Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (7): 101-110.DOI: 10.11686/cyxb2020482
Previous Articles Next Articles
Tao ZHANG(), Ying-yu MU, Wang-pan QI, Chang-zheng GUO, Ji-you ZHANG, Sheng-yong MAO()
Received:
2020-10-27
Revised:
2020-11-30
Online:
2021-07-20
Published:
2021-06-03
Contact:
Sheng-yong MAO
Tao ZHANG, Ying-yu MU, Wang-pan QI, Chang-zheng GUO, Ji-you ZHANG, Sheng-yong MAO. Analysis of plasma and milk fatty acid and metabolite composition in lactating dairy cows with differing tolerance to subacute ruminal acidosis[J]. Acta Prataculturae Sinica, 2021, 30(7): 101-110.
营养成分Nutrient compsition | 含量Content (%) | 营养水平Nutrient levels | 含量Content |
---|---|---|---|
苜蓿草Alfalfa | 24.00 | 粗蛋白质Crude protein (CP, %) | 16.16 |
燕麦Oat | 24.00 | 中性洗涤纤维Neutral detergent fiber (NDF, %) | 36.14 |
玉米青贮Corn silage | 12.00 | 非纤维性碳水化合物Non-fibrous carbohydrate2) (NFC, %) | 38.68 |
玉米Corn | 19.40 | 粗灰分Ash (%) | 5.97 |
豆粕Soybean meal | 13.50 | 钙Ca (%) | 1.14 |
玉米酒精糟DDGS | 3.80 | 磷P (%) | 0.52 |
石粉Limestone | 0.80 | 粗脂肪Ether extract (EE, %) | 3.05 |
磷酸氢钙CaHPO4 | 1.10 | 淀粉Starch (%) | 17.96 |
食盐NaCl | 0.40 | 泌乳净能Net energy3) (MJ·kg-1) | 1.57 |
预混料Premix1) | 1.00 | NFC/NDF | 1.07 |
总量Total | 100.00 |
Table 1 Composition and nutrient levels of basal diets (air-dry basis)
营养成分Nutrient compsition | 含量Content (%) | 营养水平Nutrient levels | 含量Content |
---|---|---|---|
苜蓿草Alfalfa | 24.00 | 粗蛋白质Crude protein (CP, %) | 16.16 |
燕麦Oat | 24.00 | 中性洗涤纤维Neutral detergent fiber (NDF, %) | 36.14 |
玉米青贮Corn silage | 12.00 | 非纤维性碳水化合物Non-fibrous carbohydrate2) (NFC, %) | 38.68 |
玉米Corn | 19.40 | 粗灰分Ash (%) | 5.97 |
豆粕Soybean meal | 13.50 | 钙Ca (%) | 1.14 |
玉米酒精糟DDGS | 3.80 | 磷P (%) | 0.52 |
石粉Limestone | 0.80 | 粗脂肪Ether extract (EE, %) | 3.05 |
磷酸氢钙CaHPO4 | 1.10 | 淀粉Starch (%) | 17.96 |
食盐NaCl | 0.40 | 泌乳净能Net energy3) (MJ·kg-1) | 1.57 |
预混料Premix1) | 1.00 | NFC/NDF | 1.07 |
总量Total | 100.00 |
时间 Time (min) | 流速 Flow rate (mL·min-1) | A (%) | B (%) |
---|---|---|---|
0.0 | 0.3 | 95 | 5 |
1.0 | 0.3 | 95 | 5 |
2.0 | 0.3 | 60 | 40 |
7.0 | 0.3 | 20 | 80 |
11.0 | 0.3 | 5 | 95 |
15.5 | 0.3 | 95 | 5 |
19.5 | 0.3 | 95 | 5 |
Table 2 The mobile phase elution procedure
时间 Time (min) | 流速 Flow rate (mL·min-1) | A (%) | B (%) |
---|---|---|---|
0.0 | 0.3 | 95 | 5 |
1.0 | 0.3 | 95 | 5 |
2.0 | 0.3 | 60 | 40 |
7.0 | 0.3 | 20 | 80 |
11.0 | 0.3 | 5 | 95 |
15.5 | 0.3 | 95 | 5 |
19.5 | 0.3 | 95 | 5 |
脂肪酸 Fatty acid (FA) | 组别 Groups | 标准误差 SEM | P值 P-value | 脂肪酸 Fatty acid (FA) | 组别 Groups | 标准误差 SEM | P值 P-value | ||
---|---|---|---|---|---|---|---|---|---|
SUS | TOL | SUS | TOL | ||||||
C4:0 | 3.67 | 3.62 | 0.32 | 0.891 | C20:0 | 20.84 | 24.96 | 0.90 | 0.008 |
C6:0 | 3.19 | 4.23 | 0.47 | 0.032 | C18:3n6 | 0.29 | 0.38 | 0.09 | 0.252 |
C8:0 | 1.17 | 1.43 | 0.13 | 0.149 | C20:1 | 0.33 | 1.13 | 0.06 | <0.001 |
C10:0 | 0.39 | 0.29 | 0.09 | 0.241 | C18:3n3 | 0.35 | 0.09 | 0.02 | <0.001 |
C11:0 | 0.43 | 0.31 | 0.13 | 0.299 | C21:0 | 0.99 | 1.56 | 0.06 | <0.001 |
C13:0 | 0.70 | 0.97 | 0.12 | 0.112 | C20:2 | 0.14 | 0.18 | 0.05 | 0.282 |
