Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (1): 161-173.DOI: 10.11686/cyxb2024099
Long-yi HE(), Meng-meng TAN, Hai-tao CHE, Hong-ying ZHANG, Yu-xin ZHU, Yan-ni ZHANG()
Received:
2024-03-26
Revised:
2024-05-08
Online:
2025-01-20
Published:
2024-11-04
Contact:
Yan-ni ZHANG
Long-yi HE, Meng-meng TAN, Hai-tao CHE, Hong-ying ZHANG, Yu-xin ZHU, Yan-ni ZHANG. Cloning and analysis of drought tolerance function of the LpDREB9 in Lilium pumilum[J]. Acta Prataculturae Sinica, 2025, 34(1): 161-173.
基因名称 Gene | 开放阅读框长度 Open reading frame length (bp) | 氨基酸数量 Number of amino acids (aa) | 相对分子量 Relative molecular weight (kDa) | 不稳定系数 Instability coefficient | 脂肪指数 Fat index | 蛋白质等电点 Protein isoelectric point | 亲水指数 Hydropathy index | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|---|
LpDREB9 | 462 | 153 | 17.054 | 43.6 | 73.46 | 4.89 | -0.293 | 细胞核Nucleus |
Table 1 Physicochemical properties analysis of LpDREB9 transcription factor in L. pumilum
基因名称 Gene | 开放阅读框长度 Open reading frame length (bp) | 氨基酸数量 Number of amino acids (aa) | 相对分子量 Relative molecular weight (kDa) | 不稳定系数 Instability coefficient | 脂肪指数 Fat index | 蛋白质等电点 Protein isoelectric point | 亲水指数 Hydropathy index | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|---|
LpDREB9 | 462 | 153 | 17.054 | 43.6 | 73.46 | 4.89 | -0.293 | 细胞核Nucleus |
1 | Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167(2): 313-324. |
2 | Liang Y, Li X, Yang R, et al. BaDBL1, a unique DREB gene from desiccation tolerant moss Bryum argenteum, confers osmotic and salt stress tolerances in transgenic Arabidopsis. Plant Science, 2021, 313(2021): 111047. |
3 | Chai M, Cheng H, Yan M, et al. Identification and expression analysis of the DREB transcription factor family in pineapple [Ananas comosus (L.) Merr.]. PeerJ, 2020, 8(6): e9006. |
4 | Yoh S, Qiang L, Dubouzet J G, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications, 2002, 290(3): 998-1009. |
5 | Yang H H, Sun Y G, Wang H X, et al. Genome-wide identification and functional analysis of the ERF2 gene family in response to disease resistance against Stemphylium lycopersici in tomato. BMC Plant Biology, 2021, 21(1): 72. |
6 | Most A S, Mohammed N, Kouji S, et al. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant and Cell Physiology, 2021, 52(2): 344-360. |
7 | Liu S, Wang X, Wang H, et al. Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L. PLoS Genetics, 2013, 9(9): e1003790. |
8 | Lucas S, Durmaz E, Akpınar B A, et al. The drought response displayed by a DRE-binding protein from Triticum dicoccoides. Plant Physiology and Biochemistry, 2011, 49(3): 346-351. |
9 | Zhao P, Wang D, Wang R, et al. Genome-wide analysis of the potato Hsp20 gene family: identification, genomic organization and expression profiles in response to heat stress. BMC Genomics, 2018, 19(1): 1-13. |
10 | Bihani P, Char B, Bhargava S. Transgenic expression of sorghum DREB2 in rice improves tolerance and yield under water limitation. The Journal of Agricultural Science, 2011, 149(1): 95-101. |
11 | Rabara R C, Tripathi P, Rushton P J. The potential of transcription factor-based genetic engineering in improving crop tolerance to drought. Omics: A Journal of Integrative Biology, 2014, 18(10): 601-614. |
12 | Song Y, Lin W H, Jing Y B, et al. Cloning and expression analysis of Catalase gene in Lilium pumilum. Bulletin of Botanical Research, 2023, 43(5): 756-767. |
宋煜, 林文昊, 荆一博, 等. 细叶百合Catalase基因的克隆及表达分析. 植物研究, 2023, 43(5): 756-767. | |
13 | Wang Y, Cao S, Guan C, et al. Overexpressing the NAC transcription factor LpNAC13 from Lilium pumilum in tobacco negatively regulates the drought response and positively regulates the salt response. Plant Physiology and Biochemistry, 2020, 149: 96-110. |
