Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (7): 50-63.DOI: 10.11686/cyxb2021233
Previous Articles Next Articles
Yi-chao CHEN1(), Xiao-ying SUN1,2, Zhi-jie XIE1,2, Pan ZHOU1, Lu ZHANG1, Xue-li GAO1, Dong LI1(), Xiao-feng LIU1
Received:
2021-06-16
Revised:
2021-09-27
Online:
2022-07-20
Published:
2022-06-01
Contact:
Dong LI
Yi-chao CHEN, Xiao-ying SUN, Zhi-jie XIE, Pan ZHOU, Lu ZHANG, Xue-li GAO, Dong LI, Xiao-feng LIU. Screening of rhizosphere growth promoting bacteria and their application in tailings improvement[J]. Acta Prataculturae Sinica, 2022, 31(7): 50-63.
处理 Treatments | 铁尾矿砂 Iron tailings (kg) | LB培养基 Luria-bertani medium (mL) | 混合促生菌液 Plant growth promoting rhizobacteria (mL) | 生物炭 Biochar (g) | 粪肥 Manure (g) |
---|---|---|---|---|---|
空白对照CK | 5 | 2.4 | / | / | / |
接种促生菌液B | 5 | 1.2 | 1.2 | / | / |
添加生物炭C | 5 | 2.4 | / | 5 | / |
施用粪肥F | 5 | 2.4 | / | / | 30 |
接种促生菌液并添加生物炭BC | 5 | 1.2 | 1.2 | 5 | / |
接种促生菌液并施用粪肥BF | 5 | 1.2 | 1.2 | / | 30 |
添加生物炭并施用粪肥CF | 5 | 2.4 | / | 5 | 30 |
接种促生菌液、添加生物炭并施用粪肥BⅠCF | 5 | 1.2 | 1.2 | 5 | 30 |
接种2倍剂量的促生菌液、添加生物炭并施用粪肥BⅡCF | 5 | / | 2.4 | 5 | 30 |
Table 1 The treatments for pot experiment
处理 Treatments | 铁尾矿砂 Iron tailings (kg) | LB培养基 Luria-bertani medium (mL) | 混合促生菌液 Plant growth promoting rhizobacteria (mL) | 生物炭 Biochar (g) | 粪肥 Manure (g) |
---|---|---|---|---|---|
空白对照CK | 5 | 2.4 | / | / | / |
接种促生菌液B | 5 | 1.2 | 1.2 | / | / |
添加生物炭C | 5 | 2.4 | / | 5 | / |
施用粪肥F | 5 | 2.4 | / | / | 30 |
接种促生菌液并添加生物炭BC | 5 | 1.2 | 1.2 | 5 | / |
接种促生菌液并施用粪肥BF | 5 | 1.2 | 1.2 | / | 30 |
添加生物炭并施用粪肥CF | 5 | 2.4 | / | 5 | 30 |
接种促生菌液、添加生物炭并施用粪肥BⅠCF | 5 | 1.2 | 1.2 | 5 | 30 |
接种2倍剂量的促生菌液、添加生物炭并施用粪肥BⅡCF | 5 | / | 2.4 | 5 | 30 |
菌株 Strain | 固氮能力 Nitrogen fixation ability (nmol C2H4·mg-1 Pr·h-1) | 溶磷能力 Phosphate dissolving capacity (mg·L-1·7 d-1) | 解钾能力 Potassium dissolving ability (mg·L-1·7 d-1) | 3-IAA产率 3-IAA yield (mg·L-1·3 d-1) | ACC脱氨酶活性 ACC deaminase activity (μmol α-KA·mg-1 Pr·h-1) | |||
---|---|---|---|---|---|---|---|---|
Ca3(PO4)2 | 矿砂 Tailings | 钾矿石 Potassium ore | 矿砂 Tailings | 加入L‐色氨酸 Add L-tryptophan | 不加L‐色氨酸 Without L-tryptophan | |||
KSB1 | ND | 25.85±4.15 | 6.98 ± 1.91 | ND | ND | 57.58±5.49 | 7.64±0.42 | 2.39±0.38 |
KSB2 | ND | ND | ND | 39.18±4.57 | 21.11±1.53 | 6.36±1.05 | ND | 3.01±0.36 |
KSB7 | ND | ND | ND | ND | ND | 41.67±4.94 | 0.91±0.32 | 3.79±0.50 |
KSB21 | 1016.89±3 9.21 | 1.64±0.34 | ND | 16.57±0.54 | 3.31±0.26 | 9.85±1.05 | 0.65±0.11 | ND |
Table 2 Growth-promoting function of different plant growth promoting rhizobacteria
菌株 Strain | 固氮能力 Nitrogen fixation ability (nmol C2H4·mg-1 Pr·h-1) | 溶磷能力 Phosphate dissolving capacity (mg·L-1·7 d-1) | 解钾能力 Potassium dissolving ability (mg·L-1·7 d-1) | 3-IAA产率 3-IAA yield (mg·L-1·3 d-1) | ACC脱氨酶活性 ACC deaminase activity (μmol α-KA·mg-1 Pr·h-1) | |||
