Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (4): 16-26.DOI: 10.11686/cyxb2024223
Previous Articles Next Articles
Shou-xing WANG1,2(
), Hua-kun ZHOU3, Li-peng OU1,2, Cheng-xian LI1,2, Yan-he WANG1,2, Xiao-chun NING1,2, Qiang GU1,2, Dai-jun WEI1,2, Ming-xin YANG1,2,4(
)
Received:2024-06-11
Revised:2024-08-22
Online:2025-04-20
Published:2025-02-19
Contact:
Ming-xin YANG
Shou-xing WANG, Hua-kun ZHOU, Li-peng OU, Cheng-xian LI, Yan-he WANG, Xiao-chun NING, Qiang GU, Dai-jun WEI, Ming-xin YANG. Vegetation and soil microbial diversity and their relationships with soil factors in different grassland types of the three river headwaters region[J]. Acta Prataculturae Sinica, 2025, 34(4): 16-26.
| 特征指标Characteristic index | 高寒草原Alpine steppe | 温性草原Temperate steppe | 高寒草甸Alpine meadow |
|---|---|---|---|
| 盖度Coverage (%) | 69.61±8.82b | 58.56±14.70c | 91.13±6.76a |
| 高度Height (cm) | 3.49±0.75c | 19.99±7.24a | 8.31±4.62b |
| 生物量Biomass (g·m-2) | 98.66±17.65c | 197.51±63.61b | 251.41±101.40a |
| Simpson指数Simpson index | 0.87±0.02b | 0.74±0.10c | 0.93±0.02a |
Shannon-Wiener指数 Shannon-Wiener index | 2.15±0.16b | 1.57±0.42c | 2.89±0.27a |
| Pielou 指数Pielou index | 0.95±0.02a | 0.89±0.04b | 0.95±0.02a |
| 优势种Dominant species | 紫花针茅S. purpurea、早熟禾P. annua、青藏薹草Carex moorcroftii | 芨芨草N. splendens、西北针茅S. sareptana | 高山嵩草C. parvula、藏嵩草C. tibetikobresia、高原毛茛Ranunculus tanguticus |
Table 1 Vegetation characteristics and diversity characteristics of different types of grassland
| 特征指标Characteristic index | 高寒草原Alpine steppe | 温性草原Temperate steppe | 高寒草甸Alpine meadow |
|---|---|---|---|
| 盖度Coverage (%) | 69.61±8.82b | 58.56±14.70c | 91.13±6.76a |
| 高度Height (cm) | 3.49±0.75c | 19.99±7.24a | 8.31±4.62b |
| 生物量Biomass (g·m-2) | 98.66±17.65c | 197.51±63.61b | 251.41±101.40a |
| Simpson指数Simpson index | 0.87±0.02b | 0.74±0.10c | 0.93±0.02a |
Shannon-Wiener指数 Shannon-Wiener index | 2.15±0.16b | 1.57±0.42c | 2.89±0.27a |
| Pielou 指数Pielou index | 0.95±0.02a | 0.89±0.04b | 0.95±0.02a |
| 优势种Dominant species | 紫花针茅S. purpurea、早熟禾P. annua、青藏薹草Carex moorcroftii | 芨芨草N. splendens、西北针茅S. sareptana | 高山嵩草C. parvula、藏嵩草C. tibetikobresia、高原毛茛Ranunculus tanguticus |
理化指标 Physicochemical indicators | 高寒草原 Alpine steppe | 温性草原 Temperate steppe | 高寒草甸 Alpine meadow |
|---|---|---|---|
| pH | 8.53±0.13a | 8.56±0.17a | 6.22±0.27b |
| SOC (g·kg-1) | 15.82±4.14b | 8.27±5.80c | 40.86±16.95a |
| N (g·kg-1) | 1.97±0.45b | 1.52±0.64c | 5.02±0.65a |
| P (g·kg-1) | 1.88±0.30a | 1.70±0.33a | 1.68±0.30a |
| K (g·kg-1) | 16.34±1.12c | 18.42±1.67b | 19.48±0.55a |
Table 2 Analysis of physical and chemical properties of different types of grassland soils
理化指标 Physicochemical indicators | 高寒草原 Alpine steppe | 温性草原 Temperate steppe | 高寒草甸 Alpine meadow |
|---|---|---|---|
| pH | 8.53±0.13a | 8.56±0.17a | 6.22±0.27b |
| SOC (g·kg-1) | 15.82±4.14b | 8.27±5.80c | 40.86±16.95a |
| N (g·kg-1) | 1.97±0.45b | 1.52±0.64c | 5.02±0.65a |
| P (g·kg-1) | 1.88±0.30a | 1.70±0.33a | 1.68±0.30a |
| K (g·kg-1) | 16.34±1.12c | 18.42±1.67b | 19.48±0.55a |
| 1 | Sala O E, Chapin F S, Armesto J J, et al. Global biodiversity scenarios for the year 2100. Science, 2000, 287(5459): 1770-1774. |
| 2 | Cardinale B J, Duffy J E, Gonzalea A, et al. Biodiversity loss and its impact on humanity. Nature, 2012, 486(7401): 59-67. |
