Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (8): 145-158.DOI: 10.11686/cyxb2023346
Yuan MA1(), Huan LIU1(), Gui-qin ZHAO1, Jing-long WANG2, Ran ZHANG3, Rui-rui YAO1
Received:
2023-09-19
Revised:
2023-11-01
Online:
2024-08-20
Published:
2024-05-13
Contact:
Huan LIU
Yuan MA, Huan LIU, Gui-qin ZHAO, Jing-long WANG, Ran ZHANG, Rui-rui YAO. Identification of the oat sHSP gene family and its transcript profiles in response to high temperature and aging[J]. Acta Prataculturae Sinica, 2024, 33(8): 145-158.
名称Name | 正向引物Forward primer (5′-3′) | 反向引物Reverse primer (5′-3′) |
---|---|---|
AsHSP20.1 | GCCGCTCAGTATTATGCAAG | CCGATCAAGGGGTTCAAGTA |
AsHSP20.2 | TCAGCTGGAACGAATAGTCC | AGTAACGATGGAGAAGCCAG |
AsHSP20.3 | TAGGGGACCAATCTCTGTGT | TTGGTGCATTTCAGAAGGGT |
AsHSP20.4 | GAGCTCTTCTTCGGGAGC | ACCTTGACGTCGTCCTTG |
AsHSP20.5 | ATCTTCCAGGGGTGAAGAAG | CCACTTGTCGTTCTTGTCCT |
AsHSP20.6 | CATCTACTCTGCCGACCTC | TTCCTGGCGAAACTGCTC |
AsHSP20.7 | ATCTCTACTCTGCCGACCTC | GATGACGAGGTATCTCCCG |
AsHSP20.8 | TTTGTTGATCAGCAGAGGGT | TATGTATGGCATCCGAGACG |
AsHSP20.9 | CTCCGATAAGCCAACGGATA | TTGCTACTCGTTGCAGTTTG |
AsHSP20.10 | GAAGTACCTGCGGATGGA | GCTTCTCAACCAACACGGT |
AsHSP20.11 | AAGGAGGACGCCAAGTACC | CTTCTCCATGTCGGCGTT |
AsHSP20.12 | AAGTTCGTTAGGCGTTTTCG | GCTTCTTGACCTCGGTTTTG |
AsHSP20.13 | ACAAGAACGAGAAATGGCAC | ATATCTCGATGGCCTTCACC |
AsHSP20.14 | GAGCATCGACATCCTGGAG | CACCTTCACCTCCTCCTTG |
AsHSP20.15 | TGTTCAACACCCAGGGTTC | CAGGTCCTGCGAGAAGAAG |
AsHSP20.16 | CGCGTACAAGATGGACAAGA | CTCCTCCTTCTTGAGCTTGG |
AsHSP20.17 | GTTCAAGTTGCCAGACAATG | ATCTGGATGGATTTCACCTCG |
AsHSP20.18 | GTGTTTGACCCCTTCTCTCT | ACCTTCACCTCCTCCTTCTT |
AsHSP20.19 | GACGTACCTCGACTTCATGC | TCAGGTGCTCCTTCTTGAAC |
AsHSP20.20 | CTCTCTCGATCTCTTGGACC | TTCACCTCCTCCTTCTTGAG |
AsHSP20.21 | AGGGATGCCAATTTCTCGAT | TTCTTGTGTGAGGTGCTCTT |
AsHSP20.22 | GTGCATGGTTCTTCTTCACC | GAAAGCATCCATTGTGGCAT |
AsHSP20.23 | GACATTGTGGAGGACGAGAA | CCACCATCACGTTCACCT |
AsHSP20.24 | GTTTTTCTCGCGATGACCG | CCACCGCCTGAGAAGAGAT |
AsActin(KP257585.1) | CATTGGTATGGAAGCTGCTG | CACTGAGCACAATGTTACCG |
Table 1 qRT-PCR primers of HSP20 genes
名称Name | 正向引物Forward primer (5′-3′) | 反向引物Reverse primer (5′-3′) |
---|---|---|
AsHSP20.1 | GCCGCTCAGTATTATGCAAG | CCGATCAAGGGGTTCAAGTA |
AsHSP20.2 | TCAGCTGGAACGAATAGTCC | AGTAACGATGGAGAAGCCAG |
AsHSP20.3 | TAGGGGACCAATCTCTGTGT | TTGGTGCATTTCAGAAGGGT |
AsHSP20.4 | GAGCTCTTCTTCGGGAGC | ACCTTGACGTCGTCCTTG |
AsHSP20.5 | ATCTTCCAGGGGTGAAGAAG | CCACTTGTCGTTCTTGTCCT |
AsHSP20.6 | CATCTACTCTGCCGACCTC | TTCCTGGCGAAACTGCTC |
AsHSP20.7 | ATCTCTACTCTGCCGACCTC | GATGACGAGGTATCTCCCG |
AsHSP20.8 | TTTGTTGATCAGCAGAGGGT | TATGTATGGCATCCGAGACG |
AsHSP20.9 | CTCCGATAAGCCAACGGATA | TTGCTACTCGTTGCAGTTTG |
AsHSP20.10 | GAAGTACCTGCGGATGGA | GCTTCTCAACCAACACGGT |
AsHSP20.11 | AAGGAGGACGCCAAGTACC | CTTCTCCATGTCGGCGTT |
AsHSP20.12 | AAGTTCGTTAGGCGTTTTCG | GCTTCTTGACCTCGGTTTTG |
AsHSP20.13 | ACAAGAACGAGAAATGGCAC | ATATCTCGATGGCCTTCACC |
AsHSP20.14 | GAGCATCGACATCCTGGAG | CACCTTCACCTCCTCCTTG |
AsHSP20.15 | TGTTCAACACCCAGGGTTC | CAGGTCCTGCGAGAAGAAG |
AsHSP20.16 | CGCGTACAAGATGGACAAGA | CTCCTCCTTCTTGAGCTTGG |
AsHSP20.17 | GTTCAAGTTGCCAGACAATG | ATCTGGATGGATTTCACCTCG |
AsHSP20.18 | GTGTTTGACCCCTTCTCTCT | ACCTTCACCTCCTCCTTCTT |
AsHSP20.19 | GACGTACCTCGACTTCATGC | TCAGGTGCTCCTTCTTGAAC |
AsHSP20.20 | CTCTCTCGATCTCTTGGACC | TTCACCTCCTCCTTCTTGAG |
AsHSP20.21 | AGGGATGCCAATTTCTCGAT | TTCTTGTGTGAGGTGCTCTT |
AsHSP20.22 | GTGCATGGTTCTTCTTCACC | GAAAGCATCCATTGTGGCAT |
AsHSP20.23 | GACATTGTGGAGGACGAGAA | CCACCATCACGTTCACCT |
AsHSP20.24 | GTTTTTCTCGCGATGACCG | CCACCGCCTGAGAAGAGAT |
AsActin(KP257585.1) | CATTGGTATGGAAGCTGCTG | CACTGAGCACAATGTTACCG |
基因名Gene name | 重命名Rename | ORF (bp) | aa | Mw (Da) | IP | II | PH | SLP |