---|---|---|---|---|---|---|---|---|
Ca3(PO4)2 | 矿砂 Tailings | 钾矿石 Potassium ore | 矿砂 Tailings | 加入L‐色氨酸 Add L-tryptophan | 不加L‐色氨酸 Without L-tryptophan | |||
KSB1 | ND | 25.85±4.15 | 6.98 ± 1.91 | ND | ND | 57.58±5.49 | 7.64±0.42 | 2.39±0.38 |
KSB2 | ND | ND | ND | 39.18±4.57 | 21.11±1.53 | 6.36±1.05 | ND | 3.01±0.36 |
KSB7 | ND | ND | ND | ND | ND | 41.67±4.94 | 0.91±0.32 | 3.79±0.50 |
KSB21 | 1016.89±3 9.21 | 1.64±0.34 | ND | 16.57±0.54 | 3.31±0.26 | 9.85±1.05 | 0.65±0.11 | ND |
菌株 | |||||||||
---|---|---|---|---|---|---|---|---|---|
KSB1 | 扁平 Flat | 整齐 Neat | 淡黄色 Light yellow | 不透明 Opaque | 湿润 Wet | SUB9236258 | 99.57 | 假单胞菌 Pseudomonas sp. | |
KSB2 | 凸起 Raised | 整齐 Neat | 淡黄色 Light yellow | 半透明 Translucent | 湿润 Wet | SUB9291453 | 99.42 | 假单胞菌 Pseudomonas sp. | |
KSB7 | 凸起 Raised | 整齐 Neat | 浅白色 Light white | 边缘透明 Edge transparency | 湿润 Wet | SUB9291458 | 99.28 | 假单胞菌 Pseudomonas sp. | |
KSB21 | 凸起 Raised | 整齐 Neat | 奶白色 Milky white | 不透明 Opaque | 湿润 Wet | SUB9291466 | 99.18 | 根瘤菌 Rhizobium sp. |
Table 3 Colony morphology and identification results
菌株 | |||||||||
---|---|---|---|---|---|---|---|---|---|
KSB1 | 扁平 Flat | 整齐 Neat | 淡黄色 Light yellow | 不透明 Opaque | 湿润 Wet | SUB9236258 | 99.57 | 假单胞菌 Pseudomonas sp. | |
KSB2 | 凸起 Raised | 整齐 Neat | 淡黄色 Light yellow | 半透明 Translucent | 湿润 Wet | SUB9291453 | 99.42 | 假单胞菌 Pseudomonas sp. | |
KSB7 | 凸起 Raised | 整齐 Neat | 浅白色 Light white | 边缘透明 Edge transparency | 湿润 Wet | SUB9291458 | 99.28 | 假单胞菌 Pseudomonas sp. | |
KSB21 | 凸起 Raised | 整齐 Neat | 奶白色 Milky white | 不透明 Opaque | 湿润 Wet | SUB9291466 | 99.18 | 根瘤菌 Rhizobium sp. |
处理 Treatments | 碱解氮 Alkali hydrolyzable nitrogen (mg·kg-1) | 有机质 Organic matter (g·kg-1) | 脲酶 Urease (NH4+-N mg·g-1·24 h-1) | 磷酸酶 Phosphatase (PhOH mg·g-1·24 h-1) | 蔗糖转化酶 Saccharase (glu, mg·g-1·24 h-1) |
---|---|---|---|---|---|
CK | 1.62±0.08c | 3.14±0.12de | 5.01±0.16d | 1.24±0.08e | 0.14±0.01de |
B | 1.56±0.12c | 2.95±0.18e | 4.94±0.13d | 1.48±0.05d | 0.13±0.01de |
C | 1.51±0.09c | 3.39±0.19cd | 4.83±0.20d | 1.21±0.06e | 0.12±0.01e |
F | 2.32±0.06b | 3.65±0.13c | 5.35±0.15c | 1.66±0.09c | 0.23±0.02c |
BC | 1.65±0.11c | 3.40±0.16cd | 5.06±0.14d | 1.51±0.03d | 0.16±0.01d |
BF | 2.41±0.08b | 3.90±0.10b | 5.61±0.10bc | 1.92±0.12b | 0.27±0.02b |
CF | 2.36±0.05b | 4.01±0.15b | 5.72±0.17ab | 1.71±0.04c | 0.24±0.02c |
BⅠCF | 2.43±0.07b | 4.16±0.11ab | 5.95±0.19a | 2.03±0.12b | 0.29±0.03ab |
BⅡCF | 2.56±0.06a | 4.30±0.20a | 6.03±0.38a | 2.17±0.15a | 0.31±0.03a |
Table 4 Effects of different treatments on nutrient content and enzyme activity of iron tailings
处理 Treatments | 碱解氮 Alkali hydrolyzable nitrogen (mg·kg-1) | 有机质 Organic matter (g·kg-1) | 脲酶 Urease (NH4+-N mg·g-1·24 h-1) | 磷酸酶 Phosphatase (PhOH mg·g-1·24 h-1) | 蔗糖转化酶 Saccharase (glu, mg·g-1·24 h-1) |
