Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (9): 81-93.DOI: 10.11686/cyxb2023373
Previous Articles Next Articles
Xiao-tong WANG1(), Xiao-hong LI1, Xu-xia MA1, Wen-qi CAI1, Xue-li FENG1, Shu-xia LI1,2,3()
Received:
2023-10-09
Revised:
2023-12-27
Online:
2024-09-20
Published:
2024-06-20
Contact:
Shu-xia LI
Xiao-tong WANG, Xiao-hong LI, Xu-xia MA, Wen-qi CAI, Xue-li FENG, Shu-xia LI. Identification and analysis of members of the FBA gene family in alfalfa[J]. Acta Prataculturae Sinica, 2024, 33(9): 81-93.
基因登录号 Gene ID | 基因名 Gene name | 染色体号 Chromosome number | 氨基酸 长度 Amino acid length (aa) | 分子质量 Molecular weight (MW, Da) | 等电点 pI | 总平均亲水性 GRAVY | 不稳定系数 Instability index (Ⅱ) | 跨膜结构域数目 Number of transmembrane helices | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|---|---|
MsG0180003404.01.T01 | MsFBA1 | Chr1 | 333 | 35812.29 | 8.35 | -0.083 | 33.89 | 0 | 细胞质Cytoplasm |
MsG0180005906.01.T01 | MsFBA2 | Chr1 | 387 | 42396.99 | 7.68 | -0.315 | 41.72 | 0 | 叶绿体Chloroplast |
MsG0480021327.01.T01 | MsFBA3 | Chr4 | 400 | 43179.18 | 6.86 | -0.131 | 36.27 | 0 | 叶绿体Chloroplast |
MsG0480021331.01.T01 | MsFBA4 | Chr4 | 398 | 43036.90 | 6.39 | -0.139 | 36.93 | 0 | 叶绿体Chloroplast |
MsG0580028117.01.T01 | MsFBA5 | Chr5 | 437 | 46728.29 | 5.54 | -0.115 | 28.23 | 0 | 细胞质Cytoplasm |
MsG0580028118.01.T01 | MsFBA6 | Chr5 | 364 | 39003.51 | 6.05 | -0.071 | 29.82 | 0 | 细胞质Cytoplasm |
MsG0780041081.01.T01 | MsFBA7 | Chr7 | 358 | 38635.98 | 6.56 | -0.236 | 31.16 | 0 | 细胞质Cytoplasm |
MsG0780041082.01.T01 | MsFBA8 | Chr7 | 358 | 38560.96 | 6.63 | -0.221 | 32.19 | 0 | 细胞质Cytoplasm |
MsG0880047090.01.T01 | MsFBA9 | Chr8 | 111 | 11971.70 | 9.52 | -0.132 | 48.21 | 0 | 细胞质Cytoplasm |
MsG0880047091.01.T01 | MsFBA10 | Chr8 | 211 | 23009.69 | 8.60 | -0.006 | 32.72 | 1 | 胞外Extracellular |
MsG0080049045.01.T01 | MsFBA11 | contig633end | 358 | 38332.81 | 7.00 | -0.153 | 32.62 | 0 | 细胞质Cytoplasm |
Table 1 Analysis of basic information about the MsFBA gene family
基因登录号 Gene ID | 基因名 Gene name | 染色体号 Chromosome number | 氨基酸 长度 Amino acid length (aa) | 分子质量 Molecular weight (MW, Da) | 等电点 pI | 总平均亲水性 GRAVY | 不稳定系数 Instability index (Ⅱ) | 跨膜结构域数目 Number of transmembrane helices | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|---|---|
MsG0180003404.01.T01 | MsFBA1 | Chr1 | 333 | 35812.29 | 8.35 | -0.083 | 33.89 | 0 | 细胞质Cytoplasm |
MsG0180005906.01.T01 | MsFBA2 | Chr1 | 387 | 42396.99 | 7.68 | -0.315 | 41.72 | 0 | 叶绿体Chloroplast |
MsG0480021327.01.T01 | MsFBA3 | Chr4 | 400 | 43179.18 | 6.86 | -0.131 | 36.27 | 0 | 叶绿体Chloroplast |
MsG0480021331.01.T01 | MsFBA4 | Chr4 | 398 | 43036.90 | 6.39 | -0.139 | 36.93 | 0 | 叶绿体Chloroplast |
MsG0580028117.01.T01 | MsFBA5 | Chr5 | 437 | 46728.29 | 5.54 | -0.115 | 28.23 | 0 | 细胞质Cytoplasm |
MsG0580028118.01.T01 | MsFBA6 | Chr5 | 364 | 39003.51 | 6.05 | -0.071 | 29.82 | 0 | 细胞质Cytoplasm |
MsG0780041081.01.T01 | MsFBA7 | Chr7 | 358 | 38635.98 | 6.56 | -0.236 | 31.16 | 0 | 细胞质Cytoplasm |
MsG0780041082.01.T01 | MsFBA8 | Chr7 | 358 | 38560.96 | 6.63 | -0.221 | 32.19 | 0 | 细胞质Cytoplasm |
MsG0880047090.01.T01 | MsFBA9 | Chr8 | 111 | 11971.70 | 9.52 | -0.132 | 48.21 | 0 | 细胞质Cytoplasm |
