li LIU, Xiao-long ZHANG, Yu-feng TANG, Dan WU(), Rong-jin CAI()
Received:
2022-01-30
Revised:
2022-03-21
Online:
2023-02-20
Published:
2022-12-01
Contact:
Dan WU,Rong-jin CAI
Liu-xing XU, Yuan-yan MENG, Chang-fen LUO, Qi-wang QI, Jin-jing ZHENG, Ji-wang ZHANG, Li LIU, Xiao-long ZHANG, Yu-feng TANG, Dan WU, Rong-jin CAI. Research status and development prospects of dual-purpose crops (grain and forage)[J]. Acta Prataculturae Sinica, 2023, 32(2): 201-209.
国家 Countries | 代表性地区 Representative regions | 作物类型 Crop type | 经济效益 Economic benefits |
---|---|---|---|
中国 China | 黄土高原和内蒙古地区 Loess Plateau and Inner Mongolia | 小麦Wheat | 延迟播种(10月2日)导致饲草产量降低33.4%,但额外获取1.6 t·hm-2的饲草,春季刈割导致籽粒减产[ |
澳大利亚 Australia | 高降水地区 High-rainfall zones | 小麦和油菜 Wheat and canola | 小麦推迟刈割导致作物减产40%,但提早刈割对籽粒产量和品质无影响[ |
肯尼亚Kenya | 维希加地区 Visiga region | 红薯 Ipomoea batatas | 使用率在55%~80%[ |
印度 India | 喜马拉雅山区Himalayas region | 小麦 Wheat | 两用小麦提供2.63~3.77 t·hm-2的鲜草[ |
埃及 Egypt | 地中海地区Mediterranean region | 小麦、大麦、燕麦和小黑麦Wheat, barley, oats and triticale | 当播种60 d后刈割,谷类作物获取的饲草资源能替代20%的商业饲草来源[ |
土耳其Turkey | 科尼亚地区 Konya region | 小麦和大麦 Wheat and barley | 两用大麦管理能增加44.6%~61.1%的经济收益[ |
伊朗 Iran | 卡拉杰地区 Karaj region | 大麦 Barley | 增加23.9%~43.6%的经济收益[ |
美国America | 得克萨斯州地区 Texas region | 小麦 Wheat | 视田间管理而定[ |
巴西 Brazil | 巴拉那高原地区 Parana Plateau region | 小麦 Wheat | 尽管奶牛的增重视放牧天数而定[ |
Table 1 Representative countries of dual-purpose crop cultivation and economic benefits
国家 Countries | 代表性地区 Representative regions | 作物类型 Crop type | 经济效益 Economic benefits |
---|---|---|---|
中国 China | 黄土高原和内蒙古地区 Loess Plateau and Inner Mongolia | 小麦Wheat | 延迟播种(10月2日)导致饲草产量降低33.4%,但额外获取1.6 t·hm-2的饲草,春季刈割导致籽粒减产[ |
澳大利亚 Australia | 高降水地区 High-rainfall zones | 小麦和油菜 Wheat and canola | 小麦推迟刈割导致作物减产40%,但提早刈割对籽粒产量和品质无影响[ |
肯尼亚Kenya | 维希加地区 Visiga region | 红薯 Ipomoea batatas | 使用率在55%~80%[ |
印度 India | 喜马拉雅山区Himalayas region | 小麦 Wheat | 两用小麦提供2.63~3.77 t·hm-2的鲜草[ |
埃及 Egypt | 地中海地区Mediterranean region | 小麦、大麦、燕麦和小黑麦Wheat, barley, oats and triticale | 当播种60 d后刈割,谷类作物获取的饲草资源能替代20%的商业饲草来源[ |
土耳其Turkey | 科尼亚地区 Konya region | 小麦和大麦 Wheat and barley | 两用大麦管理能增加44.6%~61.1%的经济收益[ |
伊朗 Iran | 卡拉杰地区 Karaj region | 大麦 Barley | 增加23.9%~43.6%的经济收益[ |
美国America | 得克萨斯州地区 Texas region | 小麦 Wheat | 视田间管理而定[ |
巴西 Brazil | 巴拉那高原地区 Parana Plateau region | 小麦 Wheat | 尽管奶牛的增重视放牧天数而定[ |
1 | Gao H X. Empirical study on planting decision behavior of forage grass producers in China. Beijing: Chinese Academy of Agricultural Sciences, 2021. |
高海秀. 中国牧草生产者种植决策行为研究. 北京: 中国农业科学院, 2021. | |
2 | Hu C, Sadras V O, Lu G, et al. Dual-purpose winter wheat: Interactions between crop management, availability of nitrogen and weather conditions. Field Crops Research, 2019, 241: 1-11. |
3 | Randby A T, Nadeau E, Karlsson L, et al. Effect of maturity stage at harvest and kernel processing of whole crop wheat silage on digestibility by dairy cows. Animal Feed Science and Technology, 2019, 253: 141-152. |
4 | Bell L W, Moore A D, Kirkegaard J A. Evolution in crop-livestock integration systems that improve farm productivity and environmental performance in Australia. European Journal of Agronomy, 2014, 57: 10-20. |