---|---|---|---|---|---|
CK | 1.62±0.08c | 3.14±0.12de | 5.01±0.16d | 1.24±0.08e | 0.14±0.01de |
B | 1.56±0.12c | 2.95±0.18e | 4.94±0.13d | 1.48±0.05d | 0.13±0.01de |
C | 1.51±0.09c | 3.39±0.19cd | 4.83±0.20d | 1.21±0.06e | 0.12±0.01e |
F | 2.32±0.06b | 3.65±0.13c | 5.35±0.15c | 1.66±0.09c | 0.23±0.02c |
BC | 1.65±0.11c | 3.40±0.16cd | 5.06±0.14d | 1.51±0.03d | 0.16±0.01d |
BF | 2.41±0.08b | 3.90±0.10b | 5.61±0.10bc | 1.92±0.12b | 0.27±0.02b |
CF | 2.36±0.05b | 4.01±0.15b | 5.72±0.17ab | 1.71±0.04c | 0.24±0.02c |
BⅠCF | 2.43±0.07b | 4.16±0.11ab | 5.95±0.19a | 2.03±0.12b | 0.29±0.03ab |
BⅡCF | 2.56±0.06a | 4.30±0.20a | 6.03±0.38a | 2.17±0.15a | 0.31±0.03a |
处理 Treatments | 丛径 Cluster diameter (cm) | 株高 Plant height (cm) | 根长 Root length (cm) | 地上部鲜重 Fresh weight of shoot (g·plant-1) | 地下部鲜重 Fresh weight of roots (g·plant-1) | 根冠比 Root shoot ratio |
---|---|---|---|---|---|---|
CK | 37.47±1.46d | 11.55±0.59d | 14.82±0.91de | 41.35±2.58e | 27.58±2.48d | 0.67±0.06a |
B | 33.28±1.66e | 9.48±0.60e | 13.17±1.14e | 37.43±3.33e | 26.02±1.48d | 0.70±0.05a |
C | 35.63±2.80de | 10.92±0.92de | 17.38±1.46cd | 38.65±2.45e | 24.86±1.54d | 0.64±0.05a |
F | 41.54±1.39c | 13.94±1.01c | 20.14±1.95c | 65.17±4.43d | 34.28±2.79c | 0.53±0.05b |
BC | 38.21±1.62d | 12.07±0.69d | 18.06±1.61c | 44.78±3.93e | 28.12±2.29d | 0.63±0.03a |
BF | 45.88±3.84ab | 18.83±1.06a | 27.09±1.50b | 83.97±7.50bc | 43.04±4.50b | 0.51±0.03b |
CF | 43.96±2.15bc | 16.84±1.13b | 32.05±2.54a | 78.21±5.85c | 41.22±2.79b | 0.53±0.03b |
BⅠCF | 47.20±2.56ab | 18.98±1.35a | 29.71±2.02ab | 91.57±5.78b | 45.05±4.10b | 0.49±0.02b |
BⅡCF | 49.28±2.29a | 18.65±1.38a | 30.32±2.79a | 102.90±8.78a | 56.81±3.72a | 0.55±0.02b |
Table 5 Effects of different treatments on the growth indexes of A. millefolium
处理 Treatments | 丛径 Cluster diameter (cm) | 株高 Plant height (cm) | 根长 Root length (cm) | 地上部鲜重 Fresh weight of shoot (g·plant-1) | 地下部鲜重 Fresh weight of roots (g·plant-1) | 根冠比 Root shoot ratio |
---|---|---|---|---|---|---|
CK | 37.47±1.46d | 11.55±0.59d | 14.82±0.91de | 41.35±2.58e | 27.58±2.48d | 0.67±0.06a |
B | 33.28±1.66e | 9.48±0.60e | 13.17±1.14e | 37.43±3.33e | 26.02±1.48d | 0.70±0.05a |
C | 35.63±2.80de | 10.92±0.92de | 17.38±1.46cd | 38.65±2.45e | 24.86±1.54d | 0.64±0.05a |
F | 41.54±1.39c | 13.94±1.01c | 20.14±1.95c | 65.17±4.43d | 34.28±2.79c | 0.53±0.05b |
BC | 38.21±1.62d | 12.07±0.69d | 18.06±1.61c | 44.78±3.93e | 28.12±2.29d | 0.63±0.03a |
BF | 45.88±3.84ab | 18.83±1.06a | 27.09±1.50b | 83.97±7.50bc | 43.04±4.50b | 0.51±0.03b |
CF | 43.96±2.15bc | 16.84±1.13b | 32.05±2.54a | 78.21±5.85c | 41.22±2.79b | 0.53±0.03b |
BⅠCF | 47.20±2.56ab | 18.98±1.35a | 29.71±2.02ab | 91.57±5.78b | 45.05±4.10b | 0.49±0.02b |
BⅡCF | 49.28±2.29a | 18.65±1.38a | 30.32±2.79a | 102.90±8.78a | 56.81±3.72a | 0.55±0.02b |