| 3 | Wagg C, Bender S F, Widmer F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(14): 5266-5270. |
| 4 | Manule D B, Maestre F T, Reich P B, et al. Carbon content and climate variability drive global soil bacterial diversity patterns. Ecological Monographs, 2016, 86(3): 373-390. |
| 5 | Chen X, Zhang Y P. Impacts of climate, phenology, elevation and their interactions on the net primary productivity of vegetation in Yunnan, China under global warming. Ecological Indicators, 2023, 154: 1-13. |
| 6 | Zhang X C, Jin X M. Vegetation dynamics and responses to climate change and anthropogenic activities in the Three-River Headwaters Region, China. Ecological Indicators, 2021, 131: 1-14. |
| 7 | Zhao X Q, Xu S X, Zhao L, et al. Innovation and practice on biodiversity conservation in Sanjiangyuan National Park. Bulletin of Chinese Academy of Sciences, 2023, 38(12): 1833-1844. |
| 赵新全, 徐世晓, 赵亮, 等. 三江源国家公园生物多样性保护创新及实践. 中国科学院院刊, 2023, 38(12): 1833-1844. | |
| 8 | Zhao X Q. The five integrative management strategies of Sanjiangyuan National Park. Biodiversity Science, 2021, 29(3): 301-303. |
| 赵新全. 三江源国家公园创建“五个一”管理模式. 生物多样性, 2021, 29(3): 301-303. | |
| 9 | Shao Q Q, Liu S C, Ning J, et al. Assessment of ecological benefits of key national ecological projects in China in 2000-2019 using remote sensing. Acta Geographica Sinica, 2022, 77(9): 2133-2153. |
| 邵全琴, 刘树超, 宁佳, 等. 2000-2019年中国重大生态工程生态效益遥感评估. 地理学报, 2022, 77(9): 2133-2153. | |
| 10 | Yang C, Wang W Y, Zhou H K, et al. Coupling and coordination characteristic between plant diversity and soil factors of alpine grasslands in the Three Rivers Source Region. Journal of Gansu Agricultural University, 2022, 57(2): 125-136. |
| 杨冲, 王文颖, 周华坤, 等. 三江源区高寒草地植物多样性与土壤因子的耦合关系. 甘肃农业大学学报, 2022, 57(2): 125-136. | |
| 11 | Chen X, Li Q, Chen D D, et al. Analysis on the difference of microbial function gene in different grasslands of Sanjiangyuan National Park. Ecology and Environmental Sciences, 2020, 29(3): 472-482. |
| 陈昕, 李奇, 陈懂懂, 等. 三江源国家公园不同草地土壤微生物功能基因的差异性分析. 生态环境学报, 2020, 29(3): 472-482. | |
| 12 | Pan Y L, Tang H P, Liu D, et al. Geographical patterns and drivers of plant productivity and species diversity in the Qinghai-Tibet Plateau. Plant Diversity, 2023, DOI: https://doi.org/10.1016/j.pld.2023.06.007. |
| 13 | McSherry M E, Ritchie M E. Effects of grazing on grassland soil carbon: A global review. Global Change Biology, 2013, 19(5): 1347-1357. |
| 14 | Tian L, Zhang Y J, Zhu J T. Decreased surface albedo driven by denser vegetation on the Tibetan Plateau. Environmental Research Letters, 2014, 9(10): 11-23. |
| 15 | Li C X, Hendrik W, Bernhard S, et al. Estimating plant traits of alpine grasslands on the Qinghai-Tibetan Plateau using remote sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(7): 2263-2275. |
| 16 | Wang S Z, Fan J W, Li Y Z, et al. Effects of grazing exclusion on biomass growth and species diversity among various grassland types of the Tibetan Plateau. Sustainability, 2019, 11(6): 1705-1718. |
| 17 | Asitaiken J, Dong Y Q, Zhou S J, et al. Effects of enclosure on vegetation diversity and niche characteristics of different grassland types in Xinjiang. Pratacultural Science, 2023, 40(5): 1168-1185. |
| 阿斯太肯·居力海提, 董乙强, 周时杰, 等. 封育对不同草地类型植物群落多样性及生态位特征的影响-以新疆不同类型草地为例. 草业科学, 2023, 40(5): 1168-1185. | |