14 | Guan C J. Cloning of three NAC transcription factors from Lilium pumilum and genetic transformation to tobacco. Harbin: Northeast Forestry University, 2018. |
关春景. 细叶百合3个NAC转录因子的克隆及其对烟草的遗传转化. 哈尔滨: 东北林业大学, 2018. | |
15 | He H, Zhu G Q, Chen S Y, et al. Cloning of LpPEX7 gene from Lilium pumilum and its expression characteristics under salt stress. Bulletin of Botanical Research, 2020, 40(2): 274-283. |
何好, 朱国庆, 陈诗雅, 等. 细叶百合LpPEX7基因克隆及盐胁迫下的表达特性分析. 植物研究, 2020, 40(2): 274-283. | |
16 | Tan M M, Sun S Y, Wang J W, et al. Bioinformatics and stress expression analysis of DREB transcription factor in Lilium pumilum. Journal of Northwest Forestry University, 2023, 38(1): 95-101,198. |
谭萌萌, 孙绍营, 王静文, 等. 细叶百合DREB转录因子生物信息学及胁迫应答表达分析. 西北林学院学报, 2023, 38(1): 95-101,198. | |
17 | Inge C D, Vanessa V, Olivier A V, et al. The membrane-bound NAC transcription factor ANAC013functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis. The Plant Cell, 2013, 25(9): 3472-3490. |
18 | Sun S Y. Transcriptome analysis of Lilium pumilum under salt stress and verification of salt-tolerance function of LpNAC14. Harbin: Northeast Forestry University, 2022. |
孙绍营. 盐胁迫下细叶百合转录组分析及LpNAC14抗盐功能验证. 哈尔滨: 东北林业大学, 2022. | |
19 | Wang X K. Principles and techniques of plant physiological and biochemical experiments. Beijing: Higher Education Press, 2006. |
王学奎. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2006. | |
20 | Thirumalaikumar V P, Devkar V, Mehterov N, et al. NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato. Plant Biotechnology Journal, 2018, 16(2): 354-366. |
21 | Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10(8): 1391-1406. |
22 | Hussain Q, Asim M, Zhang R, et al. Transcription factors interact with ABA through gene expression and signaling pathways to mitigate drought and salinity stress. Biomolecules, 2021, 11(8): 1159. |
23 | Rego D C F T, Santos P M, Cabral B G, et al. Expression of a DREB5-A subgroup transcription factor gene from Ricinus communis (RcDREB1) enhanced growth, drought tolerance and pollen viability in tobacco. Plant Cell, Tissue and Organ Culture (PCTOC), 2021, 146(3): 1-12. |
24 | Chen M, Zhao Y J, Zhuo C L, et al. Overexpression of a NF-YC transcription factor from bermudagrass confers tolerance to drought and salinity in transgenic rice. Plant Biotechnology Journal, 2015, 13(4): 482-491. |
25 | Aditi G, Andrés R, Caño-Delgado A I. The physiology of plant responses to drought. Science, 2020, 368(6488): 266-269. |
26 | Ron M, Zandalinas S I, Yosef F, et al. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology, 2022, 23(10): 663-679. |
27 | Lanceras J C. Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiology, 2004, 135(1): 384-399. |
28 | Liu B, Cao S J, Wang Y, et al. Overexpression of LpNAC6 gene in Lilium pumilum enhancing salt tolerance in transgenic tobacco. Journal of Beijing Forestry University, 2020, 42(4): 69-79. |
刘彬, 曹尚杰, 王营, 等. 过表达细叶百合 LpNAC6 基因增强烟草的耐盐性. 北京林业大学学报, 2020, 42(4): 69-79. | |
29 | Chen T, Shabala S, Niu Y. Molecular mechanisms of salinity tolerance in rice. The Crop Journal, 2021, 9(3): 506-520. |
30 | Zhu J, Lee B H, Dellinger M, et al. A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis. The Plant Journal, 2010, 63(1): 128-140. |
31 | Zhu Q, Zhang J, Gao X, et al. The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses. Gene, 2010, 457(1): 1-12. |
32 | Bapela T, Shimelis H, Tsilo T J, et al. Genetic improvement of wheat for drought tolerance: progress, challenges and opportunities. Plants, 2022, 11(10): 1331. |
33 | Shinde S S, Kachare D P, Satbhai R D, et al. Water stress induced proline accumulation and antioxidative enzymes in groundnut ( Arachis hypogaea L.). Legume Research, 2018, 41(1): 67-72. |