C14:0 | 2.57 | 1.94 | 0.36 | 0.718 | C22:0 | 0.24 | 0.21 | 0.08 | 0.522 |
C15:0 | 0.22 | 0.36 | 0.06 | 0.220 | C22:1n9 | 0.40 | 0.28 | 0.05 | 0.114 |
C15:1 | 0.52 | 0.60 | 0.11 | 0.104 | C20:3n3 | 0.33 | 0.22 | 0.04 | 0.138 |
C16:0 | 32.04 | 29.27 | 0.65 | 0.002 | C20:4n6 | 0.60 | 0.74 | 0.06 | 0.015 |
C16:1 | 0.35 | 0.41 | 0.10 | 0.646 | C24:1 | 2.53 | 1.45 | 0.26 | 0.004 |
C17:0 | 0.31 | 0.31 | 0.08 | 0.498 | C22:6n | 0.03 | 1.10 | 0.31 | 0.057 |
C17:1 | 0.88 | 0.04 | 0.05 | <0.001 | SFA | 88.00 | 88.77 | 0.75 | 0.371 |
C18:0 | 21.31 | 19.32 | 0.58 | 0.046 | MUFA | 7.84 | 6.52 | 0.78 | 0.188 |
C18:1n9t | 0.45 | 0.35 | 0.10 | 0.915 | PUFA | 3.67 | 3.94 | 0.26 | 0.330 |
C18:1n9c | 2.79 | 2.67 | 0.72 | 0.820 | ≤C16:0 | 45.04 | 43.42 | 0.55 | 0.025 |
C18:2n6t | 1.79 | 1.06 | 0.16 | 0.008 | >C16:0 | 54.83 | 56.22 | 0.49 | 0.048 |
C18:2n6c | 0.12 | 0.16 | 0.04 | 0.458 |
Table 3 The fatty acid composition in the plasma of the dairy cows (%, n=4)
脂肪酸 Fatty acid (FA) | 组别 Groups | 标准误差 SEM | P值 P-value | 脂肪酸 Fatty acid (FA) | 组别 Groups | 标准误差 SEM | P值 P-value | ||
---|---|---|---|---|---|---|---|---|---|
SUS | TOL | SUS | TOL | ||||||
C4:0 | 3.67 | 3.62 | 0.32 | 0.891 | C20:0 | 20.84 | 24.96 | 0.90 | 0.008 |
C6:0 | 3.19 | 4.23 | 0.47 | 0.032 | C18:3n6 | 0.29 | 0.38 | 0.09 | 0.252 |
C8:0 | 1.17 | 1.43 | 0.13 | 0.149 | C20:1 | 0.33 | 1.13 | 0.06 | <0.001 |
C10:0 | 0.39 | 0.29 | 0.09 | 0.241 | C18:3n3 | 0.35 | 0.09 | 0.02 | <0.001 |
C11:0 | 0.43 | 0.31 | 0.13 | 0.299 | C21:0 | 0.99 | 1.56 | 0.06 | <0.001 |
C13:0 | 0.70 | 0.97 | 0.12 | 0.112 | C20:2 | 0.14 | 0.18 | 0.05 | 0.282 |
C14:0 | 2.57 | 1.94 | 0.36 | 0.718 | C22:0 | 0.24 | 0.21 | 0.08 | 0.522 |
C15:0 | 0.22 | 0.36 | 0.06 | 0.220 | C22:1n9 | 0.40 | 0.28 | 0.05 | 0.114 |
C15:1 | 0.52 | 0.60 | 0.11 | 0.104 | C20:3n3 | 0.33 | 0.22 | 0.04 | 0.138 |
C16:0 | 32.04 | 29.27 | 0.65 | 0.002 | C20:4n6 | 0.60 | 0.74 | 0.06 | 0.015 |
C16:1 | 0.35 | 0.41 | 0.10 | 0.646 | C24:1 | 2.53 | 1.45 | 0.26 | 0.004 |
C17:0 | 0.31 | 0.31 | 0.08 | 0.498 | C22:6n | 0.03 | 1.10 | 0.31 | 0.057 |
C17:1 | 0.88 | 0.04 | 0.05 | <0.001 | SFA | 88.00 | 88.77 | 0.75 | 0.371 |
C18:0 | 21.31 | 19.32 | 0.58 | 0.046 | MUFA | 7.84 | 6.52 | 0.78 | 0.188 |
C18:1n9t | 0.45 | 0.35 | 0.10 | 0.915 | PUFA | 3.67 | 3.94 | 0.26 | 0.330 |
C18:1n9c | 2.79 | 2.67 | 0.72 | 0.820 | ≤C16:0 | 45.04 | 43.42 | 0.55 | 0.025 |
C18:2n6t | 1.79 | 1.06 | 0.16 | 0.008 | >C16:0 | 54.83 | 56.22 | 0.49 | 0.048 |
C18:2n6c | 0.12 | 0.16 | 0.04 | 0.458 |
脂肪酸 Fatty acid (FA) | 组别 Groups | 标准误差 SEM | P值 P-value | 脂肪酸 Fatty acid (FA) | 组别 Groups | 标准误差 SEM | P值 P-value | ||
---|---|---|---|---|---|---|---|---|---|
SUS | TOL | SUS | TOL | ||||||
C10:0 | 0.87 | 0.33 | 0.05 | <0.001 | C18:1n9c | 25.33 | 26.51 | 0.11 | <0.001 |
C11:0 | 0.14 | 0.04 | 0.02 | 0.005 | C18:2n6t | 0.79 | 0.75 | 0.10 | 0.825 |
C12:0 | 4.30 | 1.64 | 0.22 | 0.003 | C18:2n6c | 0.24 | 0.26 | 0.05 | 0.763 |
C13:0 | 0.35 | 0.37 | 0.02 | 0.399 | C20:0 | 1.45 | 1.43 | 0.39 | 0.229 |
C14:0 | 9.84 | 9.85 | 1.29 | 0.480 | C18:3n3 | 0.97 | 0.80 | 0.19 | 0.517 |
