Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (11): 132-143.DOI: 10.11686/cyxb2021064
Jie YUAN2,3(), Ran-ran MA1,3, Wen-jie ZHANG1,3, Neng-xiang XU1,3, Ran-ran ZHAO1,3, Hong-ru GU1,3, Cheng-long DING1,3()
Received:
2021-02-08
Revised:
2021-06-09
Online:
2021-10-19
Published:
2021-10-19
Contact:
Cheng-long DING
Jie YUAN, Ran-ran MA, Wen-jie ZHANG, Neng-xiang XU, Ran-ran ZHAO, Hong-ru GU, Cheng-long DING. Screening of superior lactic acid bacteria from natural Lolium multiflorum silage and their effects on silage quality[J]. Acta Prataculturae Sinica, 2021, 30(11): 132-143.
项目 Item | 值 Value |
---|---|
干物质 Dry matter (g·kg-1 FM) | 302.30±2.30 |
粗蛋白 Crude protein (g·kg-1 DM) | 81.75±0.06 |
可溶性碳水化合物 Water soluble carbohydrate (g·kg-1 DM) | 140.72±5.60 |
淀粉 Starch (g·kg-1 DM) | 91.23±5.60 |
中性洗涤纤维 Neutral detergent fiber (g·kg-1 DM) | 566.27±0.55 |
酸性洗涤纤维 Acid detergent fiber (g·kg-1 DM) | 313.04±8.17 |
酸性洗涤木质素 Acid detergent lignin (g·kg-1 DM) | 24.77±2.50 |
纤维素 Cellulose (g·kg-1 DM) | 287.02±5.67 |
半纤维素 Hemicellulose (g·kg-1 DM) | 253.24±8.72 |
乳酸菌 Lactic acid bacteria (Log10 cfu·g-1 FM) | 4.38±0.10 |
好氧细菌 Aerobic bacteria (Log10 cfu·g-1 FM) | 6.18±0.03 |
酵母 Yeast (Log10 cfu·g-1 FM) | 3.37±0.10 |
霉菌 Mold (Log10 cfu·g-1 FM) | 3.65±0.05 |
Table 1 Chemical and microbial population in the material of Italian ryegrass
项目 Item | 值 Value |
---|---|
干物质 Dry matter (g·kg-1 FM) | 302.30±2.30 |
粗蛋白 Crude protein (g·kg-1 DM) | 81.75±0.06 |
可溶性碳水化合物 Water soluble carbohydrate (g·kg-1 DM) | 140.72±5.60 |
淀粉 Starch (g·kg-1 DM) | 91.23±5.60 |
中性洗涤纤维 Neutral detergent fiber (g·kg-1 DM) | 566.27±0.55 |
酸性洗涤纤维 Acid detergent fiber (g·kg-1 DM) | 313.04±8.17 |
酸性洗涤木质素 Acid detergent lignin (g·kg-1 DM) | 24.77±2.50 |
纤维素 Cellulose (g·kg-1 DM) | 287.02±5.67 |
半纤维素 Hemicellulose (g·kg-1 DM) | 253.24±8.72 |
乳酸菌 Lactic acid bacteria (Log10 cfu·g-1 FM) | 4.38±0.10 |
好氧细菌 Aerobic bacteria (Log10 cfu·g-1 FM) | 6.18±0.03 |
酵母 Yeast (Log10 cfu·g-1 FM) | 3.37±0.10 |
霉菌 Mold (Log10 cfu·g-1 FM) | 3.65±0.05 |
特性 Characteristics | 菌株 Strain | ||||
---|---|---|---|---|---|
PR_LAB_9 | PR_LAB_34 | PR_LAB_67 | PR_LAB_76 | PR_LAB_86 | |
菌株形态Shape | 杆菌Bacillus | 杆菌Bacillus | 杆菌Bacillus | 球菌Coccus | 杆菌Bacillus |
革兰氏染色Gram strain | 阳性Positive | 阳性Positive | 阳性Positive | 阳性Positive | 阳性Positive |
过氧化氢酶反应Catalase reaction | 阴性Negative | 阴性Negative | 阴性Negative | 阴性Negative | 阴性Negative |
葡萄糖产气Gas from glucose | 阴性Negative | 阴性Negative | 阴性Negative | 阴性Negative | 阴性Negative |
发酵类型Fermentation type | 同型Homo | 同型Homo | 同型Homo | 同型Homo | 同型Homo |
耐酸性 Aciduric ability | |||||
pH 2.5 | - | - | - | - | - |
pH 3.0 | ++ | ++ | ++ | ++ | ++ |
pH 3.5 | +++ | +++ | +++ | +++ | +++ |
pH 4.0 | +++ | +++ | +++ | +++ | +++ |
pH 4.5 | +++ | +++ | +++ | +++ | +++ |
pH 5.0 | +++ | +++ | +++ | +++ | +++ |
pH 5.5 | +++ | +++ | +++ | +++ | +++ |
pH 6.0 | +++ | +++ | +++ | +++ | +++ |
pH 6.5 | +++ | +++ | +++ | +++ | +++ |
PH 7.0 | +++ | +++ | +++ | +++ | +++ |
耐盐性Salt tolerance ability | |||||
0.0% NaCl | +++ | +++ | +++ | +++ | +++ |