[1] | Na WEI, Wen-mao JING, Er-wen XU, Rong-xin WANG, Jing-zhong ZHAO, Xue-e MA, Ji-yu ZHANG, Wen-xian LIU. Functional analysis of the MaERF058 gene in response to drought stress in Melilotus albus [J]. Acta Prataculturae Sinica, 2024, 33(8): 159-169. |
[2] | Yi WU, Ya-lan FENG, Tian-ning WANG, Ji-hao JU, Hui-shu XIAO, Chao MA, Jun ZHANG. Genome-wide identification and expression analysis of the Hsp70 gene family in wheat and its ancestral species [J]. Acta Prataculturae Sinica, 2024, 33(7): 53-67. |
[3] | Zhen-huan ZHANG, Li-rong YAO, Jun-cheng WANG, Er-jing SI, Hong ZHANG, Ke YANG, Xiao-le MA, Ya-xiong MENG, Hua-jun WANG, Bao-chun LI. Identification of AKR gene family members in Halogeton glomeratus and salt tolerance analysis of the root salt stress response gene HgAKR42639 [J]. Acta Prataculturae Sinica, 2024, 33(7): 68-83. |
[4] | Fang WANG, Shi-zi ZHANG, Rong-hui DAI, Li-yun YANG, Li-juan LUO, Ling-yan JIANG. Screening and verification of SgMPK6-interacting proteins of Stylosanthes [J]. Acta Prataculturae Sinica, 2024, 33(7): 84-93. |
[5] | Hai-ming KONG, Jia-xing SONG, Jing YANG, Qian LI, Pei-zhi YANG, Yu-man CAO. Identification and transcript profiling of the CAMTA gene family under abiotic stress in alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(5): 143-154. |
[6] | Xian-yang LI, Hao LIU, Fei HE, Xue WANG, Ming-na LI, Rui-cai LONG, Jun-mei KANG, Qing-chuan YANG, Lin CHEN. Identification and expression pattern of the WRKY transcription factor family in Medicago sativa [J]. Acta Prataculturae Sinica, 2024, 33(4): 154-170. |
[7] | Ze-bin LI, Yong-zheng QIU, Yan-jie LIU, Jin-qiu YU, Bai-ji WANG, Qian-ning LIU, Yue WANG, Guo-wen CUI. Identification of the BZR gene family in alfalfa and analysis of its transcriptional responses to abiotic stress [J]. Acta Prataculturae Sinica, 2024, 33(11): 106-122. |
[8] | Xian-fei SHI, Yu GAO, Xu-sheng HUANG, Ya-li ZHOU, Gui-ping CAI, Xin-ru LI, Run-zhi LI, Jin-ai XUE. Functional characterization of Cyperus esculentus CeWRKY transcription factors in response to abiotic stress [J]. Acta Prataculturae Sinica, 2023, 32(8): 186-201. |
[9] | Shao-peng WANG, Jia LIU, Jun HONG, Ji-zhen LIN, Yi ZHANG, Kun SHI, Zan WANG. Cloning and function analysis of MsPPR1 in alfalfa under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(7): 49-60. |
[10] | Zhen-fen ZHANG, Rong HUANG, Xiang-yang LI, Bo YAO, Gui-qin ZHAO. Seed-borne bacterial diversity of oat and functional analysis based on Illumina MiSeq high-throughput sequencing [J]. Acta Prataculturae Sinica, 2023, 32(7): 96-108. |
[11] | Wen-juan WANG, Shang-li SHI, Long HE, Bei WU, Chan-chan LIU. Accumulation and functions of polyamines in plants under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(6): 186-202. |
[12] | Fu LIU, Cheng CHEN, Kai-xuan ZHANG, Mei-liang ZHOU, Xin-quan ZHANG. Cloning and identification of drought tolerance function of the LjbHLH34 gene in Lotus japonicus [J]. Acta Prataculturae Sinica, 2023, 32(1): 178-191. |
[13] | Jiao-yang TIAN, Qiu-xia WANG, Shu-wen ZHENG, Wen-xian LIU. Genome-wide identification and expression profile analysis of the CPP gene family in Medicago truncatula [J]. Acta Prataculturae Sinica, 2022, 31(7): 111-121. |
[14] | Yong-chao ZHANG, Xiao-xing WEI, Guo-ling LIANG, Yan QIN, Wen-hui LIU, Zhi-feng JIA, Yong LIU, Xiang MA. Phenotype changes during aging over six years of Elymus sibiricus stands and the effects of nutrient addition [J]. Acta Prataculturae Sinica, 2022, 31(6): 101-111. |
[15] | Li-juan GAO, Zheng-she ZHANG, Yu WEN, Xi-fang ZONG, Qi YAN, Li-yan LU, Xian-feng YI, Ji-yu ZHANG. Genome-wide identification and expression analysis of the bHLH transcription factor family in Cenchrus purpureus [J]. Acta Prataculturae Sinica, 2022, 31(3): 47-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||