---|---|---|---|---|---|---|---|---|
AVESA.00010b.r2.6AG1028780.1 | AsHSP20.1 | 1281 | 426 | 46386.23 | 8.51 | 46.41 | -0.123 | Chl |
AVESA.00010b.r2.6AG1028780.2 | AsHSP20.2 | 1035 | 344 | 37976.51 | 5.76 | 41.26 | -0.162 | Chl |
AVESA.00010b.r2.6DG1171000.1 | AsHSP20.3 | 573 | 190 | 21219.33 | 6.59 | 47.41 | -0.153 | Chl |
AVESA.00010b.r2.7AG1212080.1 | AsHSP20.4 | 411 | 136 | 14949.18 | 8.01 | 41.96 | -0.302 | Per |
AVESA.00010b.r2.3AG0406840.2 | AsHSP20.5 | 456 | 151 | 16900.14 | 6.20 | 44.96 | -0.597 | Cyt |
AVESA.00010b.r2.2DG0350420.1 | AsHSP20.6 | 468 | 155 | 17251.45 | 6.19 | 52.50 | -0.408 | Cyt |
AVESA.00010b.r2.2CG0275380.1 | AsHSP20.7 | 468 | 155 | 17304.55 | 6.51 | 49.79 | -0.434 | Cyt |
AVESA.00010b.r2.4AG0636730.1 | AsHSP20.8 | 1557 | 518 | 57622.58 | 6.63 | 50.48 | -0.459 | Pl |
AVESA.00010b.r2.3AG0433390.1 | AsHSP20.9 | 828 | 275 | 29972.66 | 8.79 | 42.43 | -0.759 | Ex |
AVESA.00010b.r2.7CG0689040.1 | AsHSP20.10 | 480 | 159 | 17528.28 | 5.37 | 36.19 | -0.382 | Cyt |
AVESA.00010b.r2.3DG0518610.1 | AsHSP20.11 | 480 | 159 | 17508.25 | 5.71 | 36.38 | -0.458 | Cyt |
AVESA.00010b.r2.3AG0406840.1 | AsHSP20.12 | 456 | 151 | 17034.29 | 5.83 | 45.89 | -0.647 | Cyt |
AVESA.00010b.r2.3CG0454310.1 | AsHSP20.13 | 456 | 151 | 16926.12 | 6.00 | 56.17 | -0.570 | Cyt |
AVESA.00010b.r2.6CG1118770.1 | AsHSP20.14 | 534 | 177 | 19298.95 | 6.76 | 48.07 | -0.473 | Nuc |
AVESA.00010b.r2.7DG1398280.1 | AsHSP20.15 | 687 | 228 | 24631.75 | 5.30 | 41.45 | -0.420 | Mit |
AVESA.00010b.r2.1CG0084310.1 | AsHSP20.16 | 678 | 225 | 24304.46 | 5.61 | 45.15 | -0.498 | Mit |
AVESA.00010b.r2.4CG1325780.1 | AsHSP20.17 | 474 | 157 | 17411.57 | 5.80 | 54.23 | -0.628 | Nuc |
AVESA.00010b.r2.1DG0138620.1 | AsHSP20.18 | 450 | 149 | 16732.84 | 5.36 | 48.94 | -0.714 | Nuc |
AVESA.00010b.r2.4AG0623840.1 | AsHSP20.19 | 663 | 220 | 23889.56 | 5.41 | 47.70 | -0.556 | Ex |
AVESA.00010b.r2.4CG1325690.1 | AsHSP20.20 | 465 | 154 | 17198.33 | 5.68 | 44.63 | -0.633 | Nuc |
AVESA.00010b.r2.5DG1005630.2 | AsHSP20.21 | 1590 | 529 | 58060.51 | 6.29 | 48.53 | -0.474 | Pl |
AVESA.00010b.r2.4CG1324540.2 | AsHSP20.22 | 1590 | 529 | 58067.52 | 6.21 | 50.25 | -0.465 | Pl |
AVESA.00010b.r2.5AG0799690.1 | AsHSP20.23 | 738 | 245 | 26922.35 | 6.77 | 53.50 | -0.642 | Chl |
AVESA.00010b.r2.7CG0688840.1 | AsHSP20.24 | 618 | 205 | 22139.24 | 7.91 | 39.45 | -0.279 | Nuc |
Table 2 Physicochemical properties of the HSP20 gene family of oats
基因名Gene name | 重命名Rename | ORF (bp) | aa | Mw (Da) | IP | II | PH | SLP |
---|---|---|---|---|---|---|---|---|
AVESA.00010b.r2.6AG1028780.1 | AsHSP20.1 | 1281 | 426 | 46386.23 | 8.51 | 46.41 | -0.123 | Chl |
AVESA.00010b.r2.6AG1028780.2 | AsHSP20.2 | 1035 | 344 | 37976.51 | 5.76 | 41.26 | -0.162 | Chl |
AVESA.00010b.r2.6DG1171000.1 | AsHSP20.3 | 573 | 190 | 21219.33 | 6.59 | 47.41 | -0.153 | Chl |
AVESA.00010b.r2.7AG1212080.1 | AsHSP20.4 | 411 | 136 | 14949.18 | 8.01 | 41.96 | -0.302 | Per |
AVESA.00010b.r2.3AG0406840.2 | AsHSP20.5 | 456 | 151 | 16900.14 | 6.20 | 44.96 | -0.597 | Cyt |
AVESA.00010b.r2.2DG0350420.1 | AsHSP20.6 | 468 | 155 | 17251.45 | 6.19 | 52.50 | -0.408 | Cyt |
AVESA.00010b.r2.2CG0275380.1 | AsHSP20.7 | 468 | 155 | 17304.55 | 6.51 | 49.79 | -0.434 | Cyt |
AVESA.00010b.r2.4AG0636730.1 | AsHSP20.8 | 1557 | 518 | 57622.58 | 6.63 | 50.48 | -0.459 | Pl |
AVESA.00010b.r2.3AG0433390.1 | AsHSP20.9 | 828 | 275 | 29972.66 | 8.79 | 42.43 | -0.759 | Ex |
AVESA.00010b.r2.7CG0689040.1 | AsHSP20.10 | 480 | 159 | 17528.28 | 5.37 | 36.19 | -0.382 | Cyt |
AVESA.00010b.r2.3DG0518610.1 | AsHSP20.11 | 480 | 159 | 17508.25 | 5.71 | 36.38 | -0.458 | Cyt |