3.0% NaCl | +++ | +++ | +++ | +++ | +++ |
6.5% NaCl | ++ | ++ | ++ | ++ | ++ |
10.0% NaCl | + | + | + | + | + |
20.0% NaCl | - | - | - | - | - |
耐温性Thermotolerant ability | |||||
5 ℃ | + | + | + | + | + |
15 ℃ | +++ | +++ | +++ | +++ | +++ |
25 ℃ | +++ | +++ | +++ | +++ | +++ |
35 ℃ | +++ | +++ | +++ | +++ | +++ |
45 ℃ | + | + | + | + | + |
Table 2 Physiological and biochemical characteristics of lactic acid bacteria
特性 Characteristics | 菌株 Strain | ||||
---|---|---|---|---|---|
PR_LAB_9 | PR_LAB_34 | PR_LAB_67 | PR_LAB_76 | PR_LAB_86 | |
菌株形态Shape | 杆菌Bacillus | 杆菌Bacillus | 杆菌Bacillus | 球菌Coccus | 杆菌Bacillus |
革兰氏染色Gram strain | 阳性Positive | 阳性Positive | 阳性Positive | 阳性Positive | 阳性Positive |
过氧化氢酶反应Catalase reaction | 阴性Negative | 阴性Negative | 阴性Negative | 阴性Negative | 阴性Negative |
葡萄糖产气Gas from glucose | 阴性Negative | 阴性Negative | 阴性Negative | 阴性Negative | 阴性Negative |
发酵类型Fermentation type | 同型Homo | 同型Homo | 同型Homo | 同型Homo | 同型Homo |
耐酸性 Aciduric ability | |||||
pH 2.5 | - | - | - | - | - |
pH 3.0 | ++ | ++ | ++ | ++ | ++ |
pH 3.5 | +++ | +++ | +++ | +++ | +++ |
pH 4.0 | +++ | +++ | +++ | +++ | +++ |
pH 4.5 | +++ | +++ | +++ | +++ | +++ |
pH 5.0 | +++ | +++ | +++ | +++ | +++ |
pH 5.5 | +++ | +++ | +++ | +++ | +++ |
pH 6.0 | +++ | +++ | +++ | +++ | +++ |
pH 6.5 | +++ | +++ | +++ | +++ | +++ |
PH 7.0 | +++ | +++ | +++ | +++ | +++ |
耐盐性Salt tolerance ability | |||||
0.0% NaCl | +++ | +++ | +++ | +++ | +++ |
3.0% NaCl | +++ | +++ | +++ | +++ | +++ |
6.5% NaCl | ++ | ++ | ++ | ++ | ++ |
10.0% NaCl | + | + | + | + | + |
20.0% NaCl | - | - | - | - | - |
耐温性Thermotolerant ability | |||||
5 ℃ | + | + | + | + | + |
15 ℃ | +++ | +++ | +++ | +++ | +++ |
25 ℃ | +++ | +++ | +++ | +++ | +++ |
35 ℃ | +++ | +++ | +++ | +++ | +++ |
45 ℃ | + | + | + | + | + |
菌株 Strain | 相似菌株 Similar strain | 同源性 Homology |
---|---|---|
PR_LAB_9 | Lactobacillus plantarum MT613628.1 | 99.93% |
PR_LAB_34 | Lactobacillus plantarum MT645503.1 | 100.00% |
PR_LAB_67 | Lactobacillus plantarum MT645503.1 | 100.00% |
PR_LAB_76 | Pediococcus pentosaceus LC119127.1 | 99.86% |
PR_LAB_86 | Lactobacillus plantarum AB830324.1 | 100.00% |
Table 3 NCBI alignment results based on 16S rRNA sequence
菌株 Strain | 相似菌株 Similar strain | 同源性 Homology |
---|---|---|
PR_LAB_9 | Lactobacillus plantarum MT613628.1 | 99.93% |
PR_LAB_34 | Lactobacillus plantarum MT645503.1 | 100.00% |
PR_LAB_67 | Lactobacillus plantarum MT645503.1 | 100.00% |
PR_LAB_76 | Pediococcus pentosaceus LC119127.1 | 99.86% |
PR_LAB_86 | Lactobacillus plantarum AB830324.1 | 100.00% |
Fig.3 Growth curve (A), acid production capacity (B), lactic acid production at 24 h (C), and acetic acid production at 24 h (D) of lactic acid bacteria
指标 Index | 处理 Treatment | |||||
---|---|---|---|---|---|---|
CK | PR_LAB_9 | PR_LAB_34 | PR_LAB_67 | PR_LAB_76 | PR_LAB_86 | |
pH | 4.39±0.04a | 3.97±0.02bc | 3.99±0.02b | 3.91±0.04bcd | 3.88±0.03d | 3.90±0.04cd |
乳酸Lactic acid (g·kg-1 DM) | 81.57±1.62d | 115.56±1.18bc | 108.76±3.40c | 119.00±1.07ab | 123.54±3.30a | 119.01±3.57ab |