| 18 | Upama K C, Samiran B, Thompson K A, et al. Cattle grazing management affects soil microbial diversity and community network complexity in the Northern Great Plains. Science of the Total Environment, 2024, 912: 169353. |
| 19 | Wu L W, Zhang Y, Guo X, et al. Reduction of microbial diversity in grassland soil is driven by long-term climate warming. Nature Microbiology, 2022, 7(7): 1054-1062. |
| 20 | Wei S, Li S W, Wang J H, et al. Effects of grazing on plant species and phylogenetic diversity in alpine grasslands Northern Tibet. Ecological Engineering, 2021, 170: 106331. |
| 21 | Pan J X, Peng Y F, Wang J S, et al. Controlling factors for soil bacterial and fungal diversity and composition vary with vegetation types in alpine grasslands. Applied Soil Ecology, 2023, 184: 104777. |
| 22 | Shen C C, Shi Y, Fan K K, et al. Soil pH dominates elevational diversity pattern for bacteria in high elevation alkaline soils on the Tibetan Plateau. Microbiology Ecology, 2019, 95(2): 3-12. |
| 23 | Zhou H, Zhang D G, Jiang Z H, et al. Changes in the soil microbial communities of alpine steppe at Qinghai-Tibetan Plateau under different degradation levels. Science of the Total Environment, 2019, 651(2): 2281-2291. |
| 24 | Hu L, Wang C T, Wang G X, et al. Changes in the activities of soil enzymes and microbial community structure at different degradation successional stages of alpine meadows in the headwaters region of Thee Rivers, China. Acta Prataculturae Sinica, 2014, 23(3): 8-19. |
| 胡雷, 王长庭, 王根绪, 等. 三江源区不同退化演替阶段高寒草甸土壤酶活性和微生物群落结构的变化. 草业学报, 2014, 23(3): 8-19. | |
| 25 | Liu P X, Wang J B, Sun X F, et al. Climatic suitability of vegetation growth over alpine grassland in the Three-River Headwaters. Acta Agrestia Sinica, 2023, 31(10): 3145-3156. |
| 刘佩霞, 王军邦, 孙晓芳, 等. 三江源区高寒草地植被生长的气候适宜性研究. 草地学报, 2023, 31(10): 3145-3156. | |
| 26 | Zhang Y X, Fan J W, Cao W, et al. Spatial and temporal dynamics of grassland yield and its response to precipitation in the Three Headwater Region from 2006 to 2013. Acta Prataculturae Sinica, 2017, 26(10): 10-19. |
| 张雅娴, 樊江文, 曹巍, 等. 2006-2013年三江源草地产草量的时空动态变化及其对降水的响应. 草业学报, 2017, 26(10): 10-19. | |
| 27 | Zhou H K, Li S, Sun J, et al. Characteristics of plant community and soil physical and chemical properties in alpine meadow along altitude gradient in the headwaters region of Three-River on Tibetan Plateau. Acta Agrestia Sinica, 2023, 31(6): 1735-1743. |
| 周华坤, 李珊, 孙建, 等. 三江源区高寒草甸植物群落与土壤理化性质沿海拔梯度的变化特征. 草地学报, 2023, 31(6): 1735-1743. | |
| 28 | Yang M X, Chen K Y, Li C X, et al. Effects of grassland degradation on soil fungal communities in alpine steppes of the Three-River Headwaters Region during different growth periods. Pratacultural Science, 2024, 41(1): 15-25. |
| 杨明新, 陈科宇, 李成先, 等. 三江源区高寒草原退化对不同生长期土壤真菌群落的影响. 草业科学, 2024, 41(1): 15-25. | |
| 29 | Zhang Y S, Zhao X Q, Zhao S X, et al. Correlation between evapotranspiration and climate factors in warm steppe in source region of Yangtze, Yellow and Yalu Tsangpo Rivers. Journal of Desert Research, 2010, 30(2): 363-368. |
| 张耀生, 赵新全, 赵双喜, 等. 三江源区温性草原蒸散量与主要影响因子的相关分析. 中国沙漠, 2010, 30(2): 363-368. | |
| 30 | Yang M X, Yang X C, Zhao Y, et al. Estimated carbon storage and influencing factors of alpine grassland in the source region of the Yellow River. Acta Ecologica Sinica, 2023, 43(9): 3546-3557. |