C14:1 | 2.09 | 2.06 | 0.18 | 0.787 | C21:0 | 0.43 | 0.40 | 0.10 | 0.234 |
C15:0 | 2.55 | 2.49 | 0.26 | 0.223 | C22:1n9 | 0.23 | 0.23 | 0.02 | 0.356 |
C16:0 | 25.45 | 27.18 | 0.25 | 0.004 | C20:4n6 | 0.30 | 0.34 | 0.01 | 0.002 |
C16:1 | 2.18 | 2.45 | 0.16 | 0.050 | SFA | 57.09 | 58.66 | 0.40 | 0.008 |
C17:0 | 1.34 | 1.20 | 0.11 | 0.105 | MUFA | 30.29 | 33.88 | 0.11 | <0.001 |
C17:1 | 0.40 | 0.38 | 0.05 | 0.841 | PUFA | 2.30 | 2.14 | 0.18 | 0.414 |
C18:0 | 11.34 | 13.15 | 0.86 | 0.001 | ≤C16:0 | 47.76 | 46.39 | 0.27 | 0.003 |
C18:1n9t | 1.02 | 1.28 | 0.02 | <0.001 | >C16:0 | 43.84 | 46.70 | 0.35 | <0.001 |
Table 4 The fatty acid composition in the milk of the dairy cows (g·100 g-1, n=4)
脂肪酸 Fatty acid (FA) | 组别 Groups | 标准误差 SEM | P值 P-value | 脂肪酸 Fatty acid (FA) | 组别 Groups | 标准误差 SEM | P值 P-value | ||
---|---|---|---|---|---|---|---|---|---|
SUS | TOL | SUS | TOL | ||||||
C10:0 | 0.87 | 0.33 | 0.05 | <0.001 | C18:1n9c | 25.33 | 26.51 | 0.11 | <0.001 |
C11:0 | 0.14 | 0.04 | 0.02 | 0.005 | C18:2n6t | 0.79 | 0.75 | 0.10 | 0.825 |
C12:0 | 4.30 | 1.64 | 0.22 | 0.003 | C18:2n6c | 0.24 | 0.26 | 0.05 | 0.763 |
C13:0 | 0.35 | 0.37 | 0.02 | 0.399 | C20:0 | 1.45 | 1.43 | 0.39 | 0.229 |
C14:0 | 9.84 | 9.85 | 1.29 | 0.480 | C18:3n3 | 0.97 | 0.80 | 0.19 | 0.517 |
C14:1 | 2.09 | 2.06 | 0.18 | 0.787 | C21:0 | 0.43 | 0.40 | 0.10 | 0.234 |
C15:0 | 2.55 | 2.49 | 0.26 | 0.223 | C22:1n9 | 0.23 | 0.23 | 0.02 | 0.356 |
C16:0 | 25.45 | 27.18 | 0.25 | 0.004 | C20:4n6 | 0.30 | 0.34 | 0.01 | 0.002 |
C16:1 | 2.18 | 2.45 | 0.16 | 0.050 | SFA | 57.09 | 58.66 | 0.40 | 0.008 |
C17:0 | 1.34 | 1.20 | 0.11 | 0.105 | MUFA | 30.29 | 33.88 | 0.11 | <0.001 |
C17:1 | 0.40 | 0.38 | 0.05 | 0.841 | PUFA | 2.30 | 2.14 | 0.18 | 0.414 |
C18:0 | 11.34 | 13.15 | 0.86 | 0.001 | ≤C16:0 | 47.76 | 46.39 | 0.27 | 0.003 |
C18:1n9t | 1.02 | 1.28 | 0.02 | <0.001 | >C16:0 | 43.84 | 46.70 | 0.35 | <0.001 |
差异代谢物 Different metabolites | 物质分类 Class | VIP | 倍数 Fold change (SUS/TOL) | P值 P-value |
---|---|---|---|---|
1-单硬脂酰基甘油酯MG (18:0/0:0/0:0) | 脂质Lipids | 1.02 | 18.70 | 0.043 |
9-羟基-10E,12Z-十八碳二烯酸9-HODE | 有机酸Organic acids | 1.48 | 277.58 | 0.043 |
反式-12,13-环氧-11-氧-反式-9-十八烯酸酯 12(13)Ep-9-KODE | 有机酸Organic acids | 1.04 | 31.23 | 0.043 |
烟酰胺Niacinamide | 维生素类Vitamins | 1.32 | 1.73 | 0.043 |
异戊基肉碱Isovalerylcarnitine | 肉碱Carnitine | 1.68 | 1.86 | 0.043 |
磷酸肌酸Phosphocreatine | 肌酸Creatine | 1.12 | 75.60 | 0.043 |
L-谷氨酸L-Glutamic acid | 氨基酸类及其衍生物Amino acids and derivatives | 1.12 | 6.79 | 0.043 |
L-苯丙氨酸L-Phenylalanine | 氨基酸类及其衍生物Amino acids and derivatives | 1.99 | 0.53 | 0.043 |
Table 5 The changes of plasma different metabolites between susceptible and tolerant cows (n=4)
差异代谢物 Different metabolites | 物质分类 Class | VIP | 倍数 Fold change (SUS/TOL) | P值 P-value |
---|---|---|---|---|
1-单硬脂酰基甘油酯MG (18:0/0:0/0:0) | 脂质Lipids | 1.02 | 18.70 | 0.043 |
9-羟基-10E,12Z-十八碳二烯酸9-HODE | 有机酸Organic acids | 1.48 | 277.58 | 0.043 |
反式-12,13-环氧-11-氧-反式-9-十八烯酸酯 12(13)Ep-9-KODE | 有机酸Organic acids | 1.04 | 31.23 | 0.043 |
烟酰胺Niacinamide | 维生素类Vitamins | 1.32 | 1.73 | 0.043 |