乙酸Acetic acid (g·kg-1 DM) | 0.92±0.03c | 1.14±0.03a | 1.01±0.06bc | 1.12±0.02ab | 1.15±0.06a | 1.10±0.05ab |
丙酸Propionic acid (g·kg-1 DM) | ND | ND | ND | ND | ND | ND |
异丁酸Isobutyric acid (g·kg-1 DM) | 4.43±0.29a | 1.83±0.08b | 1.55±0.08b | 1.71±0.04b | 1.79±0.20b | 1.72±0.10b |
丁酸Butyric acid (g·kg-1 DM) | ND | ND | ND | ND | ND | ND |
乳酸/乙酸Lactic acid/acetic acid | 89.14±4.78b | 101.35±3.55a | 108.25±3.34a | 105.99±1.21a | 107.10±2.66a | 107.82±1.91a |
氨态氮Ammonia nitrogen (g·kg-1 TN) | 23.14±1.61a | 4.96±0.45b | 4.86±0.55b | 4.90±0.27b | 4.66±0.30b | 4.72±0.39b |
Table 4 Effects of lactic acid bacteria on fermentation quality in Italian ryegrass silage
指标 Index | 处理 Treatment | |||||
---|---|---|---|---|---|---|
CK | PR_LAB_9 | PR_LAB_34 | PR_LAB_67 | PR_LAB_76 | PR_LAB_86 | |
pH | 4.39±0.04a | 3.97±0.02bc | 3.99±0.02b | 3.91±0.04bcd | 3.88±0.03d | 3.90±0.04cd |
乳酸Lactic acid (g·kg-1 DM) | 81.57±1.62d | 115.56±1.18bc | 108.76±3.40c | 119.00±1.07ab | 123.54±3.30a | 119.01±3.57ab |
乙酸Acetic acid (g·kg-1 DM) | 0.92±0.03c | 1.14±0.03a | 1.01±0.06bc | 1.12±0.02ab | 1.15±0.06a | 1.10±0.05ab |
丙酸Propionic acid (g·kg-1 DM) | ND | ND | ND | ND | ND | ND |
异丁酸Isobutyric acid (g·kg-1 DM) | 4.43±0.29a | 1.83±0.08b | 1.55±0.08b | 1.71±0.04b | 1.79±0.20b | 1.72±0.10b |
丁酸Butyric acid (g·kg-1 DM) | ND | ND | ND | ND | ND | ND |
乳酸/乙酸Lactic acid/acetic acid | 89.14±4.78b | 101.35±3.55a | 108.25±3.34a | 105.99±1.21a | 107.10±2.66a | 107.82±1.91a |
氨态氮Ammonia nitrogen (g·kg-1 TN) | 23.14±1.61a | 4.96±0.45b | 4.86±0.55b | 4.90±0.27b | 4.66±0.30b | 4.72±0.39b |
指标 Index | 处理 Treatment | |||||
---|---|---|---|---|---|---|
CK | PR_LAB_9 | PR_LAB_34 | PR_LAB_67 | PR_LAB_76 | PR_LAB_86 | |
乳酸菌Lactic acid bacteria | 5.72±0.05d | 6.06±0.02bc | 6.00±0.04c | 6.10±0.02ab | 6.15±0.02a | 6.11±0.01ab |
好氧细菌Aerobic bacteria | 5.28±0.03a | 4.67±0.02b | 4.74±0.17b | 4.69±0.05b | 4.66±0.09b | 4.71±0.12b |
酵母Yeast | 4.25±0.04a | 3.99±0.01c | 4.06±0.03b | 3.93±0.03cd | 3.89±0.01d | 3.93±0.01cd |
霉菌Mold | <1 | <1 | <1 | <1 | <1 | <1 |
Table 5 Effects of lactic acid bacteria on microbial counts in Italian ryegrass silage (Log10 cfu·g-1 FM)
指标 Index | 处理 Treatment | |||||
---|---|---|---|---|---|---|
CK | PR_LAB_9 | PR_LAB_34 | PR_LAB_67 | PR_LAB_76 | PR_LAB_86 | |
乳酸菌Lactic acid bacteria | 5.72±0.05d | 6.06±0.02bc | 6.00±0.04c | 6.10±0.02ab | 6.15±0.02a | 6.11±0.01ab |
好氧细菌Aerobic bacteria | 5.28±0.03a | 4.67±0.02b | 4.74±0.17b | 4.69±0.05b | 4.66±0.09b | 4.71±0.12b |
酵母Yeast | 4.25±0.04a | 3.99±0.01c | 4.06±0.03b | 3.93±0.03cd | 3.89±0.01d | 3.93±0.01cd |
霉菌Mold | <1 | <1 | <1 | <1 | <1 | <1 |
指标 Index | 处理 Treatment | |||||
---|---|---|---|---|---|---|
CK | PR_LAB_9 | PR_LAB_34 | PR_LAB_67 | PR_LAB_76 | PR_LAB_86 | |
干物质Dry matter (g·kg-1 FM) | 271.15±1.02b | 274.27±2.73ab | 271.52±0.67b | 275.82±3.46ab | 278.64±2.63a | 276.32±1.41ab |
干物质损失Dry matter loss (g·kg-1 FM) | 32.92±1.02a | 29.80±2.73ab | 32.55±0.67a | 28.25±3.46ab | 25.43±2.63b | 27.75±1.41ab |
粗蛋白Crude protein (g·kg-1 DM) | 83.80±2.49b | 84.77±3.26b | 84.51±1.14b | 86.63±1.01b | 91.97±0.45a | 87.17±0.04ab |