MsG0880047091.01.T01 | MsFBA10 | Chr8 | 211 | 23009.69 | 8.60 | -0.006 | 32.72 | 1 | 胞外Extracellular |
MsG0080049045.01.T01 | MsFBA11 | contig633end | 358 | 38332.81 | 7.00 | -0.153 | 32.62 | 0 | 细胞质Cytoplasm |
基因登录号 Gene ID | 基因名 Gene name | 蛋白质 Protein | α-螺旋 Alpha helix | β-转角 Beta turn | 延伸链 Extended strand | 无规则卷曲 Random coil |
---|---|---|---|---|---|---|
MsG0180003404.01.T01 | MsFBA1 | MsFBA1 | 52.25 | 6.61 | 13.51 | 27.63 |
MsG0180005906.01.T01 | MsFBA2 | MsFBA2 | 50.13 | 6.98 | 12.40 | 30.49 |
MsG0480021327.01.T01 | MsFBA3 | MsFBA3 | 47.50 | 6.75 | 13.00 | 32.75 |
MsG0480021331.01.T01 | MsFBA4 | MsFBA4 | 50.25 | 5.53 | 12.56 | 31.66 |
MsG0580028117.01.T01 | MsFBA5 | MsFBA5 | 49.89 | 6.18 | 14.65 | 29.29 |
MsG0580028118.01.T01 | MsFBA6 | MsFBA6 | 51.92 | 6.59 | 12.64 | 28.85 |
MsG0780041081.01.T01 | MsFBA7 | MsFBA7 | 50.84 | 7.54 | 14.80 | 26.82 |
MsG0780041082.01.T01 | MsFBA8 | MsFBA8 | 47.77 | 8.66 | 14.11 | 29.47 |
MsG0880047090.01.T01 | MsFBA9 | MsFBA9 | 56.76 | 1.80 | 10.81 | 30.63 |
MsG0880047091.01.T01 | MsFBA10 | MsFBA10 | 52.61 | 7.58 | 13.74 | 26.07 |
MsG0080049045.01.T01 | MsFBA11 | MsFBA11 | 51.68 | 6.70 | 13.69 | 27.93 |
Table 2 The secondary structure of MsFBA protein in alfalfa (%)
基因登录号 Gene ID | 基因名 Gene name | 蛋白质 Protein | α-螺旋 Alpha helix | β-转角 Beta turn | 延伸链 Extended strand | 无规则卷曲 Random coil |
---|---|---|---|---|---|---|
MsG0180003404.01.T01 | MsFBA1 | MsFBA1 | 52.25 | 6.61 | 13.51 | 27.63 |
MsG0180005906.01.T01 | MsFBA2 | MsFBA2 | 50.13 | 6.98 | 12.40 | 30.49 |
MsG0480021327.01.T01 | MsFBA3 | MsFBA3 | 47.50 | 6.75 | 13.00 | 32.75 |
MsG0480021331.01.T01 | MsFBA4 | MsFBA4 | 50.25 | 5.53 | 12.56 | 31.66 |
MsG0580028117.01.T01 | MsFBA5 | MsFBA5 | 49.89 | 6.18 | 14.65 | 29.29 |
MsG0580028118.01.T01 | MsFBA6 | MsFBA6 | 51.92 | 6.59 | 12.64 | 28.85 |
MsG0780041081.01.T01 | MsFBA7 | MsFBA7 | 50.84 | 7.54 | 14.80 | 26.82 |
MsG0780041082.01.T01 | MsFBA8 | MsFBA8 | 47.77 | 8.66 | 14.11 | 29.47 |
MsG0880047090.01.T01 | MsFBA9 | MsFBA9 | 56.76 | 1.80 | 10.81 | 30.63 |
MsG0880047091.01.T01 | MsFBA10 | MsFBA10 | 52.61 | 7.58 | 13.74 | 26.07 |
MsG0080049045.01.T01 | MsFBA11 | MsFBA11 | 51.68 | 6.70 | 13.69 | 27.93 |
1 | Zhao W, Liu H F, Zhang L, et al. Genome-wide identification and characterization of FBA gene family in polyploid crop Brassica napus. International Journal of Molecular Sciences, 2019, 20(22): 5749. |
2 | Nakahara K, Yamamoto H, Miyake C, et al. Purification and characterization of class-Ⅰ and class-Ⅱ fructose-1,6-bisphosphate aldolases from the cyanobacterium Synechocystis sp. PCC 6803. Plant and Cell Physiology, 2003, 44(3): 326-333. |
3 | Carrera D Á, George G M, Fischer-Stettler M, et al. Distinct plastid fructose bisphosphate aldolases function in photosynthetic and non-photosynthetic metabolism in Arabidopsis. Journal of Experimental Botany, 2021, 72(10): 3739-3755. |
4 | Lu W, Tang X L, Huo Y Q, et al. Identification and characterization of fructose 1,6-bisphosphate aldolase genes in Arabidopsis reveal a gene family with diverse responses to abiotic stresses. Gene, 2012, 503(1): 65-74. |