AVESA.00010b.r2.3AG0406840.1 | AsHSP20.12 | 456 | 151 | 17034.29 | 5.83 | 45.89 | -0.647 | Cyt |
AVESA.00010b.r2.3CG0454310.1 | AsHSP20.13 | 456 | 151 | 16926.12 | 6.00 | 56.17 | -0.570 | Cyt |
AVESA.00010b.r2.6CG1118770.1 | AsHSP20.14 | 534 | 177 | 19298.95 | 6.76 | 48.07 | -0.473 | Nuc |
AVESA.00010b.r2.7DG1398280.1 | AsHSP20.15 | 687 | 228 | 24631.75 | 5.30 | 41.45 | -0.420 | Mit |
AVESA.00010b.r2.1CG0084310.1 | AsHSP20.16 | 678 | 225 | 24304.46 | 5.61 | 45.15 | -0.498 | Mit |
AVESA.00010b.r2.4CG1325780.1 | AsHSP20.17 | 474 | 157 | 17411.57 | 5.80 | 54.23 | -0.628 | Nuc |
AVESA.00010b.r2.1DG0138620.1 | AsHSP20.18 | 450 | 149 | 16732.84 | 5.36 | 48.94 | -0.714 | Nuc |
AVESA.00010b.r2.4AG0623840.1 | AsHSP20.19 | 663 | 220 | 23889.56 | 5.41 | 47.70 | -0.556 | Ex |
AVESA.00010b.r2.4CG1325690.1 | AsHSP20.20 | 465 | 154 | 17198.33 | 5.68 | 44.63 | -0.633 | Nuc |
AVESA.00010b.r2.5DG1005630.2 | AsHSP20.21 | 1590 | 529 | 58060.51 | 6.29 | 48.53 | -0.474 | Pl |
AVESA.00010b.r2.4CG1324540.2 | AsHSP20.22 | 1590 | 529 | 58067.52 | 6.21 | 50.25 | -0.465 | Pl |
AVESA.00010b.r2.5AG0799690.1 | AsHSP20.23 | 738 | 245 | 26922.35 | 6.77 | 53.50 | -0.642 | Chl |
AVESA.00010b.r2.7CG0688840.1 | AsHSP20.24 | 618 | 205 | 22139.24 | 7.91 | 39.45 | -0.279 | Nuc |
名称 Name | α-螺旋 Alpha-helix | 延伸链 Extended strand | 无规则卷曲 Random coil | β-转角 Beta turn | β-折叠 Beta sheet | 名称 Name | α-螺旋 Alpha-helix | 延伸链 Extended strand | 无规则卷曲 Random coil | β-转角 Beta turn | β-折叠 Beta sheet |
---|---|---|---|---|---|---|---|---|---|---|---|
AsHSP20.1 | 40.38 | 17.84 | 37.09 | 4.69 | 17 | AsHSP20.13 | 17.22 | 19.21 | 58.28 | 5.30 | 40 |
AsHSP20.2 | 43.90 | 15.12 | 35.76 | 5.23 | 20 | AsHSP20.14 | 23.16 | 20.90 | 48.59 | 7.34 | 36 |
AsHSP20.3 | 30.00 | 23.68 | 39.47 | 6.84 | 32 | AsHSP20.15 | 28.95 | 21.93 | 43.42 | 5.70 | 22 |
AsHSP20.4 | 23.53 | 22.79 | 47.06 | 6.62 | 48 | AsHSP20.16 | 21.33 | 16.89 | 57.78 | 4.00 | 24 |
AsHSP20.5 | 23.18 | 20.53 | 50.33 | 5.96 | 38 | AsHSP20.17 | 15.29 | 19.75 | 57.32 | 7.64 | 38 |
AsHSP20.6 | 17.42 | 24.52 | 49.68 | 8.39 | 30 | AsHSP20.18 | 30.20 | 18.79 | 44.30 | 6.71 | 39 |
AsHSP20.7 | 18.06 | 25.16 | 48.39 | 8.39 | 32 | AsHSP20.19 | 43.18 | 16.82 | 29.55 | 10.45 | 30 |
AsHSP20.8 | 19.88 | 18.53 | 54.63 | 6.95 | 27 | AsHSP20.20 | 17.53 | 22.08 | 55.19 | 5.19 | 38 |
AsHSP20.9 | 42.55 | 12.00 | 40.00 | 5.45 | 16 | AsHSP20.21 | 18.15 | 20.23 | 56.14 | 5.48 | 23 |
AsHSP20.10 | 37.74 | 20.75 | 37.11 | 4.40 | 36 | AsHSP20.22 | 16.45 | 18.34 | 59.55 | 5.67 | 24 |
AsHSP20.11 | 33.96 | 20.13 | 40.88 | 5.03 | 36 | AsHSP20.23 | 20.82 | 15.10 | 61.22 | 2.86 | 24 |
AsHSP20.12 | 25.17 | 19.21 | 48.34 | 7.28 | 38 | AsHSP20.24 | 42.93 | 16.59 | 34.63 | 5.85 | 30 |
Table 3 Prediction of secondary structure of HSP20 gene family protein in oats (%)
名称 Name | α-螺旋 Alpha-helix | 延伸链 Extended strand | 无规则卷曲 Random coil | β-转角 Beta turn | β-折叠 Beta sheet | 名称 Name | α-螺旋 Alpha-helix | 延伸链 Extended strand | 无规则卷曲 Random coil | β-转角 Beta turn | β-折叠 Beta sheet |
---|---|---|---|---|---|---|---|---|---|---|---|
AsHSP20.1 | 40.38 | 17.84 | 37.09 | 4.69 | 17 | AsHSP20.13 | 17.22 | 19.21 | 58.28 | 5.30 | 40 |
AsHSP20.2 | 43.90 | 15.12 | 35.76 | 5.23 | 20 | AsHSP20.14 | 23.16 | 20.90 | 48.59 | 7.34 | 36 |
AsHSP20.3 | 30.00 | 23.68 | 39.47 | 6.84 | 32 | AsHSP20.15 | 28.95 | 21.93 | 43.42 | 5.70 | 22 |
AsHSP20.4 | 23.53 | 22.79 | 47.06 | 6.62 | 48 | AsHSP20.16 | 21.33 | 16.89 | 57.78 | 4.00 | 24 |
AsHSP20.5 | 23.18 | 20.53 | 50.33 | 5.96 | 38 | AsHSP20.17 | 15.29 | 19.75 | 57.32 | 7.64 | 38 |
AsHSP20.6 | 17.42 | 24.52 | 49.68 | 8.39 | 30 | AsHSP20.18 | 30.20 | 18.79 | 44.30 | 6.71 | 39 |
AsHSP20.7 | 18.06 | 25.16 | 48.39 | 8.39 | 32 | AsHSP20.19 | 43.18 | 16.82 | 29.55 | 10.45 | 30 |