5 | Cadeddu F, Motzo R, Mureddu F, et al. Ancient wheat species are suitable to grain-only and grain plus herbage utilisations in marginal Mediterranean environments. Agronomy for Sustainable Development, 2021, 41(2): 1-13. |
6 | Salama H S A, Badry H H. Forage and grain yields of dual-purpose triticale as influenced by the integrated use of Azotobacter chroococcum and mineral nitrogen fertilizer. Italian Journal of Agronomy, 2021, 16(2): 1719. |
7 | Moustafa E S A, El-Sobky E S E A, Farag H I A, et al. Sowing date and genotype influence on yield and quality of dual-purpose barley in a salt-affected arid region. Agronomy, 2021, 11(4): 1-14. |
8 | Sprague S J, Kirkegaard J A, Dove H, et al. Integrating dual-purpose wheat and canola into high-rainfall livestock systems in south-eastern Australia. 1. Crop forage and grain yield. Crop and Pasture Science, 2015, 66(4): 365-376. |
9 | Food and Agriculture Organization (FAO). The future of food and agriculture: Trends and challenges. Rome, FAO, 2017. |
10 | IPCC. AR6 climate change: The physical science basis. New York, IPCC, 2021. |
11 | Ward F A. Enhancing climate resilience of irrigated agriculture: A review. Journal of Environmental Management, 2022, 302: 1-15. |
12 | Food and Agriculture Organization (FAO). Optimization of feed efficiency in ruminant production systems. Bangkok, FAO, 2012. |
13 | Ashbell G, Weinberg Z G, Bruckental I, et al. Wheat silage: Effect of cultivar and stage of maturity on yield and degradability in situ. Journal of Agricultural and Food Chemistry, 1997, 45(3): 709-712. |
14 | Ren H, Han G, Schönbach P, et al. Forage nutritional characteristics and yield dynamics in a grazed semiarid steppe ecosystem of Inner Mongolia, China. Ecological Indicators, 2016, 60: 460-469. |
15 | Wu X F. The effects of forage type and season on the microbiota of muskoxen rumen through metatranscriptomic approaches. Ya’an: Sichuan Agricultural University, 2017. |
吴小峰. 基于宏转录组学技术研究饲草类型和季节对麝牛瘤胃微生物组的影响. 雅安: 四川农业大学, 2017. | |
16 | Vandermeulen S, Ramírez-Restrepo C A, Marche C, et al. Behaviour and browse species selectivity of heifers grazing in a temperate silvopastoral system. Agroforestry Systems, 2018, 92(3): 705-716. |
17 | Ni Y F, Wang M L. The characteristics and influencing factors of geographical agglomeration of forage industry in China. Economic Geography, 2018, 38(6): 142-150. |
倪印锋, 王明利. 中国牧草产业地理集聚特征及影响因素. 经济地理, 2018, 38(6): 142-150. | |
18 | Yang J, Lai X, Shen Y. Response of dual-purpose winter wheat yield and its components to sowing date and cutting timing in a semiarid region of China. Crop Science, 2021, 62(1): 425-440. |
19 | Hu C, Ding M, Qu C, et al. Yield and water use efficiency of wheat in the Loess Plateau: Responses to root pruning and defoliation. Field Crops Research, 2015, 179: 6-11. |
20 | Bell L W, Kirkegaard J A, Tian L, et al. Interactions of spring cereal genotypic attributes and recovery of grain yield after defoliation. Frontiers in Plant Science, 2020, 11: 1-15. |
21 | Moore A D. Opportunities and trade-offs in dual-purpose cereals across the southern Australian mixed-farming zone: A modelling study. Animal Production Science, 2009, 49(10): 759-768. |
22 | Claessens L, Stoorvogel J J, Antle J M. Exante assessment of dual-purpose sweet potato in the crop-livestock system of western Kenya: A minimum-data approach. Agricultural Systems, 2008, 99(1): 13-22. |