可溶性碳水化合物Water soluble carbohydrate (g·kg-1 DM) | 37.04±0.87d | 50.96±0.99c | 47.96±2.32c | 66.64±2.38b | 73.79±1.65a | 68.64±1.85b |
淀粉Starch (g·kg-1 DM) | 34.54±4.73a | 33.24±2.64a | 33.21±4.82a | 35.77±3.96a | 37.84±5.95a | 35.95±4.69a |
中性洗涤纤维Neutral detergent fiber (g·kg-1 DM) | 554.99±6.67a | 548.23±0.11ab | 553.19±4.75a | 540.38±4.26bc | 531.39±4.69c | 532.74±3.32c |
酸性洗涤纤维Acid detergent fiber (g·kg-1 DM) | 333.93±5.20a | 332.91±4.06a | 323.41±2.77ab | 321.67±5.88ab | 313.10±6.73b | 312.10±5.82b |
酸性洗涤木质素Acid detergent lignin (g·kg-1 DM) | 24.00±2.59a | 23.46±0.09a | 26.68±2.94a | 20.95±11.40a | 20.71±3.18a | 24.59±1.91a |
纤维素Cellulose (g·kg-1 DM) | 311.42±5.73a | 309.41±3.98ab | 297.72±5.70abc | 294.62±6.63bc | 290.62±6.63c | 287.51±3.91c |
半纤维素Hemicellulose (g·kg-1 DM) | 221.07±1.46ab | 215.32±4.17b | 229.78±6.96a | 218.71±2.02b | 218.29±2.04b | 220.64±2.50ab |
Table 6 Effects of lactic acid bacteria on nutritional quality in Italian ryegrass silage
指标 Index | 处理 Treatment | |||||
---|---|---|---|---|---|---|
CK | PR_LAB_9 | PR_LAB_34 | PR_LAB_67 | PR_LAB_76 | PR_LAB_86 | |
干物质Dry matter (g·kg-1 FM) | 271.15±1.02b | 274.27±2.73ab | 271.52±0.67b | 275.82±3.46ab | 278.64±2.63a | 276.32±1.41ab |
干物质损失Dry matter loss (g·kg-1 FM) | 32.92±1.02a | 29.80±2.73ab | 32.55±0.67a | 28.25±3.46ab | 25.43±2.63b | 27.75±1.41ab |
粗蛋白Crude protein (g·kg-1 DM) | 83.80±2.49b | 84.77±3.26b | 84.51±1.14b | 86.63±1.01b | 91.97±0.45a | 87.17±0.04ab |
可溶性碳水化合物Water soluble carbohydrate (g·kg-1 DM) | 37.04±0.87d | 50.96±0.99c | 47.96±2.32c | 66.64±2.38b | 73.79±1.65a | 68.64±1.85b |
淀粉Starch (g·kg-1 DM) | 34.54±4.73a | 33.24±2.64a | 33.21±4.82a | 35.77±3.96a | 37.84±5.95a | 35.95±4.69a |
中性洗涤纤维Neutral detergent fiber (g·kg-1 DM) | 554.99±6.67a | 548.23±0.11ab | 553.19±4.75a | 540.38±4.26bc | 531.39±4.69c | 532.74±3.32c |
酸性洗涤纤维Acid detergent fiber (g·kg-1 DM) | 333.93±5.20a | 332.91±4.06a | 323.41±2.77ab | 321.67±5.88ab | 313.10±6.73b | 312.10±5.82b |
酸性洗涤木质素Acid detergent lignin (g·kg-1 DM) | 24.00±2.59a | 23.46±0.09a | 26.68±2.94a | 20.95±11.40a | 20.71±3.18a | 24.59±1.91a |
纤维素Cellulose (g·kg-1 DM) | 311.42±5.73a | 309.41±3.98ab | 297.72±5.70abc | 294.62±6.63bc | 290.62±6.63c | 287.51±3.91c |
半纤维素Hemicellulose (g·kg-1 DM) | 221.07±1.46ab | 215.32±4.17b | 229.78±6.96a | 218.71±2.02b | 218.29±2.04b | 220.64±2.50ab |
1 | Ding C L. Function and cultivation techniqe of Italian ryegrass in the agriculture system of rural area of South China. Chinese Journal of Rabbit Farming, 2008(11): 15-17. |
丁成龙. 多花黑麦草在南方农区农业结构中的作用及其栽培利用技术. 中国养兔, 2008(11): 15-17. | |
2 | Ding C L, Gu H R, Xu N X, et al. Effect of cutting time on the biomass production and forage quality of Lolium multiflorum. Acta Prataculturae Sinica, 2011, 20(6): 186-194. |
丁成龙, 顾洪如, 许能祥, 等. 不同刈割期对多花黑麦草饲草产量及品质的影响. 草业学报, 2011, 20(6): 186-194. | |
3 | Mu L L, Huan H L, Xu N X, et al. Effects of wilting time on fermentation quality and microbial dynamics of Italian ryegrass silage. Journal of Southern Agriculture, 2019, 50(12): 2771-2777. |