| 杨明新, 杨秀春, 赵云, 等. 黄河源园区高寒草地碳储量估算及其影响因素. 生态学报, 2023, 43(9): 3546-3557. | |
| 31 | Wang Y F, Xue K, Hu R H, et al. Vegetation structural shift tells environmental changes on the Tibetan Plateau over 40 years. Science Bulletin, 2023, 68(17): 1928-1937. |
| 32 | Bao S D. Soil agrochemical analysis (Third Edition). Beijing: China Agriculture Press, 2013: 25-114. |
| 鲍士旦. 土壤农化分析(第3版). 北京:中国农业出版社, 2013: 25-114. | |
| 33 | Wagner M R, Lundberg D S, Devin C D, et al. Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecology Letters, 2014, 17(6): 717-726. |
| 34 | Zhao S, Liu D Y, Ning L, et al. Bio-organic fertilizer application significantly reduces the Fusarium oxysporum population and alters the composition of fungi communities of watermelon Fusarium wilt rhizosphere soil. Biology and Fertility of Soils, 2014, 50(5): 765-774. |
| 35 | Fang J Y, Wang X P, Shen Z H, et al. Methods and protocols for plant community inventory. Biodiversity Science, 2009, 17(6): 533-548. |
| 方精云, 王襄平, 沈泽昊, 等. 植物群落清查的主要内容、方法和技术规范. 生物多样性, 2009, 17(6): 533-548. | |
| 36 | Chao A. Non parametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 1984, 11(4): 265-270. |
| 37 | Tuomisto H. A consistent terminology for quantifying species diversity? Yes, it does exist. Oecologia, 2010, 164(4): 853-860. |
| 38 | Tang L, Dong S K, Liu S L, et al. The relationship between soil physical properties and alpine plant diversity on Qinghai Tibet Plateau. Eurasian Journal of Soil Science, 2015, 4(2): 88-93. |
| 39 | Yang X T, Fan J, Gai J M, et al. Soil physical and chemical properties and vegetation characteristics of different types of grassland in Qilian Mountains, China. Chinese Journal of Applied Ecology, 2022, 33(4): 878-886. |
| 杨学亭, 樊军, 盖佳敏, 等. 祁连山不同类型草地的土壤理化性质与植被特征. 应用生态学报, 2022, 33(4): 878-886. | |
| 40 | Dong S K, Tang L, Zhang X F, et al. Relationship between plant species diversity and functional diversity in alpine grasslands. Acta Ecologica Sinica, 2017, 37(5): 1472-1483. |
| 董世魁, 汤琳, 张相锋, 等. 高寒草地植物物种多样性与功能多样性的关系. 生态学报, 2017, 37(5): 1472-1483. | |
| 41 | Shao J X, Liu Y H, Ma H, et al. Meta-analysis of physical and chemical properties of shallow soils in degraded alpine grasslands. Acta Agrestia Sinica, 2022, 30(6): 1370-1378. |
| 邵建翔, 刘育红, 马辉, 等. 退化高寒草地浅层土壤理化性质Meta分析. 草地学报, 2022, 30(6): 1370-1378. | |
| 42 | Fu L J, Yan Y, Li X Q, et al. Rhizosphere soil microbial community and its response to different utilization patterns in the semi-arid alpine grassland of northern Tibet. Frontiers in Microbiology, 2022, 13: 931795. |
| 43 | Zhao W, Yin Y L, Li S X, et al. The characteristics of soil fungal community in degraded alpine meadow in the Three Rivers Source Region, China. Chinese Journal of Applied Ecology, 2021, 32(3): 869-877. |
| 赵文, 尹亚丽, 李世雄, 等. 三江源区退化高寒草甸土壤真菌群落特征. 应用生态学报, 2021, 32(3): 869-877. | |
| 44 | Zhao X G, Zhang S T, Niu K C. Relationships between soil fungal diversity, plant community functional traits, and soil attributes in Tibetan alpine meadows. Chinese Journal of Applied and Environmental Biology, 2020, 26(1): 1-9. |
| 赵兴鸽, 张世挺, 牛克昌. 青藏高原高寒草甸土壤真菌多样性与植物群落功能性状和土壤理化特性的关系. 应用与环境生物学报, 2020, 26(1): 1-9. | |