异戊基肉碱Isovalerylcarnitine | 肉碱Carnitine | 1.68 | 1.86 | 0.043 |
磷酸肌酸Phosphocreatine | 肌酸Creatine | 1.12 | 75.60 | 0.043 |
L-谷氨酸L-Glutamic acid | 氨基酸类及其衍生物Amino acids and derivatives | 1.12 | 6.79 | 0.043 |
L-苯丙氨酸L-Phenylalanine | 氨基酸类及其衍生物Amino acids and derivatives | 1.99 | 0.53 | 0.043 |
差异代谢物 Different metabolites | 物质分类 Class | VIP | 倍数 Fold change (SUS/TOL) | P值 P-value |
---|---|---|---|---|
甘油磷酰基乙醇胺Glycerylphosphorylethanolamine | 脂质Lipids | 1.95 | 0.42 | 0.043 |
1-硬脂酰甘油磷酸丝氨酸1-Stearoylglycerophosphoserine | 脂质Lipids | 1.64 | 1.27 | 0.043 |
3-磷酸甘油Glycerol-3-phosphate | 脂质Lipids | 2.05 | 0.52 | 0.021 |
壬二酸Azelaic acid | 有机酸Organic acids | 1.91 | 0.64 | 0.021 |
辛二酸Suberic acid | 有机酸Organic acids | 1.85 | 0.59 | 0.021 |
十一烷酸Undecanedioic acid | 有机酸Organic acids | 1.51 | 0.72 | 0.043 |
乳清酸Orotic acid | 有机酸Organic acids | 1.50 | 0.23 | 0.043 |
尿酸Uric acid | 有机酸Organic acids | 1.90 | 0.68 | 0.043 |
N-乙酰基-D-葡萄糖胺N-Acetyl-D-glucosamine | 氨基酸Amino acid | 2.04 | 0.23 | 0.043 |
胞苷Cytidine | 核苷Nucleosides | 2.34 | 0.45 | 0.021 |
肌苷2',3'-环磷酸酯Inosine 2',3'-cyclic phosphate | 磷脂Phospholipids | 1.45 | 0.61 | 0.043 |
鞘氨醇Sphinganine | 鞘磷脂Sphingomyelin | 2.54 | 1.99 | 0.043 |
2-己酰基肉碱2-Hexenoylcarnitine | 肉碱Carnitine | 1.28 | 0.65 | 0.021 |
葡萄糖酸Gluconic acid | 糖Sugars | 1.33 | 0.53 | 0.043 |
泛酸Pantothenic acid | 维生素Vitamins | 1.66 | 0.51 | 0.021 |
4-羟基苯甲醛4-Hydroxybenzaldehyde | 未分类Unclassified | 1.46 | 0.56 | 0.021 |
Table 6 The change of milk different metabolites between susceptible and tolerant cows (n=4)
差异代谢物 Different metabolites | 物质分类 Class | VIP | 倍数 Fold change (SUS/TOL) | P值 P-value |
---|---|---|---|---|
甘油磷酰基乙醇胺Glycerylphosphorylethanolamine | 脂质Lipids | 1.95 | 0.42 | 0.043 |
1-硬脂酰甘油磷酸丝氨酸1-Stearoylglycerophosphoserine | 脂质Lipids | 1.64 | 1.27 | 0.043 |
3-磷酸甘油Glycerol-3-phosphate | 脂质Lipids | 2.05 | 0.52 | 0.021 |
壬二酸Azelaic acid | 有机酸Organic acids | 1.91 | 0.64 | 0.021 |
辛二酸Suberic acid | 有机酸Organic acids | 1.85 | 0.59 | 0.021 |
十一烷酸Undecanedioic acid | 有机酸Organic acids | 1.51 | 0.72 | 0.043 |
乳清酸Orotic acid | 有机酸Organic acids | 1.50 | 0.23 | 0.043 |
尿酸Uric acid | 有机酸Organic acids | 1.90 | 0.68 | 0.043 |
N-乙酰基-D-葡萄糖胺N-Acetyl-D-glucosamine | 氨基酸Amino acid | 2.04 | 0.23 | 0.043 |
胞苷Cytidine | 核苷Nucleosides | 2.34 | 0.45 | 0.021 |
肌苷2',3'-环磷酸酯Inosine 2',3'-cyclic phosphate | 磷脂Phospholipids | 1.45 | 0.61 | 0.043 |
鞘氨醇Sphinganine | 鞘磷脂Sphingomyelin | 2.54 | 1.99 | 0.043 |
2-己酰基肉碱2-Hexenoylcarnitine | 肉碱Carnitine | 1.28 | 0.65 | 0.021 |
葡萄糖酸Gluconic acid | 糖Sugars | 1.33 | 0.53 | 0.043 |
泛酸Pantothenic acid | 维生素Vitamins | 1.66 | 0.51 | 0.021 |
4-羟基苯甲醛4-Hydroxybenzaldehyde | 未分类Unclassified | 1.46 | 0.56 | 0.021 |
1 | Morgante M, Stelletta C, Berzaghi P, et al. Subacute rumen acidosis in lactating cows: An investigation in intensive Italian dairy herds. Journal of Animal Physiology and Animal Nutrition, 2007, 91(5/6): 226-234. |
2 | Zebeli Q, Dijkstra J, Tafaj M, et al. Modeling the adequacy of dietary fiber in dairy cows based on the responses of ruminal pH and milk fat production to composition of the diet. Journal of Dairy Science, 2008, 91(5): 2046-2066. |