23 | Mondal T, Yadav R P, Meena V S, et al. Biomass yield and nutrient content of dual purpose wheat in the fruit based cropping system in the North-Western mid-Himalaya ecosystem, India. Field Crops Research, 2020, 247: 1-9. |
24 | Bhavya M R, Palled Y B, Kumar B T, et al. Influence of seed rate and fertilizer levels on nutrient content. Uptake and soil fertility status in fodder cowpea production. BIOINFOLET-A Quarterly Journal of Life Sciences, 2014, 13(3): 787-792. |
25 | Salama H S A, Safwat A M, Elghalid O H, et al. Agronomic and in vitro quality evaluation of dual-purpose cereals clipped at variable ages and their utilization in rabbit feeding. Agronomy, 2021, 11(6): 1106-1147. |
26 | Salama H S A. Dual purpose barley production in the mediterranean climate: Effect of seeding rate and age at forage cutting. International Journal of Plant Production, 2019, 13(4): 285-295. |
27 | Ates S, Cicek H, Gultekin I, et al. Bio-economic analysis of dual-purpose management of winter cereals in high and low input production systems. Field Crops Research, 2018, 227: 56-66. |
28 | Khalil I H, Carver B F, Krenzer E G, et al. Genetic trends in winter wheat grain quality with dual-purpose and grain-only management systems. Crop Science, 2002, 42(4): 1112-1116. |
29 | Hajighasemi S, Keshavarz‐Afshar R, Chaichi M R. Nitrogen fertilizer and seeding rate influence on grain and forage yield of dual-purpose barley. Agronomy Journal, 2016, 108(4): 1486-1494. |
30 | Broumand P, Rezaei A, Soleymani A, et al. Influence of forage clipping and top dressing of nitrogen fertilizer on grain yield of cereal crops in dual purpose cultivation system. Research on Crops, 2010, 11(3): 603-613. |
31 | Woli P, Rouquette Jr F M, Smith G R, et al. Simulating winter wheat forage production in the southern United States using a forage wheat model. Agronomy Journal, 2019, 111(3): 1141-1154. |
32 | Da Silva F L, Carvalho I R, Barbosa M H, et al. Sowing density and clipping management: Effects on the architecture and yield of dual-purpose wheat. Bioscience Journal, 2020, 36(6): 2060-2067. |
33 | Bartmeyer T N, Dittrich J R, da Silva H A, et al. Double purpose wheat under beef cattle grazing in Campos Gerais, Paraná State, Brazil. Pesquisa Agropecuária Brasileira, 2011, 46(10): 1247-1253. |
34 | Rodolfo G R, Souza C A, Stefen D L V, et al. Agronomic traits of dual-purpose wheat with different plant architectures under defoliation strategies. Bioscience Journal, 2019, 35(6): 1758-1772. |
35 | Harrison M T, Evans J R, Dove H, et al. Recovery dynamics of rainfed winter wheat after livestock grazing 1. Growth rates, grain yields, soil water use and water-use efficiency. Crop and Pasture Science, 2011, 62(11): 947-959. |
36 | Kelman W M, Dove H. Effects of a spring-sown brassica crop on lamb performance and on subsequent establishment and grain yield of dual-purpose winter wheat and oat crops. Australian Journal of Experimental Agriculture, 2007, 47(7): 815-824. |
37 | Virgona J M, Gummer F A J, Angus J F. Effects of grazing on wheat growth, yield, development, water use, and nitrogen use. Australian Journal of Agricultural Research, 2006, 57(12): 1307-1319. |