AsHSP20.8 | 19.88 | 18.53 | 54.63 | 6.95 | 27 | AsHSP20.20 | 17.53 | 22.08 | 55.19 | 5.19 | 38 |
AsHSP20.9 | 42.55 | 12.00 | 40.00 | 5.45 | 16 | AsHSP20.21 | 18.15 | 20.23 | 56.14 | 5.48 | 23 |
AsHSP20.10 | 37.74 | 20.75 | 37.11 | 4.40 | 36 | AsHSP20.22 | 16.45 | 18.34 | 59.55 | 5.67 | 24 |
AsHSP20.11 | 33.96 | 20.13 | 40.88 | 5.03 | 36 | AsHSP20.23 | 20.82 | 15.10 | 61.22 | 2.86 | 24 |
AsHSP20.12 | 25.17 | 19.21 | 48.34 | 7.28 | 38 | AsHSP20.24 | 42.93 | 16.59 | 34.63 | 5.85 | 30 |
1 | Guo H X, Wang C Y, Zhao L, et al. Research progress of small heat shock protein. Journal of Shanxi Agricultural Sciences, 2013, 41(12): 1421-1423. |
郭虹霞, 王创云, 赵丽, 等. 小分子热激蛋白的研究进展. 山西农业科学, 2013, 41(12): 1421-1423. | |
2 | Zhang N, Jiang J. Research advances of small heat shock protein gene family (sHSPs) in plants. Plant Physiology Journal, 2017, 53(6): 943-948. |
张宁, 姜晶. 植物中小分子热激蛋白基因家族(sHSPs)研究进展. 植物生理学报, 2017, 53(6): 943-948. | |
3 | Zhao P, Wang D D, Wang R Q, et al. Genome-wide analysis of the potato Hsp20 gene family: identification, genomic organization and expression profiles in response to heat stress. BMC Genomics, 2018, 19(1): 1-13. |
4 | Wang M, Jiang B, Lin Y E, et al. Advances of small heat shock proteins participating in plant resistance. Journal of Anhui Agricultural Sciences, 2018, 46(18): 29-32, 35. |
王敏, 江彪, 林毓娥, 等. 小分子热激蛋白参与植物抗逆性方面的研究进展. 安徽农业科学, 2018, 46(18): 29-32, 35. | |
5 | Wang T, Tang S H, He M, et al. Advances in relationship between heat shock proteins and thermo-tolerance of plants. Journal of Northwest Forestry University, 2014, 29(6): 72-79. |
王涛, 唐颂豪, 何梅, 等. 热激蛋白与植物耐热性关系的研究进展. 西北林学院学报, 2014, 29(6): 72-79. | |
6 | Zhou L, He F, Pan Q H, et al. Role of heat shock proteins in plant response to environmental stresses. Journal of Tropical Biology, 2011, 2(4): 297-301. |
周丽, 何非, 潘秋红, 等. 热休克蛋白在植物抗逆反应中的作用. 热带生物学报, 2011, 2(4): 297-301. | |
7 | Yu J H, Feng K, Cheng Y, et al. Research progress on small heat shock proteins in plants. Molecular Plant Breeding, 2017, 15(8): 3016-3023. |
俞佳虹, 冯坤, 程远, 等. 植物小热激蛋白的研究进展. 分子植物育种, 2017, 15(8): 3016-3023. | |
8 | Lubaretz O, Zur Nieden U. Accumulation of plant small heat-stress proteins in storage organs. Planta, 2002, 215(2): 220-228. |
9 | Al-Whaibi M H. Plant heat-shock proteins: A mini review. Journal of King Saud University-Science, 2011, 23(2): 139-150. |
10 | Scharf K D, Siddique M, Vierling E. The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress & Chaperones, 2001, 6(3): 225-237. |
11 | Zhang W C, Zhu J, Yi L F. Genome-wide identification and bioinformatics analysis of HSP20 gene family in Pyropia haitanensis. Journal of Southern Agriculture, 2021, 52(6): 1527-1535. |
张宛晨, 朱静, 易乐飞. 坛紫菜HSP20基因家族成员的全基因组鉴定及生物信息学分析. 南方农业学报, 2021, 52(6): 1527-1535. | |
12 | Sun A Q, Ge S J, Dong W, et al. Cloning and function analysis of small heat shock protein gene ZmHSP17.7 from maize. Acta Agronomica Sinica, 2015, 41(3): 414-421. |
孙爱清, 葛淑娟, 董伟, 等. 玉米小分子热激蛋白ZmHSP17.7基因的克隆与功能分析. 作物学报, 2015, 41(3): 414-421. | |
13 | Chauhan H, Khurana N, Nijhavan A, et al. The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant Cell & Environment, 2012, 35(11): 1912-1931. |
14 | Jeevan K S P, Rajendra P S, Banerjee R, et al. Seed birth to death: dual functions of reactive oxygen species in seed physiology. Annals of Botany, 2015, 116(4): 663-668. |
15 | Reiter R J, Tan D X, Rosales-Corral S, et al. Mitochondria: central organelles for melatonin’s antioxidant and anti-aging actions. Molecules, 2018, 23(2): 509. |
16 | Tian Q, Xin X, Lu X X, et al. Research progress on plant seed aging and mitochondria. Journal of Plant Genetic Resources, 2012, 13(2): 283-287. |