牟林林, 宦海琳, 许能祥, 等. 凋萎时间对多花黑麦草青贮品质及微生物动态变化的影响. 南方农业学报, 2019, 50(12): 2771-2777. | |
4 | Ding C L, Xu N X, Dong C F, et al. Growth adaptabilities and forage qualities of different early maturing Italian ryegrass varieties. Acta Agrestia Sinica, 2014, 22(6): 1337-1341. |
丁成龙, 许能祥, 董臣飞, 等. 早熟型多花黑麦草生产性能及饲用品质研究. 草地学报, 2014, 22(6): 1337-1341. | |
5 | Li J L, Zhang X Q, Yu Z, et al. Effects of moisture content and lactic acid bacteria additive on the quality of Italian ryegrass silage. Acta Prataculturae Sinica, 2014, 23(6): 342-348. |
李君临, 张新全, 玉柱, 等. 含水量和乳酸菌添加剂对多花黑麦草青贮品质的影响. 草业学报, 2014, 23(6): 342-348. | |
6 | Zhang W J, Dong C F, Ding C L, et al. Effects of harvest stage on nutrients and silage quality of different cultivars of Italian ryegrass (Lolium multiflorum). Chinese Journal of Grassland, 2016, 38(5): 32-37. |
张文洁, 董臣飞, 丁成龙, 等. 收获期对多花黑麦草营养成分和青贮品质的影响. 中国草地学报, 2016, 38(5): 32-37. | |
7 | Jia X Y, Cheng J K, Xin G R, et al. Effect of drying and silage time on fresh Italian ryegrass silage. Journal of Grassland and Forage Science, 2019(6): 13-19. |
贾戌禹, 程俊康, 辛国荣, 等. 晾干及青贮时间对高水分多花黑麦草青贮效果的影响研究. 草学, 2019(6): 13-19. | |
8 | Guan H, Guo X S, Gan Y M, et al. Effect of different additives on fermentation quality and aerobic stability of Italian ryegrass silage ensiled at different moisture. Acta Agrestia Sinica, 2016, 24(3): 669-675. |
关皓, 郭旭生, 干友民, 等. 添加剂对不同含水量多花黑麦草青贮发酵品质及有氧稳定性的影响. 草地学报, 2016, 24(3): 669-675. | |
9 | Zhang Z X, Shao T. Research progress in silage additive. Pratacultural Science, 2006, 23(9): 56-63. |
张增欣, 邵涛. 青贮添加剂研究进展. 草业科学, 2006, 23(9): 56-63. | |
10 | Li X L, Guan H, Yan Y H, et al. Screening and physiological-biochemical characteristics of good lactic acid bacteria from Pennisetum rich. silage. Journal of Grassland and Forage Science, 2018(4): 27-35. |
李小铃, 关皓, 闫艳红, 等. 狼尾草属牧草青贮优良乳酸菌的筛选及生理生化特性研究. 草学, 2018(4): 27-35. | |
11 | Jia Y S, Yu H R, Du S, et al. Research progress on natural forage silage additives. Acta Agrestia Sinica, 2018, 26(3): 533-538. |
贾玉山, 于浩然, 都帅, 等. 天然牧草青贮添加剂研究进展. 草地学报, 2018, 26(3): 533-538. | |
12 | Zhang J, Yu Z, Shao T. Effect of adding propionic acid and lactic acid bacteria on fermentation quality of Italian ryegrass silages. Acta Agrestia Sinica, 2009, 17(2): 162-165. |
张静, 玉柱, 邵涛. 丙酸、乳酸菌添加剂对多花黑麦草青贮发酵品质的影响. 草地学报, 2009, 17(2): 162-165. | |
13 | Cai Y M, Kumai S, Liao Z, et al. Effect of lactic acid bacteria inoculants on fermentative quality of silage. Scientia Agricultura Sinica, 1995, 28(2): 73-82. |
蔡义民, 熊井清雄, 廖芷, 等. 乳酸菌剂对青贮饲料发酵品质的改善效果. 中国农业科学, 1995, 28(2): 73-82. | |
14 | Parvin S, Wang C, Li Y, et al. Effects of inoculation with lactic acid bacteria on the bacterial communities of Italian ryegrass, whole crop maize, guinea grass and rhodes grass silages. Animal Feed Science and Technology, 2010, 160(3/4): 160-166. |
15 | Li Y, Nishino N. Bacterial and fungal communities of wilted Italian ryegrass silage inoculated with and without Lactobacillus rhamnosus or Lactobacillus buchneri. Letters in Applied Microbiology, 2011, 52(4): 314-321. |