38 | Nicholson C. Effect of grazing on the grain yield and quality of seven cereals-Inverleigh//Proceedings of the 13th Australian Agronomy Conference. Perth: Australian Agronomy Conference, 2006, 184-186. |
39 | Scott W R, Hines S E. Effects of grazing on grain yield of winter barley and triticale: The position of the apical dome relative to the soil surface. New Zealand Journal of Agricultural Research, 1991, 34(2): 177-184. |
40 | Fischer R A. Understanding the physiological basis of yield potential in wheat. The Journal of Agricultural Science, 2007, 145(2): 99-113. |
41 | Giuntaa F, Cabiglieraa A, Virdisb A, et al. Dual-purpose use affects phenology of triticale. Field Crops Research, 2015, 183: 111-116. |
42 | Zadoks J C. A decimal code for the growth stages of cereals. Weed Research, 1974, 14: 415-421. |
43 | Tian L H, Bell L W, Shen Y Y, et al. Dual-purpose use of winter wheat in western China: Cutting time and nitrogen application effects on phenology, forage production, and grain yield. Crop and Pasture Science, 2012, 63(6): 520-528. |
44 | Pandey A K. Effect of agronomic practices on green fodder, grain yield and economics of dual-purpose wheat (Triticum aestivum). The Indian Journal of Agricultural Sciences, 2005, 75(1): 27-29. |
45 | Mcgrath S R, Pinares-Patino C S, Mcdonald S E, et al. Utilising dual-purpose crops in an Australian high-rainfall livestock production system to increase meat and wool production 2. Production from breeding ewe flocks. Animal Production Science, 2021, 61(11): 1-12. |
46 | McCormick J I, Paulet J W, Bell L W, et al. Dual-purpose crops: the potential to increase cattle liveweight gains in winter across Southern Australia. Animal Production Science, 2021, 61: 1189-1201. |
47 | Gunter S A, Combs G F. Efficacy of mineral supplementation to growing cattle grazing winter-wheat pasture in Northwestern Oklahoma. Translational Animal Science, 2019, 3: 1119-1132. |
48 | Dove H, Kirkegaard J. Using dual-purpose crops in sheep-grazing systems. Journal of the Science of Food and Agriculture, 2014, 94(7): 1276-1283. |
49 | Fletcher A L, Chakwizira E. Nitrate accumulation in forage brassicas. New Zealand Journal of Agricultural Research, 2012, 55: 413-419. |
50 | Munsif F, Arif M, Khan A, et al. Dual-purpose wheat technology: A tool for ensuring food security and livestock sustainability in cereal-based cropping pattern. Archives of Agronomy and Soil Science, 2021, 67(13): 1889-1900. |
51 | Royo C, Lopez A, Serra J, et al. Effect of sowing date and cutting stage on yield and quality of irrigated barley and triticale used for forage and grain. Journal of Agronomy and Crop Science, 1997, 179(4): 227-234. |
52 | Edwards J T, Carver B F, Horn G W, et al. Impact of dual-purpose management on wheat grain yield. Crop Science, 2011, 51(5): 2181-2185. |
53 | Khalil S K, Khan F, Rehman A, et al. Dual-purpose wheat for forage and grain yield in response to cutting, seed rate and nitrogen. Pakistan Journal of Botany, 2011, 43(2): 937-947. |
54 | Pan L, Yang Z, Wang J, et al. Comparative proteomic analyses reveal the proteome response to short-term drought in Italian ryegrass (Lolium multiflorum L.). PLoS One, 2017, 12(9): e0184289. |