田茜, 辛霞, 卢新雄, 等. 植物种子衰老与线粒体关系的研究进展. 植物遗传资源学报, 2012, 13(2): 283-287. | |
17 | Kong L Q. Physiological changes, protein and related antioxidant gene expression responses of Avena sativa L. seed under different aging treatment. Beijing: China Agricultural University, 2015. |
孔令琪. 不同老化处理对燕麦种子生理、蛋白质及抗氧化基因的影响. 北京: 中国农业大学, 2015. | |
18 | Huang Y, Liu H, Zhao G Q, et al. Effects of natural aging and artificial aging on germination characteristics and genetic integrity of oat seeds. Acta Agrestia Sinica, 2022, 30(8): 2066-2074. |
黄颖, 刘欢, 赵桂琴, 等. 自然老化和人工老化对燕麦种子萌发特性及遗传完整性的影响. 草地学报, 2022, 30(8): 2066-2074. | |
19 | Huang S Z. Heat shock protein synthesis in aged cabbage seeds. Plant Physiology Journal, 2000(1): 8-11. |
黄上志. 人工老化处理的卷心菜种子的热激蛋白合成. 植物生理学报, 2000(1): 8-11. | |
20 | Lin X D, Fu J R, Huang S Z. Synthesis of heat shock proteins in developing maize embryo. Journal of Plant Physiology and Molecular Biology, 2004, 30(2): 161-166. |
林晓东, 傅家瑞, 黄上志. 玉米胚发育过程中热激蛋白的合成. 植物生理与分子生物学学报, 2004, 30(2): 161-166. | |
21 | Gao J D. Study on the physiological characteristics and proteomics of seed storability of hybrid rice. Changsha: Hunan Agricultural University, 2012. |
高家东. 杂交水稻种子耐贮藏生理基础和蛋白质组学研究. 长沙: 湖南农业大学, 2012. | |
22 | Du Z. Overview of current status of oat utilization in China. Anhui Agricultural Science Bulletin, 2018, 24(20): 54-57. |
杜忠. 燕麦在中国的利用现状综述. 安徽农学通报, 2018, 24(20): 54-57. | |
23 | Siddique M, Gernhard S, von Koskull-Döring P, et al. The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress and Chaperones, 2008, 13(2): 183-197. |
24 | Yu J H. Genome-wide identification and expression profiling of the SlHsp20 gene family in tomato. Jinhua: Zhejiang Normal University, 2017. |
俞佳虹. 番茄小热激蛋白SlHsp20基因家族的全基因组鉴定及表达分析. 金华: 浙江师范大学, 2017. | |
25 | Wang J, Gao X, Dong J, et al. Over-expression of the heat-responsive wheat gene TaHSP23.9 in transgenic Arabidopsis conferred tolerance to heat and salt stress. Frontiers in Plant Science, 2020, DOI: 10.3389/fpls.2020.00243. |
26 | Sarkar N K, Kim Y K, Grover A. Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics, 2009, DOI: 10.1186/1471-2164-10-393. |
27 | Johnson M, Zaretskaya I, Raytselis Y, et al. NCBI BLAST: a better web interface. Nucleic Acids Research, 2008, DOI: 10.1093/nar/gkn201. |
28 | Marchler-Bauer A, Derbyshire M K, Gonzales N R, et al. CDD: NCBI’s conserved domain database. Nucleic Acids Research, 2015, 43(D1): D222-D226. |
29 | Wilkins M R, Gasteiger E, Bairoch A, et al. Protein identification and analysis tools in the ExPASy server. Methods in Molecular Biology, 1999, DOI: 10.1385/1-59259-584-7: 531. |
30 | He X J, Zhang L, Cheng Y D, et al. Cloning and expression analysis of tobacco NtPP2C37-like gene. Molecular Plant Breeding, 2019, 17(15): 4973-4977. |
何晓健, 张柳, 程亚东, 等. 烟草NtPP2C37-like基因的克隆及表达分析. 分子植物育种, 2019, 17(15): 4973-4977. | |
31 | Duan W K, Niu J B, Sun X C, et al. The MDAR gene family in pepper: identification, phylogeny and expression analyses against abiotic stress. Molecular Plant Breeding,[2023-10-25]. http://kns.cnki.net/kcms/detail/46.1068.S.20221215.1741.018.html. |
段伟科, 牛佳斌, 孙小川, 等. 辣椒MDAR基因鉴定、系统进化及非生物胁迫响应. 分子植物育种, [2023-10-25]. http://kns.cnki.net/kcms/detail/46.1068.S.20221215.1741.018.html. | |
32 | Montgomerie S, Cruz J A, Shrivastava S, et al. PROTEUS2: a web server for comprehensive protein structure prediction and structure-based annotation. Nucleic Acids Research, 2008, DOI: 10.1093/nar/gkn255. |
33 | Tamura K, Stecher G, Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 2021, 38(7): 3022-3027. |