16 | Zhang H M, Duan Z, Li X, et al. Actual research and application of the silage lactic acid bacteria additives. Pratacultural Science, 2017, 34(12): 2575-2583. |
张红梅, 段珍, 李霞, 等. 青贮饲料乳酸菌添加剂的应用现状. 草业科学, 2017, 34(12): 2575-2583. | |
17 | Muck R E, Nadeau E M G, Mc Allister T A, et al. Silage review: Recent advances and future uses of silage additives. Journal of Dairy Science, 2018, 101(5): 3980-4000. |
18 | Chen W. Science and technology of lactic acid bacteria. Beijing: Science Press, 2018. |
陈卫. 乳酸菌科学与技术. 北京: 科学出版社, 2018. | |
19 | Association of Official Analytical Chemists. Official methods of analysis (15th Edition). Arlington, Virginia: Association of Official Analytical Chemists, 1990. |
20 | Murphy R P. A method for the extraction of plant samples and the determination of total soluble carbohydrates. Journal of the Science of Food and Agriculture, 1958, 9(11): 714-717. |
21 | Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991, 74(10): 3583-3597. |
22 | Liu B Y, Huan H L, Gu H R, et al. Dynamics of a microbial community during ensiling and upon aerobic exposure in lactic acid bacteria inoculation-treated and untreated barley silages. Bioresource Technology, 2019, 273: 212-219. |
23 | Salawu M B, Acamovic T, Stewart C S, et al. The use of tannins as silage additives: Effects on silage composition and mobile bag disappearance of dry matter and protein. Animal Feed Science and Technology, 1999, 82(3/4): 243-259. |
24 | He L W, Wang C, Xing Y Q, et al. Ensiling characteristics, proteolysis and bacterial community of high-moisture corn stalk and stylo silage prepared with Bauhinia variegate flower. Bioresource Technology, 2020, 296: 122336. |
25 | Holzer M, Mayrhuber E, Danner H, et al. The role of Lactobacillus buchneri in forage preservation. Trends in Biotechnology, 2003, 21(6): 282-287. |
26 | Zhang H M. The fermentation properties of ensiled Elymus nutans from different altitude regions on the Tibetan Plateau and screening of lactic acid bacteria for low temperature fermentation. Lanzhou: Lanzhou University, 2016. |
张红梅. 青藏高原不同海拔区垂穗披碱草发酵特性及耐低温乳酸菌筛选研究. 兰州: 兰州大学, 2016. | |
27 | Wang Y, He L W, Xing Y Q, et al. Bacterial diversity and fermentation quality of Moringa oleifera leaves silage prepared with lactic acid bacteria inoculants and stored at different temperatures. Bioresource Technology, 2019, 284: 349-358. |
28 | Wang C, He L W, Xing Y Q, et al. Fermentation quality and microbial community of alfalfa and stylo silage mixed with Moringa oleifera leaves. Bioresource Technology, 2019, 284: 240-247. |
29 | Guimarães A, Santiago A, Teixeira J A, et al. Anti-aflatoxigenic effect of organic acids produced by Lactobacillus plantarum. International Journal of Food Microbiology, 2018, 264(2): 31-38. |
30 | Li F H, Ding Z T, Ke W C, et al. Ferulic acid esterase-producing lactic acid bacteria and cellulase pretreatments of corn stalk silage at two different temperatures: Ensiling characteristics, carbohydrates composition and enzymatic saccharification. Bioresource Technology, 2019, 282: 211-221. |