3 | Plaizier J C, Krause D O, Gozho G N, et al. Subacute ruminal acidosis in dairy cows: The physiological causes, incidence and consequences. Veterinary Journal, 2008, 176(1): 21-31. |
4 | Penner G B, Beauchemin K A, Mutsvangwa T. Severity of ruminal acidosis in primiparous holstein cows during the periparturient period. Journal of Dairy Science, 2007, 90(1): 365-375. |
5 | Humer E, Ghareeb K, Harder H, et al. Peripartal changes in reticuloruminal pH and temperature in dairy cows differing in the susceptibility to subacute rumen acidosis. Journal of Dairy Science, 2015, 98(12): 8788-8799. |
6 | Chen Y, Oba M, Guan L L. Variation of bacterial communities and expression of toll-like receptor genes in the rumen of steers differing in susceptibility to subacute ruminal acidosis. Veterinary Microbiology, 2012, 159(3/4): 451-459. |
7 | Penner G B, Aschenbach J R, Gabel G, et al. Epithelial capacity for apical uptake of short chain fatty acids is a key determinant for intraruminal pH and the susceptibility to subacute ruminal acidosis in sheep. The Journal of Nutrition, 2009, 139(9): 1714-1720. |
8 | Peng B, Li H, Peng X X. Functional metabolomics: From biomarker discovery to metabolome reprogramming. Protein Cell, 2015, 6(9): 628-637. |
9 | Saleem F, Ametaj B N, Bouatra S, et al. A metabolomics approach to uncover the effects of grain diets on rumen health in dairy cows. Journal of Dairy Science, 2012, 95(11): 6606-6623. |
10 | Mao S Y, Huo W J, Zhu W Y. Microbiome-metabolome analysis reveals unhealthy alterations in the composition and metabolism of ruminal microbiota with increasing dietary grain in a goat model. Environmental Microbiology, 2016, 18(2): 525-541. |
11 | Humer E, Kroger I, Neubauer V, et al. Supplementing phytogenic compounds or autolyzed yeast modulates ruminal biogenic amines and plasma metabolome in dry cows experiencing subacute ruminal acidosis. Journal of Dairy Science, 2018, 101(10): 9559-9574. |
12 | 中华人民共和国农业部. 奶牛饲养标准, NY/T 34-2004. 北京: 中国农业出版社, 2004. |
Minostry of Agriculture of P. R China. Feeding standard of dairy cattle, NY/T 34-2004. Beijing: China Agriculture Press, 2004. | |
13 | Sun X Q, Wang Y P, Chen B, et al. Partially replacing cornstarch in a high-concentrate diet with sucrose inhibited the ruminal trans-10 biohydrogenation pathway in vitro by changing populations of specific bacteria. Journal of Animal Science and Biotechnology, 2015, 6(1): 57. |
14 | Wang X J, Shen X Z, Han H R, et al. Analysis of cis-9, trans-11-conjugated linoleic acid in milk fat by capillary gas chromatography. Chromatography, 2006, 6: 645-647. |
王小静, 沈向真, 韩航如, 等. 毛细管气相色谱法测定乳脂中的cis-9, trans-11共轭亚油酸. 色谱, 2006, 6: 645-647. | |
15 | Yang B Z, Lu X F, Wei S J, et al. Effect of feeding peanut oil on fatty acid composition of buffalo milk fat. Feed Industry, 2012, 33(9): 40-42. |
杨炳壮, 卢雪芬, 韦升菊, 等. 饲喂花生油对水牛乳脂脂肪酸组成的影响. 饲料工业, 2012, 33(9): 40-42. | |