34 | Zhao Z Y, Wang J, Liu L P, et al. Identification and expression analysis of UBP gene family in common tobacco. Molecular Plant Breeding, [2023-10-25]. http://kns.cnki.net/kcms/detail/46.1068.s.20221130.1646.014.html. |
赵泽玉, 王剑, 刘利平, 等. 普通烟草UBP基因家族成员鉴定与表达分析. 分子植物育种, [2023-10-25]. http://kns.cnki.net/kcms/detail/46.1068.s.20221130.1646.014.html. | |
35 | Bailey T L, Boden M, Buske F A, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research, 2009, DOI: 10.1093/nar/gkp335. |
36 | Yang M Z, Derbyshire M K, Yamashita R A, et al. NCBI’s conserved domain database and tools for protein domain analysis. Current Protocols in Bioinformatics, 2020, 69(1): e90. |
37 | Chen C J, Chen H, Zhang Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202. |
38 | Zheng X Y, Ren Z S, Zheng G H. Discussion on methods for determining seed viability——Ⅲ. Artificial accelerated aging method. Seed, 1982(4): 31-34. |
郑晓鹰, 任祝三, 郑光华. 测定种子活力方法之探讨——Ⅲ.人工加速老化法. 种子, 1982(4): 31-34. | |
39 | Zhu R T, Niu K J, Zhang R, et al. Identification of NAC gene family and analysis of its expression pattern under abiotic stress in Poa pratensis. Grassland and Turf, 2021, 41(4): 26-35. |
朱瑞婷, 牛奎举, 张然, 等. 草地早熟禾NAC基因鉴定及非生物胁迫下表达模式分析. 草原与草坪, 2021, 41(4): 26-35. | |
40 | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408. |
41 | Kamal N, Tsardakas R N, Bentzer J, et al. The mosaic oat genome gives insights into a uniquely healthy cereal crop. Nature, 2022, 606(7912): 113-119. |
42 | Prieto-Dapena P, Castaño R, Almoguera C, et al. Improved resistance to controlled deterioration in transgenic seeds. Plant Physiology, 2006, 142(3): 1102-1112. |
43 | Wehmeyer N, Vierling E. The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiology, 2000, 122(4): 1099-1108. |
44 | Tejedor-Cano J, Prieto-Dapena P, Almoguera C, et al. Loss of function of the HSFA9 seed longevity program. Plant Cell Environment, 2010, 33(8): 1408-1417. |
45 | Zhou W G, Meng Y J, Chen F, et al. Advances in studies of physiological and molecular mechanisms of plant seed longevity. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(2): 408-418. |
周文冠, 孟永杰, 陈锋, 等. 植物种子寿命的生理及分子机制研究进展. 西北植物学报, 2017, 37(2): 408-418. | |
46 | Zhou Y L. Function analysis of Nelumbo nucifera metallothionein and heat shock protein genes in seed vigor. Guangzhou: Sun Yat-sen University, 2011. |
周玉亮. 莲金属硫蛋白和热激蛋白基因在种子活力中的功能分析. 广州: 中山大学, 2011. | |
47 | Huang S P, Huang D Y, Fu L G, et al. Characterization of Arabidopsis thaliana Hsp20 gene family and its expression analysis under drought and salt stress. Life Science Research, 2023, 27(2): 162-169. |
黄思沛, 黄德娅, 付连郭, 等. 拟南芥Hsp20基因家族的特征及其在干旱和盐胁迫下的表达分析. 生命科学研究, 2023, 27(2): 162-169. | |
48 | Ouyang Y D, Chen J J, Xie W B, et al. Comprehensive sequence and expression profile analysis of Hsp20 gene family in rice. Plant Molecular Biology, 2009, 70(3): 341-357. |
49 | Pandey B, Kaur A, Gupta O P, et al. Identification of HSP20 gene family in wheat and barley and their differential expression profiling under heat stress. Applied Biochemistry and Biotechnology, 2015, 175(5): 2427-2446. |
50 | Li J, Liu X H. Genome-wide identification and expression profile analysis of the Hsp20 gene family in barley (Hordeum vulgare L.). PeerJ, 2019, DOI: 10.7717/peerj.6832. |
51 | Zhang N, Jiang J, Shi J W. Genome-wide identification, phyletic evolution and expression analysis of the HSP20 gene family in tomato. Journal of Shenyang Agricultural University, 2017, 48(2): 137-144. |
张宁, 姜晶, 史洁玮. 番茄HSP20基因家族的全基因组鉴定、系统进化及表达分析. 沈阳农业大学学报, 2017, 48(2): 137-144. | |
52 | Lopes-Caitar V S, de Carvalho M C C G, Darben L M, et al. Genome-wide analysis of the Hsp20 gene family in soybean: comprehensive sequence, genomic organization and expression profile analysis under abiotic and biotic stresses. BMC Genomics, 2013, 14(1): 1-17. |