55 | Timm L C, Haygert-velho I, Maria P, et al. Production of nutrients in dual-purpose wheat pastures managed with different doses of nitrogen as topdressing-exponential model. Anais da Academia Brasileira de Ciências, 2020, 92(3): 1-15. |
56 | Tylutki T P, Fox D G, Durbal V M, et al. Cornell net carbohydrate and protein system: A model for precision feeding of dairy cattle. Animal Feed Science and Technology, 2008, 143(4): 174-202. |
57 | Sij J, Belew M, Pinchak W. Nitrogen management in no-till and conventional-till dual-use wheat/stocker systems. Texas Journal of Agriculture and Natural Resources, 2011, 24: 38-49. |
58 | Harrison M T, Evans J R, Dove H, et al. Dual-purpose cereals: can the relative influences of management and environment on crop recovery and grain yield be dissected? Crop and Pasture Science, 2011, 62(11): 930-946. |
59 | Martiniello P, De Santis G, Iannucci A. Effect of phenological stages on plant dry matter partitioning and seed production in berseem (Trifolium alexandrinum L.). Journal of Agronomy and Crop Science, 1996, 177: 39-48. |
60 | Ortiz-Monasterio J I, Dhillon S S, Fischer R A. Date of sowing effects on grain yield and yield components of irrigated spring wheat cultivars and relationships with radiation and temperature in Ludhiana, India. Field Crops Research, 1994, 37: 169-184. |
61 | Christiansen S, Svejcar T, Phillips W A. Spring and fall cattle grazing effects on components and total grain-yield of winter wheat. Agronomy Journal, 1989, 81: 145-150. |
62 | Blümmel M, Updahyay S R, Gautam N, et al. Comparative assessment of food-fodder traits in a wide range of wheat germplasm for diverse biophysical target domains in South Asia. Field Crops Research, 2019, 236: 68-74. |
63 | Blümmel M, Duncan A J, Lenné J M. Recent advances in dual purpose rice and wheat research: A synthesis. Field Crops Research, 2020, 253: 1-5. |
64 | Bezabih M, Adie A, Ravi D, et al. Variations in food-fodder traits of bread wheat cultivars released for the Ethiopian highlands. Field Crops Research, 2018, 229: 1-7. |
65 | Joshi A K, Barma N C D, Hakim M A, et al. Opportunities for wheat cultivars with superior straw quality traits targeting the semi-arid tropics. Field Crops Research, 2019, 231: 51-56. |
66 | Liu B H, Cui G B, Wang J H, et al. Screening and evaluation of forage wheat germplasms in Guanzhong area of Shannxi Province. Acta Agrestia Sinica, 2018, 26(6): 1435-1443. |
刘博浩, 崔桂宾, 王京宏, 等. 陕西省关中地区饲草型小麦种质资源筛选与评价. 草地学报, 2018, 26(6): 1435-1443. |
[1] | Xue-ling YE, Zhen GAN, Yan WAN, Da-bing XIANG, Xiao-yong WU, Qi WU, Chang-ying LIU, Yu FAN, Liang ZOU. Advances and perspectives in forage oat breeding [J]. Acta Prataculturae Sinica, 2023, 32(2): 160-177. |
[2] | Shan-shan WANG, Hai-tao GU, Hui-fang XIE, Shao-dong HE, Chang-bo GAN, Xiao-yong WEI, Guang-chao KONG. Evaluation of forage yield and quality traits of 113 forage hexaploid triticale germplasm lines [J]. Acta Prataculturae Sinica, 2023, 32(1): 192-202. |
[3] | Ce YANG, Yu-xue ZHANG, He ZHANG, Chun-yan ZHENG, Feng ZHU. Recent advances in understanding the ecosystem functioning of diverse forage mixtures [J]. Acta Prataculturae Sinica, 2022, 31(9): 206-219. |