5 | Song J B, Wang Y X, Li H B, et al. The F-box family genes as key elements in response to salt, heavy mental, and drought stresses in Medicago truncatula. Functional & Integrative Genomics, 2015, 15(4): 495-507. |
6 | Zhao Y, Jiao F C, Tang H, et al. Genome-wide characterization, evolution, and expression profiling of FBA gene family in response to light treatments and abiotic stress in Nicotiana tabacum. Plant Signaling & Behavior, 2021, 16(10): 1938442. |
7 | Cai B B, Li Q, Xu Y C, et al. Genome-wide analysis of the fructose 1,6-bisphosphate aldolase (FBA) gene family and functional characterization of FBA7 in tomato. Plant Physiology and Biochemistry, 2016, 108(7): 251-265. |
8 | Qiu Z M, Bai M Y, Kuang H Q, et al. Cytosolic fructose-1,6-bisphosphate aldolases modulate primary metabolism and phytohormone homeostasis in soybean. Agronomy, 2023, 13(5): 1383. |
9 | Gao L T, Jia S Z, Cao L, et al. An F-box protein from wheat, TaFBA-2A, negatively regulates JA biosynthesis and confers improved salt tolerance and increased JA responsiveness to transgenic rice plants. Plant Physiology and Biochemistry, 2022, 182(4): 227-239. |
10 | Feng C H, Niu M X, Liu X, et al. Genome-wide analysis of the FBA subfamily of the poplar F-box gene family and its role under drought stress. International Journal of Molecular Sciences, 2023, 24(5): 4823. |
11 | Long R C, Yang Q C, Kang J M, et al. Cloning and characterization of a fructose-1,6-bisphosphate aldolase gene in Medicago sativa L. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(6): 1075-1082. |
龙瑞才, 杨青川, 康俊梅, 等. 紫花苜蓿果糖-1,6-二磷酸醛缩酶基因全长克隆及分析. 西北植物学报, 2010, 30(6): 1075-1082. | |
12 | Li Y Q, Jiao S Y, Zhang J N, et al. Effect of alfalfa on improving soil in constructed reclamation land. Chinese Journal of Grassland, 2016, 38(3): 78-83. |
李永强, 焦树英, 张佳楠, 等. 紫花苜蓿对建筑复垦土壤的改良效果. 中国草地学报, 2016, 38(3): 78-83. | |
13 | Yuan Y Y, Yu J Q, Kong L Z L, et al. Genome-wide investigation of the PLD gene family in alfalfa (Medicago sativa L.): identification, analysis and expression. BMC Genomics, 2022, 23(1): 243. |
14 | Zhao M R, Shen Y H, Li Y C, et al. Research progress in the genetic engineering of alfalfa stress resistance. Acta Agrestia Sinaca, 2014, 22(2): 243-248. |
赵美荣, 申玉华, 李永春, 等. 紫花苜蓿抗逆基因工程研究进展. 草地学报, 2014, 22(2): 243-248. | |
15 | Shen C, Du H L, Chen Z, et al. The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Molecular Plant, 2020, 13(9): 1250-1261. |
16 | Blum M, Chang H Y, Chuguransky S, et al. The interPro protein families and domains database: 20 years on. Nucleic Acids Research, 2021, 49(D1): D344-D354. |
17 | Artimo P, Jonnalagedda M, Arnold K, et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research, 2012, 40(W1): W597-W603. |
18 | Krogh A, Larsson B, von Heijne G, et al. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. Journal of Molecular Biology, 2001, 305(3): 567-580. |
19 | Geourjon C, Deléage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics, 1995, 11(6): 681-684. |
20 | Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 2018, 46(W1): W296-W303. |