53 | Peng Y Y, Yan H H, Guo L C, et al. Reference genome assemblies reveal the origin and evolution of allohexaploid oat. Nature Genetics, 2022, 54(8): 1248-1258. |
54 | Yu J H, Cheng Y, Feng K, et al. Genome-wide identification and expression profiling of tomato Hsp20 gene family in response to biotic and abiotic stresses. Frontiers in Plant Science, 2016, DOI: 10.3389/fpls.2016.01215. |
55 | Zeng C T, Qiu X W, Li D, et al. Bioinformatics analysis of the OSCA gene family in Vigna unguiculata (L.) Walp. [2023-08-28]. http://kns.cnki.net/kcms/detail/46.1068.S.20230216.0841.002.html. |
曾春涛, 仇学文, 李丹, 等. 豇豆OSCA基因家族生物信息学分析. [2023-08-28]. http://kns.cnki.net/kcms/detail/46.1068.S.20230216.0841.002.html. | |
56 | Cannon S B, Mitra A, Baumgarten A, et al. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biology, 2004, 4(1): 1-21. |
57 | Kim K H, Alam I, Kim Y G, et al. Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue. Biotechnology Letters, 2012, 34(2): 371-377. |
58 | Kaur H, Petla B P, Kamble N U, et al. Differentially expressed seed aging responsive heat shock protein OsHSP18.2 implicates in seed vigor, longevity and improves germination and seedling establishment under abiotic stress. Frontiers in Plant Science, 2015, DOI: 10.3389/fpls.2015.00713. |
59 | Xing L M, Lv W Z, Lei W, et al. Response of HSP20 genes to artificial aging treatment in maize embryo. Acta Agronomica Sinica, 2018, 44(11): 1733-1742. |
邢芦蔓, 吕伟增, 雷薇, 等. 玉米种胚HSP20基因对人工老化处理的响应. 作物学报, 2018, 44(11): 1733-1742. | |
60 | Nagaraju M, Reddy P S, Kumar S A, et al. Genome-wide identification and transcriptional profiling of small heat shock protein gene family under diverse abiotic stress conditions in Sorghum bicolor (L.). International Journal of Biological Macromolecules, 2020, DOI: 10.1016/j.ijbiomac.2019.10.023. |
61 | Avelange-Macherel M H, Rolland A, Hinault M P, et al. The mitochondrial small heat shock protein HSP22 from pea is a thermosoluble chaperone prone to co-precipitate with unfolding client proteins. International Journal of Molecular Sciences, 2019, DOI: 10.3390/ijms21010097. |
62 | Jin X W. Effects of storage years on seed physiological and biochemical characteristics of oat. Lanzhou: Gansu Agricultural University, 2019. |
金小雯. 贮藏年限对燕麦种子生理生化特性的影响. 兰州: 甘肃农业大学, 2019. | |
63 | Liu B, Song Y M, Sun M, et al. Physiological responses of mitochondrial AsA-GSH cycle to imbibition of deteriated oat seeds. Acta Agrestia Sinica, 2021, 29(2): 211-219. |
刘备, 宋玉梅, 孙铭, 等. 燕麦劣变种子吸胀过程中线粒体AsA-GSH循环的生理响应. 草地学报, 2021, 29(2): 211-219. | |
64 | Rong J, Wang P W, Wu N, et al. Identification of heat tolerance of small heat shock protein gene HSP17.4 from soybean. Journal of Jilin Agricultural University, 2018, 40(5): 568-576. |
戎洁, 王丕武, 吴楠, 等. 大豆热激蛋白基因HSP17.4的耐热功能鉴定. 吉林农业大学学报, 2018, 40(5): 568-576. | |
65 | Rajjou L, Lovigny Y, Groot S P C, et al. Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiology, 2008, 148(1): 620-641. |
66 | Huang J J, Hai Z X, Wang R Y, et al. Genome-wide analysis of HSP20 gene family and expression patterns under heat stress in cucumber (Cucumis sativus L.). Frontiers in Plant Science, 2022, 13: 968418. |
67 | Li Y L, Li Y Q, Liu Y C, et al. The sHSP22 heat shock protein requires the ABI1 protein phosphatase to modulate polar auxin transport and downstream responses. Plant Physiology, 2018, 176(3): 2406-2425. |
[1] | Shang-lin YANG, Xuan WU, Qiao-hui LUO, Tai-hua HUANG, Zheng-fan ZHANG, Hai-tao SHI, Chun-hua GUO. A study of the protein requirements of 20-35 kg Chuanzhong black goats [J]. Acta Prataculturae Sinica, 2024, 33(7): 119-129. |