1 | Zhan J, Sun Q Y. Diversity of free-living nitrogen-fixing microorganisms in wastelands of copper mine tailings during the process of natural ecological restoration. Journal of Environmental Sciences, 2011, 23(3): 476-487. |
2 | Wang J, Zhang C B, Ke S S, et al. Effects of sewage sludge amendment on physico-chemical properties of mine tailings and physiological responses of Cinnamomum camphora. Acta Ecologica Sinica, 2010, 30(10): 2593-2602. |
王江, 张崇邦, 柯世省, 等. 添加污泥对尾矿砂理化性质及香樟生理特性的影响. 生态学报, 2010, 30(10): 2593-2602. | |
3 | Etesami H, Maheshwari D K. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicology and Environmental Safety, 2018, 156: 225-246. |
4 | Cui Z H. Combined remediation and improvement techniques of plant-microorganism in utilization of iron tailings. Jinan: Shandong University, 2018. |
崔照豪. 铁尾矿土壤化利用植物-微生物联合修复与改良技术研究. 济南: 山东大学, 2018. | |
5 | Cristina G, Blanca R L, Luz E B, et al. Root growth improvement of mesquite seedlings and bacterial rhizosphere and soil community changes are induced by inoculation with plant growth-promoting bacteria and promote restoration of eroded desert soil. Land Degradation & Development, 2018, 29(5): 1453-1466. |
6 | Yang S X, Li F M, Peng X Z, et al. Effects of amendments with different C/N/P ratios on plant and soil properties of a Pb-Zn mine tailings. Environmental Science, 2019, 40(9): 4253-4261. |
杨胜香, 李凤梅, 彭禧柱, 等. 不同碳氮磷源改良剂对铅锌尾矿废弃地植被与土壤性质的影响. 环境科学, 2019, 40(9): 4253-4261. | |
7 | Palansooriya K N, Fung-Wong J T, Hashimoto Y, et al. Response of microbial communities to biochar‑amended soils: A critical review. Biochar, 2019, 1(1): 3-22. |
8 | Wang H, Xia W, Lu P. Study on adsorption characteristics of biochar on heavy metals in soil. Korean Journal of Chemical Engineering, 2017, 34(6): 1867-1873. |
9 | Lazcano C, Gómez-Brandón M, Revilla P, et al. Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function. Biology and Fertility of Soils, 2013, 49(6): 723-733. |
10 | Noyd R K, Pfleger E L, Norland M R. Field responses to added organic matter, arbuscular mycorrhizal fungi, and fertilizer in reclamation of taconite iron ore tailings. Plant and Soil, 1996, 179(1): 89-97. |
11 | Arabi Z, Eghtedaey H, Gharehchmaghloo B, et al. Effects of biochar and bio-fertilizer on yield and qualitative properties of soybean and some chemical properties of soil. Arabian Journal of Geosciences, 2018, 11(672): 2-9. |
12 | Zhao L F, Xu Y J, Chang J L, et al. Screening, resistance and growth-promoting effect of endophytic bacteria with ACC deaminase activity isolated from soybean nodules. Acta Microbiologica Sinica, 2016, 56(6): 1009-1021. |
赵龙飞, 徐亚军, 常佳丽, 等. 具ACC脱氨酶活性大豆根瘤内生菌的筛选、抗性及促生作用. 微生物学报, 2016, 56(6): 1009-1021. | |