16 | Bickerstaffe R, Noakes D E, Annison E F. Quantitative aspects of fatty acid biohydrogenation, absorption and transfer into milk fat in the lactating goat, with special reference to the cis- and trans-isomers of octadecenoate and linoleate. Biochemical Journal, 1972, 130(2): 607-617. |
17 | Dryden F D, Marchello J A, Adams G H, et al. Bovine serum lipids. II. Lipoprotein quantitative and qualitative composition as influenced by added animal fat diets. Journal of Animal Science, 1971, 32(5): 1016-1029. |
18 | Vargas-Bello-Perez E, Iniguez-Gonzalez G, Cancino-Padilla N, et al. Effect of dietary vegetable oils on the fatty acid profile of plasma lipoproteins in dairy cows. Archives of Animal Nutrition, 2016, 70(4): 322-332. |
19 | Zhao X W, Wang J Q, Sun P, et al. Effect of dietary supplementation with different fatty acid mixture on blood fatty acid composition and antioxidant capacity in dairy cows. Journal of China Agricultural University, 2011, 6: 117-123. |
赵小伟, 王加启, 孙鹏, 等. 日粮添加不同脂肪酸混合物对奶牛血液脂肪酸组成及抗氧化性能的影响. 中国农业大学学报, 2011, 6: 117-123. | |
20 | Latham M J, Storry J E, Sharpe M E. Effect of low-roughage diets on the microflora and lipid metabolism in the rumen. Applied Microbiology, 1972, 24(6): 871-877. |
21 | Li F, Wang Z L, Dong C X, et al. Rumen bacteria communities and performances of fattening lambs with a lower or greater subacute ruminal acidosis risk. Frontiers in Microbiology, 2017, 8: 2506-2516. |
22 | Ma L, Corl B A. Transcriptional regulation of lipid synthesis in bovine mammary epithelial cells by sterol regulatory element binding protein-1. Journal of Dairy Science, 2012, 95(7): 3743-3755. |
23 | Kalac P, Samkova E. The effects of feeding various forages on fatty acid composition of bovine milk fat: A review. Czech Journal of Animal Science, 2010, 55(12): 521-537. |
24 | Zhang R Y, Ye H, Liu J H, et al. High-grain diets altered rumen fermentation and epithelial bacterial community and resulted in rumen epithelial injuries of goats. Applied Microbiology and Biotechnology, 2017, 101(18): 6981-6992. |
25 | Kara K. Milk urea nitrogen and milk fatty acid compositions in dairy cows with subacute ruminal acidosis. Veterinární Medicína, 2020, 65(8): 336-345. |
26 | Xu T L, Tao H, Chang G J, et al. Lipopolysaccharide derived from the rumen down-regulates stearoyl-CoA desaturase 1 expression and alters fatty acid composition in the liver of dairy cows fed a high-concentrate diet. BMC Veterinary Research, 2015, 11: 52. |
27 | Zhang R Y, Zhu W Y, Jiang L S, et al. Comparative metabolome analysis of ruminal changes in Holstein dairy cows fed low- or high-concentrate diets. Metabolomics, 2017, 13(6): 74. |
28 | Bardocz S, Duguid T J, Brown D S, et al. The importance of dietary polyamines in cell regeneration and growth. British Journal of Nutrition, 1995, 73(6): 819-828. |
29 | Wang D S, Zhang R Y, Zhu W Y, et al. Effects of subacute ruminal acidosis challenges on fermentation and biogenic amines in the rumen of dairy cows. Livestock Science, 2013, 155(2/3): 262-272. |
30 | Dunning K R, Russell D L, Robker R L. Lipids and oocyte developmental competence: The role of fatty acids and beta-oxidation. Reproduction, 2014, 148(1): R15-R27. |