| 45 | Li H Y, Yao T, Zhang J G, et al. Relationship between soil bacterial community and environmental factors in the degraded alpine grassland of eastern Qilian Mountains, China. Chinese Journal of Applied Ecology, 2018, 29(11): 3793-3801. |
| 李海云, 姚拓, 张建贵, 等. 东祁连山退化高寒草地土壤细菌群落与土壤环境因子间的相互关系. 应用生态学报, 2018, 29(11): 3793-3801. | |
| 46 | Han W Y, Chen L, Su X K, et al. Effects of soil physico-chemical properties on plant species diversity along an elevation gradient over alpine grassland on the Qinghai-Tibetan Plateau, China. Frontiers in Plant Science, 2022, 13(4): 822268-822281. |
| 47 | Ahmad B I, Mudasir F, Qadir R U, et al. Predicting potential distribution and range dynamics of Aquilegia fragrans under climate change: Insights from ensemble species distribution modelling. Environmental Monitoring and Assessment, 2023, 195(5): 623-641. |
| 48 | Zhang X Y, Feng M, Liu Q G, et al. Distribution patterns and driving factors of grassland plant diversity along a precipitation gradient on the Qinghai-Tibet Plateau. Chinese Journal of Ecology, 2024, 43(6): 1674-1680. |
| 张小燕, 冯明, 刘倩光, 等. 青藏高原草地植物多样性沿降水梯度的分布格局及影响因素. 生态学杂志, 2024, 43(6): 1674-1680. | |
| 49 | Zuo X A, Sun S S, Wang S K, et al. Contrasting relationships between plant-soil microbial diversity are driven by geographic and experimental precipitation changes. Science of the Total Environment, 2023, 861: 160654. |
| 50 | Yang P N, Li X L, Li C Y, et al. Response of soil microbial diversity to long-term enclosure in degraded patches of alpine meadow in the source zone of the Yellow River. Environmental Science, 2023, 44(4): 2293-2303. |
| 杨鹏年, 李希来, 李成一, 等. 黄河源区斑块化退化高寒草甸土壤微生物多样性对长期封育的响应. 环境科学, 2023, 44(4): 2293-2303. | |
| 51 | Shangguan Z J, Jing X, Wang H, et al. Plant biodiversity responds more strongly to climate warming and anthropogenic activities than microbial biodiversity in the Qinghai-Tibetan alpine grasslands. Journal of Ecology, 2023, 112(1): 110-125. |
| 52 | Laurent P, Claire C, Andreas K, et al. The interplay between microbial communities and soil properties. Nature Reviews Microbiology, 2023, 22(4): 226-239. |
| 53 | Lauber C L, Hamady M, Knight R, et al. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 2009, 75(15): 5111-5120. |
| 54 | Xue K, Zhang B, Zhou S T, et al. Soil microbial communities in alpine grasslands on the Tibetan Plateau and their influencing factors. Chinese Science Bulletin, 2019, 64(27): 2915-2927. |
| 薛凯, 张彪, 周姝彤, 等. 青藏高原高寒草地土壤微生物群落及影响因子. 科学通报, 2019, 64(27): 2915-2927. | |
| 55 | Xu H, Ding M J, Zhang H, et al. Interaction effects of vegetation and soil factors on microbial communities in alpine steppe under degradation. Environmental Science, 2024, 45(7): 4251-4265. |
| 徐欢, 丁明军, 张华, 等. 高寒草原退化过程中植被和土壤因子对微生物群落的交互影响. 环境科学, 2024, 45(7): 4251-4265. |
| [1] | Xin GONG, Xin-ru HUO, Wen LI, Yan-dong YANG, Chao LIU, Wei-chun QIN, Yan SHEN, Guo-hui WANG, Hong-bin MA. Vegetation community characteristics and spatial differentiation in mountain grassland in Luoshan, Ningxia [J]. Acta Prataculturae Sinica, 2025, 34(2): 1-15. |
| [2] | Yuan-fei MA, Yan-tao SONG, Yun-na WU, Cheng-feng FANG. Effects of fertilization and mowing for 5 years on soil microbial characteristics in Hulunbuir meadow steppe [J]. Acta Prataculturae Sinica, 2024, 33(9): 242-251. |