13 | Amandeep S B. Insolation of endophytic bcteria from lodgepole pine and westernrd cedar and determination of their nitrogen fixing ability. Canada: The University of British Colurmbia, 2003. |
14 | Kızılkaya R. Yield response and nitrogen concentrations of spring wheat (Triticum aestivum) inoculated with Azotobacter chroococcum strains. Ecological Engineering, 2008, 33(2): 150-156. |
15 | Krause A, Ramakumar A, Bartels D, et al. Complete genom of the mutualistic, N(2)-fixing grass endophyte Azoarcus sp. strain BH72. Nature Biotechnology, 2006, 24(11): 1385-1391. |
16 | Lin Q M, Zhao X R, Sun Y X, et al. Community characters of soil phosphobacteria in four ecosystems. Soil and Environmental Sciences, 2000, 9(1): 34-37. |
林启美, 赵小蓉, 孙焱鑫, 等. 四种不同生态系统的土壤解磷细菌数量及种群分布. 土壤与环境, 2000, 9(1): 34-37. | |
17 | Li Z G, Luo Y M, Teng Y. Research methods of soil and environmental microorganism. Beijing: Science Press, 2008. |
李振高, 骆永明, 滕应. 土壤与环境微生物研究法. 北京: 科学出版社, 2008. | |
18 | Zhang Y. Screening plant growth promoting rhizosphere resources and their promotion mechanisms from rhizosphere of four forages in Ali Alpine grassland of Tibet. Lanzhou: Gansu Agricultural University, 2013. |
张英. 西藏阿里高寒草原四种牧草根际促生菌资源筛选及促生机理研究. 兰州: 甘肃农业大学, 2013. | |
19 | Fang H Z, Zuo X Z. Isolation and application of N-fixing, P-releasing and K-releasing bacteria from rice paddy. Soil and Fertilizer Sciences in China, 2014, 17(2): 82-87. |
方华舟, 左雪枝. 稻田固氮解磷解钾菌筛选及其复合菌剂对土壤培肥作用. 中国土壤与肥料, 2014, 17(2): 82-87. | |
20 | Bao S D. Soil and agricultural chemistry analysis (The third edition). Beijing: China Agricultural Press, 2000. |
鲍士旦. 土壤农化分析(第三版) . 北京: 中国农业出版社, 2000. | |
21 | Sun X Y. Screening of salt-tolerant plant growth promoting rhizobacteria and its effect on plant growth. Beijing: University of Chinese Academy of Sciences, 2019. |
孙晓莹. 耐盐植物根际促生菌的筛选及其功能探究. 北京: 中国科学院大学, 2019. | |
22 | Glickmann E, Dessaux Y. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 1995, 61(2): 793-796. |
23 | Li X, Zhang B J, Li J Q, et al. Effects of combined application of water retention agent and organic fertilizer on physico-chemical properties of iron tailings. Chinese Journal of Applied Ecology, 2017, 28(2): 554-562. |
李想, 张宝娟, 李继泉, 等. 保水剂与有机肥配施对铁尾矿理化性质的改良作用. 应用生态学报, 2017, 28(2): 554-562. | |
24 | Zhuang X L, Chen J, Shim H, et al. New advances in plant growth-promoting rhizobacteria for bioremediation. Environment International, 2007, 33(3): 406-413. |
25 | Zeng Q F, Wang Q, Lu R X, et al. Identification of soybean growth-promoting rhizobacteria and their effects on the growth and quality of Glycine max and Lotus corniculatus. Acta Prataculturae Sinica, 2017, 26(1): 99-111. |
曾庆飞, 王茜, 陆瑞霞, 等. 大豆根际促生菌的分离筛选及其对大豆和百脉根生长与品质的影响. 草业学报, 2017, 26(1): 99-111. | |
26 | Zhang H L, Sun L N, Sun T H, et al. Substrate amelioration and vegetation reconstruction in ecological remediation of abandoned mines: Research advances. Chinese Journal of Ecology, 2012, 31(2): 460-467. |