31 | Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiological Reviews, 2000, 80(3): 1107-1213. |
32 | Fei A H, Wang F C, Wu Z B, et al. Phosphocreatine attenuates angiotensin II-induced cardiac fibrosis in rat cardiomyocytes through modulation of MAPK and NF-kappaB pathway. European Review for Medical and Pharmacological Sciences, 2016, 20(12): 2726-2733. |
33 | Yang Y, Dong G Z, Wang Z, et al. Rumen and plasma metabolomics profiling by UHPLC-QTOF/MS revealed metabolic alterations associated with a high-corn diet in beef steers. PLoS One, 2018, 13(11): e0208031. |
34 | Rocchetti G, Gallo A, Nocetti M, et al. Milk metabolomics based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry to discriminate different cows feeding regimens. Food Research International, 2020, 134: 109279. |
35 | Gallier S, Gragson D, Jimenez-Flores R, et al. Using confocal laser scanning microscopy to probe the milk fat globule membrane and associated proteins. Journal of Agricultural and Food Chemistry, 2010, 58(7): 4250-4257. |
36 | Gao X, Oba M. Relationship of severity of subacute ruminal acidosis to rumen fermentation, chewing activities, sorting behavior, and milk production in lactating dairy cows fed a high-grain diet. Journal of Dairy Science, 2014, 97(5): 3006-3016. |
37 | Kelley W N, Greene M L, Fox I H, et al. Effects of orotic acid on purine and lipoprotein metabolism in man. Metabolism, 1970, 19(12): 1025-1035. |
38 | Fox P F, Kelly A L. Indigenous enzymes in milk: Overview and historical aspects-Part 1. International Dairy Journal, 2006, 16(6): 500-516. |
39 | Guler Z, Keskin M, Dursun A, et al. Effects of waiting period before milking on orotic, uric and hippuric acid contents of milks from shami and kilis goats. Journal of Agricultural Sciences-Tarim Bilimleri Dergisi, 2018, 24(2): 170-178. |
40 | Jing L H, Dewanckele L, Vlaeminck B, et al. Susceptibility of dairy cows to subacute ruminal acidosis is reflected in milk fatty acid proportions, with C18:1 trans-10 as primary and C15:0 and C18:1 trans-11 as secondary indicators. Journal of Dairy Science, 2018, 101(11): 9827-9840. |
[1] | Wang-pan QI, Ying-yu MU, Tao ZHANG, Ji-you ZHANG, Sheng-yong MAO. Plasma biochemical indexes and metabolomics profile changes of dairy cows with subacute ruminal acidosis [J]. Acta Prataculturae Sinica, 2021, 30(6): 141-150. |
[2] | Ye WANG, Hui-ping CHEN, Run-zhi LI, Zhen PENG, Xi-feng FAN, Ju-ying WU, Liu-sheng DUAN. A micropropagation system for Miscanthus×giganteus based on axillary buds and evaluation of its salt tolerance [J]. Acta Prataculturae Sinica, 2021, 30(6): 214-220. |
[3] | Fa-ming PAN, Sheng-hua CHANG, Guo-dong WANG, Sheng-yan HAO, Jia LIU, Hui-yuan ZHANG, Yin-ping XU. Effects of phenological period on the composition of fatty acids and conjugated linoleic acids in rumen fluid, forage and milk fat of grazing yak and their correlation analysis [J]. Acta Prataculturae Sinica, 2021, 30(3): 110-120. |