21 | Kumar S, Tamura K, Nei M. MEGA: Molecular evolutionary genetics analysis software for microcomputers. Bioinformatics, 1994, 10(2): 189-191. |
22 | Yuan J, Amend A, Borkowski J, et al. MULTICLUSTAL: a systematic method for surveying Clustal W alignment parameters. Bioinformatics, 1999, 15(10): 862-863. |
23 | Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 1987, 4(4): 406-425. |
24 | Bailey T L, Boden M, Buske F A, et al. MEME Suite: tools for motif discovery and searching. Nucleic Acids Research, 2009, 37(suppl_2): W202-W208. |
25 | Chen C J, Chen H, Zhang Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202. |
26 | Lescot M, Déhais P, Thijs G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 2002, 30(1): 325-327. |
27 | Zhou Q, Luo D, Chai X T, et al. Multiple regulatory networks are activated during cold stress in Medicago sativa L. International Journal of Molecular Sciences, 2018, 19(10): 3169. |
28 | Luo D, Wu Y G, Liu J, et al. Comparative transcriptomic and physiological analyses of Medicago sativa L. indicates that multiple regulatory networks are activated during continuous ABA treatment. International Journal of Molecular Sciences, 2019, 20(1): 47. |
29 | Luo D, Zhou Q, Wu Y G, et al. Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L.). BMC Plant Biology, 2019, 19(1): 32. |
30 | O’Rourke J A, Fu F L, Bucciarelli B, et al. The Medicago sativa gene index 1.2: a web-accessible gene expression atlas for investigating expression differences between Medicago sativa subspecies. BMC Genomics, 2015, 16(1): 502. |
31 | Lu W. Genome-wide analysis of the fructose bisphosphate aldolases in Arabidopsis. Tai’an: Shandong Agricultural University, 2011. |
路玮. 拟南芥果糖1, 6-二磷酸醛缩酶家族分析. 泰安: 山东农业大学, 2011. | |
32 | Kopecká R, Kameniarová M, Černý M, et al. Abiotic stress in crop production. International Journal of Molecular Sciences, 2023, 24(7): 6603. |
33 | Wood N T. Synthetic promoters illuminate roles of cis-acting elements in plant defence. Trends in Plant Science, 2002, 7(7): 288. |
34 | Mu J Q, Fu Y J, Liu B C, et al. SiFBA5, a cold-responsive factor from Saussurea involucrata promotes cold resilience and biomass increase in transgenic tomato plants under cold stress. BMC Plant Biology, 2021, 21(1): 75. |
35 | Shehzad M, Ditta A, Cai X Y, et al. Genome wide characterization, evolution and expression analysis of FBA gene family under salt stress in Gossypium species. Biologia, 2019, 74(11): 1539-1552. |
[1] | Zheng-yan LI, Zhi-ming XU, Yan LI, Yang LI. Effects of short-term continuous cropping of alfalfa on the growth and soil microenvironment of subsequent sorghum-sudan grass hybrid crops in the Jianghuai area [J]. Acta Prataculturae Sinica, 2024, 33(9): 155-168. |
[2] | Ying-ying ZHANG, Dan-dan HU, Chun-hui MA, Qian-bing ZHANG. Leaf structure and photosynthetic properties of alfalfa in response to bacteria and phosphorus addition [J]. Acta Prataculturae Sinica, 2024, 33(8): 133-144. |
[3] | Wei LI, Han WANG, Chang-qing WANG, Yu-xin PAN, Jian-rong HOU, Wen-juan KANG, Su-qin SHANG, Shang-li SHI. Responses to temperature of population parameters of the pest mite Sancassania alfalfa fed on alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(8): 181-189. |