[2] | Zhao ZHANG, Ying-ying FU, Hao-wen SUN, Feng-xue SUN, Hui-fang YAN. Identification of seed vigor and evaluation of seed storability in different varieties of oat [J]. Acta Prataculturae Sinica, 2024, 33(6): 165-174. |
[3] | Jie ZHAO, Heng-guang CHEN, Xiao-meng PEI, Hao YU, Yin-ying XU, Da-gan MAO. Effects of resveratrol supplementation in the perinatal diet on production performance, blood indexes, and transcript abundance of genes encoding inflammatory factors in goats [J]. Acta Prataculturae Sinica, 2024, 33(4): 210-220. |
[4] | Hong-fei LI, Bang-wei ZHOU, Miao ZHANG, Shu-nan SHI, Zhi-jian LI. Adaptability evaluation of different oat varieties introduced in the Hulunbuir region [J]. Acta Prataculturae Sinica, 2024, 33(4): 60-72. |
[5] | Ping MU, Ji-kuan CHAI, Wei-juan SU, Hai-long ZHANG, Gui-qin ZHAO. Phenotype and genetic variation analysis of forward and reverse hybrid progeny from different oat crosses [J]. Acta Prataculturae Sinica, 2024, 33(4): 73-86. |
[6] | Qin FENG, Xiao-li HE, Bin WANG, Teng-fei WANG, Wang NI, Xia MA, Xue-hua MING, Jian-qiang DENG, Jian LAN. A study of mixed sowing effects for oat and common vetch in the Ningxia Yellow River Irrigation Area [J]. Acta Prataculturae Sinica, 2024, 33(3): 107-119. |
[7] | Gen-sheng BAO, Yuan LI, Xiao-yun FENG, Peng ZHANG, Si-yu MENG. Interactive effects of intercropping patterns and nitrogen addition on root architectural characteristics of oat and pea in an alpine region [J]. Acta Prataculturae Sinica, 2024, 33(3): 73-84. |
[8] | Xue WANG, Xiao-jing LIU, Jing WANG, Yong WU, Chang-chun TONG. Root and carbon-nitrogen metabolism characteristics of alfalfa-oat mixed stands under continuous intercropping [J]. Acta Prataculturae Sinica, 2024, 33(3): 85-96. |
[9] | Wen-long LI, Feng LI, Zhong-juan ZHANG, Dian-qing WANG, Huan WANG, Hui-qing JIN, Mu-re TE, Zhi-ling HU, Ya TAO. A performance evaluation of two crops of forage oats per year in the northern Ordos Plateau [J]. Acta Prataculturae Sinica, 2024, 33(1): 159-168. |
[10] | Jia-min ZHANG, Hao GUAN, Hai-ping LI, Zhi-feng JIA, Xiang MA, Wen-hui LIU, You-jun CHEN, Shi-yong CHEN, Yong-mei JIANG, Li GAN, Qing-ping ZHOU, Li-xue YANG. Effects of oat∶feed pea sowing ratio and lactic acid bacteria addition on crop silage fermentation and ruminal degradation characteristics of the resulting total mixed ration [J]. Acta Prataculturae Sinica, 2024, 33(1): 169-181. |
[11] | Chun-yan REN, Guo-ling LIANG, Wen-hui LIU, Kai-qiang LIU, Jia-lei DUAN. Screening and adaptability evaluation of early maturing oats in alpine regions of the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2023, 32(9): 116-129. |
[12] | Yong-hong SHI, Peng GAO, Zhi-hong FANG, Xiang ZHAO, Wei HAN, Jiang-ming WEI, Lin LIU, Jin-zhen LI. Evaluation of resistance to Colletotrichum cereale and analysis of loss in a field of fifteen imported oat cultivars [J]. Acta Prataculturae Sinica, 2023, 32(9): 130-142. |
[13] | Shou-jiang SUN, Pei-sheng MAO, Li-ru DOU, Zhi-cheng JIA, Ming SUN, Wen MA, Cheng-ming OU, Juan WANG. Studies on the regulation of seed aging by reactive oxygen species and telomeres [J]. Acta Prataculturae Sinica, 2023, 32(8): 202-213. |
[14] | Zhen-fen ZHANG, Rong HUANG, Xiang-yang LI, Bo YAO, Gui-qin ZHAO. Seed-borne bacterial diversity of oat and functional analysis based on Illumina MiSeq high-throughput sequencing [J]. Acta Prataculturae Sinica, 2023, 32(7): 96-108. |
[15] | Zi-fan WANG, Xiao-qing ZHANG, Zhi-ming ZHONG, Xin QUAN. Effects of oat hay and oat cubes on feeding behavior and production performance of Pengbo semi-fine wool sheep [J]. Acta Prataculturae Sinica, 2023, 32(5): 171-179. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||