31 | Zhao X L, Liu J H, Liu J J, et al. Effect of ensiling and silage additives on biogas production and microbial community dynamics during anaerobic digestion of switchgrass. Bioresource Technology, 2017, 241: 349-359. |
32 | Yuan X J, Guo G, Wen A Y, et al. The effect of different additives on the fermentation quality, in vitro digestibility and aerobic stability of a total mixed ration silage. Animal Feed Science and Technology, 2015, 207: 41-50. |
33 | Hristov A N, McAllister T A. Effect of inoculants on whole-crop barley silage fermentation and dry matter disappearance in situ. Journal of Animal Science, 2002, 80(2): 510-516. |
34 | Kleinschmit D H, Schmidt R J, Kung L. The effects of various antifungal additives on the fermentation and aerobic stability of corn silage. Journal of Dairy Science, 2005, 88(6): 2130-2139. |
35 | Filya I, Muck R E, Contreras-Govea F E. Inoculant effects on alfalfa silage: Fermentation products and nutritive value. Journal of Dairy Science, 2007, 90(11): 5108-5114. |
36 | Arriola K G, Kim S C, Adesogan A T. Effect of applying inoculants with heterolactic or homolactic and heterolactic bacteria on the fermentation and quality of corn silage. Journal of Dairy Science, 2011, 94(3): 1511-1516. |
37 | Weinberg Z G, Ashbell G, Azrieli A, et al. Ensiling peas, ryegrass and wheat with additives of lactic acid bacteria (LAB) and cell wall degrading enzymes. Grass and Forage Science, 1993, 48(1): 70-78. |
38 | Li D X, Zhang Y C, Lin Y L, et al. Effects on a strain of Pediococcus pentosaceus a144 to alfalfa silage quality. Journal of Grassland and Forage Science, 2017(S1): 71-72, 75. |
李东霞, 张颖超, 林炎丽, 等. 一株戊糖片球菌a144对苜蓿青贮品质的影响. 草学, 2017(S1): 71-72, 75. | |
39 | Zhang H M, Jing P X, Ke W C, et al. Effect of lactic acid bacteria isolated from Tibetan Plateau on silage fermentation quality of Elymus nutans. Acta Microbiologica Sinica, 2015, 55(10): 1291-1297. |
张红梅, 荆佩欣, 柯文灿, 等. 青藏高原乳酸菌对垂穗披碱草青贮饲料发酵品质的影响. 微生物学报, 2015, 55(10): 1291-1297. |
[1] | Yuan-yuan WEN, Mei-qi ZHANG, Tao-tao LIU, Yi-zhao SHEN, Yan-xia GAO, Qiu-feng LI, Yu-feng CAO, Jian-guo LI. Associative effects between whole crop maize silage and mixed silage made from raw potato crisp processing by-product and rice straw as determined using an in vitro gas production technique [J]. Acta Prataculturae Sinica, 2021, 30(8): 154-163. |
[2] | Dong-mei YANG, Jun-nian LI, Shuang-lun TAO. Effects of tannic acid addition on the aerobic stability and mycotoxin content of kudzu vine silage [J]. Acta Prataculturae Sinica, 2021, 30(8): 164-170. |
[3] | Xiang GUO, De-kui CHEN, Na CHEN, Yun LI, Xiao-yang CHEN, Qing ZHANG. Effect of moisture content and additives on the fermentation quality of Neolamarckia cadamba leaf silage [J]. Acta Prataculturae Sinica, 2021, 30(8): 199-205. |
[4] | Shi-yu ZOU, Si-kui CHEN, Qi-yuan TANG, Dong CHEN, Yuan-wei CHEN, Pan DENG, Xu-lai HUANG, Fu-qiang LI. Effects of silage additives on quality and in vitro rumen fermentation characteristics of first season ratoon rice whole silage [J]. Acta Prataculturae Sinica, 2021, 30(7): 122-132. |