| [3] | Rong-chun ZHENG, Zhi-biao NAN, Ting-yu DUAN. Diversity of seed-borne fungi on four Trifolium pratense cultivars [J]. Acta Prataculturae Sinica, 2024, 33(8): 170-180. |
| [4] | Qian LIU, Yan-fen DING, Shan-shan SONG, Wen-jie XU, Wei YANG. Quantitative classification and ordination analysis of spontaneous vegetation communities in herb layer along the green belt of Nanjing Ming City Wall [J]. Acta Prataculturae Sinica, 2024, 33(5): 1-15. |
| [5] | Jun-yao LI, Xing-chi JIANG, Jin-yu HU, Dong-guang WEI, Xue-yong ZHAO, Shao-kun WANG. The effect of microbial organic fertilizers application on vegetation-soil-microbe in desert steppe [J]. Acta Prataculturae Sinica, 2024, 33(3): 34-45. |
| [6] | Chen-yang ZHANG, Meng-jun JIN, Yong-feng XU, Cheng-de YANG. Effects of maize continuous cropping on soil microbial community structure based on metagenomic analysis [J]. Acta Prataculturae Sinica, 2024, 33(12): 160-174. |
| [7] | Hao SHI, Cai-hong YANG, Fei XIA, Jun-qiang WANG, Wei WEI, Jing-long WANG, Yun-yin XUE, Shai-kun ZHENG, Hao-yang WU, Lin-ling RAN, Shuang YAN, Xiao-min JIANG. Initial effects of short-term warming on the productivity of alpine degraded grassland in northern Tibet during the restoration process [J]. Acta Prataculturae Sinica, 2024, 33(11): 30-45. |
| [8] | Zi-li LYU, Bin LIU, Feng CHANG, Zi-jing MA, Qiu-mei CAO. Species diversity and phylogenetic diversity in Bayinbrook alpine grasslands: elevation gradient distribution patterns and drivers [J]. Acta Prataculturae Sinica, 2023, 32(7): 12-22. |
| [9] | Zhen-fen ZHANG, Rong HUANG, Xiang-yang LI, Bo YAO, Gui-qin ZHAO. Seed-borne bacterial diversity of oat and functional analysis based on Illumina MiSeq high-throughput sequencing [J]. Acta Prataculturae Sinica, 2023, 32(7): 96-108. |
| [10] | Cai-feng LIU, Yuan-yuan DUAN, Ling-ling WANG, Yi-mo WANG, Zheng-gang GUO. Effects of plateau pika (Ochotona curzoniae) disturbance on the relationship between plant species diversity and soil ecological stoichiometry in alpine meadows [J]. Acta Prataculturae Sinica, 2023, 32(6): 157-166. |
| [11] | Huan LIU, Kai DONG, Zeng-wangdui REN, Jing-long WANG, Yun-fei LIU, Gui-qin ZHAO. Effects of co-sowing of Artemisia wellbyi and perennial grasses on the characteristics of vegetation and soil fungal communities in desertified grasslands in Tibet [J]. Acta Prataculturae Sinica, 2023, 32(6): 45-57. |
| [12] | Mei-hui LI, Yu-hua LI, Xin-hui YAN, Hang-hang TUO, Meng-ru YANG, Zi-lin WANG, Wei LI. Characteristics of plant diversity and aboveground productivity and their relationship driven by subshrub expansion [J]. Acta Prataculturae Sinica, 2023, 32(5): 27-39. |
| [13] | Ao JIANG, Lu-huai JING, Tserang-donko MIPAM, Li-ming TIAN. Progress in research on the effects of grazing on grassland litter decomposition [J]. Acta Prataculturae Sinica, 2023, 32(4): 208-220. |
| [14] | Juan-juan ZHOU, Yun-fei LIU, Jing-long WANG, Wei WEI. Effect of short-term nutrient addition on aboveground biomass, plant diversity, and functional traits of swampy alpine meadow in Tibet [J]. Acta Prataculturae Sinica, 2023, 32(11): 17-29. |
| [15] | Ya-ling HU, Eerdun HASI, Liang MAN, Yi YANG, Ping ZHANG. Vegetation responses to sand source and supply volume in Caragana microphylla shrubland [J]. Acta Prataculturae Sinica, 2023, 32(1): 26-35. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||