[4] | Wei GAO, Na SHOU, Cong-ze JIANG, Ren-shi MA, Yu-ying SHEN, Xian-long YANG. Effect of nitrogen application rate on dry matter accumulation, allocation and water use efficiency of forage sorghum [J]. Acta Prataculturae Sinica, 2022, 31(9): 26-35. |
[5] | Min-hua YIN, Yan-lin MA, Yan-xia KANG, Qiong JIA, Guang-ping QI, Jing-hai WANG. Effects of nitrogen application on alfalfa yield and quality in China-A Meta-analysis [J]. Acta Prataculturae Sinica, 2022, 31(9): 36-49. |
[6] | Yan-liang SUN, Jun-wei ZHAO, Xuan-shuai LIU, Sheng-yi LI, Chun-hui MA, Xu-zhe WANG, Qian-bing ZHANG. Effect of nitrogen application on photosynthetic daily variation, leaf morphology and dry matter yield of alfalfa at the early flowering growth stage [J]. Acta Prataculturae Sinica, 2022, 31(9): 63-75. |
[7] | Xing WANG, Wei HUANG, Shu-yan YU, Xiao-yun LI, Xue-qin GAO, Bing-zhe FU. Effect of water and fertilizer coupling on seed yield and composition of alfalfa grown with underground drip irrigation in Ningxia [J]. Acta Prataculturae Sinica, 2022, 31(9): 76-85. |
[8] | Zi-wei JIANG, Gui-yu LIU, Hao-yun AN, Wei SHI, Sheng-hua CHANG, Cheng ZHANG, Qian-min JIA, Fu-jiang HOU. Effects of planting density and nitrogen application on forage yield, quality and nitrogen use efficiency in a maize/forage soybean intercropping system [J]. Acta Prataculturae Sinica, 2022, 31(7): 157-171. |
[9] | Duo ZHANG, Lan-tao LI, Di LIN, Long-hui ZHENG, Sai-nan GENG, Wen-xuan SHI, Kai SHENG, Yu-hong MIAO, Yi-lun WANG. Effects of P fertilization rate on tuber yield, quality, plant physiological attributes and P use efficiency of Helianthus tuberosus [J]. Acta Prataculturae Sinica, 2022, 31(6): 139-149. |
[10] | Yong-liang YOU, Hai-ming ZHAO, Yuan LI, Rui-xin WU, Gui-bo LIU, Jian-dong ZHOU, Jun-feng CHEN. Dynamic changes in biomass accumulation and nutritional quality of triticeae forages [J]. Acta Prataculturae Sinica, 2022, 31(6): 189-201. |
[11] | You-shun JIN, Fu-jiang HOU. Determination of the nutrient digestibility of herbage consumed by grazing animals [J]. Acta Prataculturae Sinica, 2022, 31(5): 200-212. |
[12] | Man-you LI, Dong-ning LI, Bin WANG, Xiao-yun LI, Xiao-tian SHEN, Li-juan CAO, Wang NI, Teng-fei WANG, Jian LAN. The effect of mixed sowing and sowing rate of different alfalfa varieties on the yield and quality of forage [J]. Acta Prataculturae Sinica, 2022, 31(5): 61-75. |
[13] | Chun-zeng LIU, Chun-feng ZHENG, Liang-peng NIE, Lin ZHANG, Ji-shi ZHANG, Yu-hu LV, Ben-yin LI, Wei-dong CAO. Effects of foliar spray with various bioactive compounds on seed number and seed weight of Chinese milk vetch (Astragalus sinicus) [J]. Acta Prataculturae Sinica, 2022, 31(5): 76-83. |
[14] | Li-min GAO, Chun CHEN, Yi-xin SHEN. Effects of nitrogen and phosphorus fertilizer rates on forage dry matter yield and regrowth of alfalfa in seasonal cultivation systems [J]. Acta Prataculturae Sinica, 2022, 31(4): 43-52. |
[15] | Man-you LI, Yan-jun YANG, Bin WANG, Xiao-tian SHEN, Li-juan CAO, Xiao-yun LI, Wang NI, Jian LAN. Yield, forage quality and a multivariate evaluation of Avena sativa and Vicia villosa in different mixed planting patterns under drip irrigation in an arid area of Ningxia [J]. Acta Prataculturae Sinica, 2022, 31(4): 62-71. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||