[5] | Xiang YIN, Yong-qi WANG, Xin-qin LI, Jing TIAN, Xiao-ya WANG, Jian-guo ZHANG. Effects of various moisture-absorbing roughages on the fermentation quality and aerobic stability of napier grass silage [J]. Acta Prataculturae Sinica, 2021, 30(7): 133-138. |
[6] | Dan-dan ZHANG, Yuan-qing ZHANG, Jing CHENG, Guang JIN, Bo LI, Dong-cai WANG, Fang XU, Rui-feng SUN. Effects of different roughage combinations on in vitro rumen fermentation characteristics of Jinnan cattle [J]. Acta Prataculturae Sinica, 2021, 30(7): 93-100. |
[7] | Li-qin HUANG, Song-qiao LI, Zhen-zhong YUAN, Jing TANG, Jing-cai YAN, Qi-yuan TANG. Effects of feeding co-fermented whole plant rice and spent mushroom (Pleurotus ostreatus) substrate on slaughter performance, meat quality and organ size indexes of Liuyang black goats [J]. Acta Prataculturae Sinica, 2021, 30(6): 133-140. |
[8] | He-xing QI, Guang-xin LU, Zong-ren LI, Cheng-ti XU, Ke-jia DE, Xiao-juan ZHOU, Ying-cheng WANG, Gui-hua MA. Identification and pathogenicity of Alternaria leaf blight strains in silage maize in Qinghai Province [J]. Acta Prataculturae Sinica, 2021, 30(6): 94-105. |
[9] | Zhan XIE, Lin MU, Zhi-fei ZHANG, Gui-hua CHEN, Yang LIU, Shuai GAO, Zhong-shan WEI. Effects on fermentation in alfalfa mixed silage of added lactic acid bacteria or organic acid salt combined with urea [J]. Acta Prataculturae Sinica, 2021, 30(5): 165-173. |
[10] | Hong-jian LV, Xiang GUO, De-kui CHEN, Xiao-yang CHEN, Qing ZHANG. Effect of lactic acid bacteria and storage temperature on the quality of Moringa oleifera leaf silage [J]. Acta Prataculturae Sinica, 2021, 30(3): 121-128. |
[11] | Sheng-wei ZHANG, Xiao-ping WANG, Zhan-hai ZHANG, You-ji MA, Shuang-bao GUN, Qiao-li YANG, Xiao-li GAO, Bao-jun ZHANG. Effects of Broussonetia papyrifera silage on growth performance, serum biochemical indexes and meat quality of Dorper×Hu crossbred sheep [J]. Acta Prataculturae Sinica, 2021, 30(3): 89-99. |
[12] | Chang-rong WU, Sheng DAI, Long-fei LIANG, Wen-tao SUN, Chao PENG, Chao CHEN, Jun HAO. Effects of different additives on fermentation quality and protein degradation of Broussonetia papyrifera silage [J]. Acta Prataculturae Sinica, 2021, 30(10): 169-179. |
[13] | LOU Fen, LI Xiao-dong, SHANG Yi-shun, WU Jia-hai, ZHANG Rong, GAN Xiao-bo, XIONG Jun, CHEN Guang-ji, LI Shi-ge, PEI Cheng-jiang. Selection of suitable silage maize varieties in the Bijie region based on yield, agronomic and nutritional evaluation [J]. Acta Prataculturae Sinica, 2020, 29(6): 214-224. |
[14] | DONG Wen-cheng, LIN Yu-fan, ZHU Hong-fu, ZHANG Huan, ZHANG Gui-jie. Effects of different grape variety on proteolysis and aerobic stability of alfalfa silage made with added grape pomace [J]. Acta Prataculturae Sinica, 2020, 29(4): 129-137. |
[15] | YU Hao-ran, GE Gen-tu, WANG Zhi-jun, JIA Yu-shan, LIAN Zhi, JIA Peng-fei. Effects of formic acid additives and ensiling time on the quality of alfalfa silage [J]. Acta Prataculturae Sinica, 2020, 29(3): 89-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||