[4] | Zheng WANG, Wei CHANG, Jun-cheng LI, Lian-tai SU, Li GAO, Peng ZHOU, Yuan AN. Effects of alfalfa green manure on the yield, nitrogen absorption, and nitrogen translocation of feed maize [J]. Acta Prataculturae Sinica, 2024, 33(8): 63-73. |
[5] | Yi WU, Ya-lan FENG, Tian-ning WANG, Ji-hao JU, Hui-shu XIAO, Chao MA, Jun ZHANG. Genome-wide identification and expression analysis of the Hsp70 gene family in wheat and its ancestral species [J]. Acta Prataculturae Sinica, 2024, 33(7): 53-67. |
[6] | Zhen-huan ZHANG, Li-rong YAO, Jun-cheng WANG, Er-jing SI, Hong ZHANG, Ke YANG, Xiao-le MA, Ya-xiong MENG, Hua-jun WANG, Bao-chun LI. Identification of AKR gene family members in Halogeton glomeratus and salt tolerance analysis of the root salt stress response gene HgAKR42639 [J]. Acta Prataculturae Sinica, 2024, 33(7): 68-83. |
[7] | Jin-zhu GAO, Dong-hao ZHAO, Le GAO, Xi-hao SU, Xue-qing HE. Effects of cerium nitrate and abscisic acid treatment on alfalfa seed germination and seedling physiological characteristics [J]. Acta Prataculturae Sinica, 2024, 33(6): 175-186. |
[8] | Guo-qiang WU, Zu-long YU, Ming WEI. The mechanism of PGPR regulating plant response to abiotic stress [J]. Acta Prataculturae Sinica, 2024, 33(6): 203-218. |
[9] | Min WANG, Li LI, Rong JIA, Ai-ke BAO. Evaluation of physiological characteristics and cold resistance of 10 alfalfa varieties under low temperature stress [J]. Acta Prataculturae Sinica, 2024, 33(6): 76-88. |
[10] | Hai-ming KONG, Jia-xing SONG, Jing YANG, Qian LI, Pei-zhi YANG, Yu-man CAO. Identification and transcript profiling of the CAMTA gene family under abiotic stress in alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(5): 143-154. |
[11] | Sheng-ran HE, Xiao-jing LIU, Ya-jiao ZHAO, Xue WANG, Jing WANG. Effects of alfalfa/sweet sorghum intercropping on rhizosphere soil characteristics and microbial community characteristics [J]. Acta Prataculturae Sinica, 2024, 33(5): 92-105. |
[12] | Hao LIU, Xian-yang LI, Fei HE, Xue WANG, Ming-na LI, Rui-cai LONG, Jun-mei KANG, Qing-chuan YANG, Lin CHEN. Identification of the alfalfa SAUR gene family and its expression pattern under abiotic stress [J]. Acta Prataculturae Sinica, 2024, 33(4): 135-153. |
[13] | Xian-yang LI, Hao LIU, Fei HE, Xue WANG, Ming-na LI, Rui-cai LONG, Jun-mei KANG, Qing-chuan YANG, Lin CHEN. Identification and expression pattern of the WRKY transcription factor family in Medicago sativa [J]. Acta Prataculturae Sinica, 2024, 33(4): 154-170. |
[14] | Yan LI, Fu-long MA, Lu HAN, Hai-zhen WANG. Productivity and adaptability of ‘WL’ alfalfa varieties with different fall dormancy in the extremely arid region of Southern Xinjiang [J]. Acta Prataculturae Sinica, 2024, 33(3): 139-149. |
[15] | Xue WANG, Xiao-jing LIU, Jing WANG, Yong WU, Chang-chun TONG. Root and carbon-nitrogen metabolism characteristics of alfalfa-oat mixed stands under continuous intercropping [J]. Acta Prataculturae Sinica, 2024, 33(3): 85-96. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||