[4] | Ya-qi CHEN, Kai-qi SU, Tai-xiang CHEN, Chun-jie LI. Effects of complex saline-alkali stress on seed germination and seedling physiological characteristics of Achnatherum inebrians [J]. Acta Prataculturae Sinica, 2021, 30(3): 137-157. |
[5] | Sheng-wei ZHANG, Xiao-ping WANG, Zhan-hai ZHANG, You-ji MA, Shuang-bao GUN, Qiao-li YANG, Xiao-li GAO, Bao-jun ZHANG. Effects of Broussonetia papyrifera silage on growth performance, serum biochemical indexes and meat quality of Dorper×Hu crossbred sheep [J]. Acta Prataculturae Sinica, 2021, 30(3): 89-99. |
[6] | Ji-qing WANG, Ji-yuan SHEN, Xiu LIU, Shao-bin LI, Yu-zhu LUO, Meng-li ZHAO, Zhi-yun HAO, Na KE, Yi-ze SONG, Li-rong QIAO. Comparative analysis of meat production traits, meat quality, and muscle nutrient and fatty acid contents between Ziwuling black goats and Liaoning cashmere goats [J]. Acta Prataculturae Sinica, 2021, 30(2): 166-177. |
[7] | XING Yi-mei, DONG Li, ZHAN Li-feng, CAI Hua, YANG Sheng-qiu, SUN Na. Effect of mixed inoculation of Glomus mosseae and Sinorhizobium melilotion alkali resistance of alfalfa [J]. Acta Prataculturae Sinica, 2020, 29(9): 136-145. |
[8] | WANG Yu-ping, GAO Chun-xiao, WANG Sheng-xiang, HE Xiao-tong. Changes in photoinhibition and fatty acid composition in the thylakoid membrane of kidney bean leaves under low temperature and weak light stress [J]. Acta Prataculturae Sinica, 2020, 29(8): 116-125. |
[9] | SHA Jie, CHEN Yuan, GUO Feng-xia, BAI Gang, ZHOU Chuan-meng. A study of exogenously applied Ca2+ to control physiological characteristics of cold tolerance for wild fostered Lamiophlomis rotata seedlings [J]. Acta Prataculturae Sinica, 2020, 29(2): 11-21. |
[10] | Cheng ZONG, Jian ZHANG, Tao SHAO, Zhi-hao DONG, Jun-feng LI, Lu TANG, Qi-fan RAN, Qin-hua LIU. Effects of additives on fermentation quality of alfalfa silage [J]. Acta Prataculturae Sinica, 2020, 29(12): 180-187. |
[11] | XU Hong-yu, LI Xiang-lin. A metabolomics analysis of the effect of water deficit on the freezing tolerance of alfalfa (Medicago sativa) [J]. Acta Prataculturae Sinica, 2020, 29(1): 106-116. |
[12] | ZHANG Xiang, YANG Yong, LIU Xue-yong, XIANG Zuo-xiang. Effect of exogenous salicylic acid on the antioxidant enzyme activities and fatty acid profiles in seashore paspalum under low temperature stress [J]. Acta Prataculturae Sinica, 2020, 29(1): 117-124. |
[13] | HAO Pei-tong, NING Ya-ming, GAO Qiu, LIU Fang, LI Yu-long, ZHANG Shang-xiong, ZHENG Gui-liang, WANG Xian-guo. A study of crown physiological mechanisms for cold tolerance of different alfalfa varieties in Horqin sandy land [J]. Acta Prataculturae Sinica, 2019, 28(9): 87-95. |
[14] | ZHANG Chao-cheng, JIANG Qian, WU Zhi, HE Xin-jie, JIANG Kai, GAO Jing-ya, LI Xiang, WANG Ning. Studies of the shade-tolerance of four ornamental grass and sedge cultivars [J]. Acta Prataculturae Sinica, 2019, 28(7): 60-72. |
[15] | DONG Wen-ke, Chen Chun-yan, MA Hui-ling. Analysis of insect resistance and herbicide resistance in transgenic alfalfa plants over-expressing the OvBAN/bar gene [J]. Acta Prataculturae Sinica, 2019, 28(7): 159-167. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||