张鸿龄, 孙丽娜, 孙铁珩, 等. 矿山废弃地生态修复过程中基质改良与植被重建研究进展. 生态学杂志, 2012, 31(2): 460-467. | |
27 | Lai F Y, Lu N C, Niu D K, et al. Ecological engineering remediation of heavy metal polluted soil. Transactions of the CSAE, 2007, 23(3): 80-84. |
赖发英, 卢年春, 牛德奎, 等. 重金属污染土壤生态工程修复的试验研究. 农业工程学报, 2007, 23(3): 80-84. | |
28 | Dennis C G, Ann L P, Chittaranjan K. Genomics of plant-associated bacteria. Berlin: Springer-Verlag, 2014. |
29 | Jiang L L. The effect of biochar on soil microbial diversity and community structure. Shenyang: Shenyang Agricultural University, 2016. |
江琳琳. 生物炭对土壤微生物多样性和群落结构的影响. 沈阳: 沈阳农业大学, 2016. | |
30 | Yang Q, Zhao L, Hou H, et al. Effect of soil ameliorants on abandoned rare mine tailings in Jiangxi Province. Applied Chemical Industry, 2018, 47(2): 211-214. |
杨侨, 赵龙, 侯红, 等. 土壤改良剂对赣南废弃稀土尾矿的改良效应. 应用化工, 2018, 47(2): 211-214. | |
31 | Liu B W. Research and development of PGPR solid fertilizer and its effect on the growth and quality of alfalfa. Harbin: Harbin Normal University, 2017. |
刘博文. PGPR固体菌肥的研发及对紫花苜蓿生长和品质的影响. 哈尔滨: 哈尔滨师范大学, 2017. | |
32 | Yang H B, Li J Q, Wang J J, et al. Effects of fertilizer and rhizobium inoculation on alfalfa growth on mine tailings and physicochemical properties of iron tailing. Acta Prataculturae Sinica, 2016, 25(2): 68-76. |
杨何宝, 李继泉, 王俊娟, 等. 施肥和苜蓿接种根瘤菌对苜蓿生长及铁尾矿砂基质理化性质的影响. 草业学报, 2016, 25(2): 68-76. |
[1] | Zhan-dong PAN, Qian-qian MA, Xiao-long CHEN, Li-qun CAI, Xue-mei CAI, Bo DONG, Jun WU, Ren-zhi ZHANG. Effects of biochar addition on nutrient levels and humus and its components in dry farmland soils on the Loess Plateau [J]. Acta Prataculturae Sinica, 2022, 31(2): 14-24. |
[2] | Jiao SUN, Jin-xiu LIANG, De-jie KONG, Xin-nian GUO, Yong-dong WEI, Tao ZHOU. Effects of biochar and straw on the C∶N∶P stoichiometry of soil, microbes, and extracellular enzymes in an aeolian sandy soil [J]. Acta Prataculturae Sinica, 2021, 30(11): 29-39. |
[3] | XU Qi-wen, MA Shu-min, ZHU Bo, ZHANG Xiao-duan, XING Yi, DUAN Mei-chun, WANG Long-chang. Effects of the combined application of biochar and chemical fertilizer on fertility and microbial characteristics of purple soil and yield and quality of oilseed rape [J]. Acta Prataculturae Sinica, 2020, 29(5): 121-131. |
[4] | LI Jia-cheng, GAO Ming, TIAN Dong, HUANG Rong, XU Guo-xin. Effects of straw and biochar on soil organic carbon and its active components [J]. Acta Prataculturae Sinica, 2018, 27(5): 39-50. |
[5] | LI Ji-wei, YUE Fei-xue, WANG Yan-fang, ZHANG Ya-mei, NI Rui-jing, WANG Fa-yuan, FU Guo-zhan, LIU Ling. Effects of biochar amendment and arbuscular mycorrhizal inoculation on maize growth and physiological biochemistry under cadmium stress [J]. Acta Prataculturae Sinica, 2018, 27(5): 120-129. |
[6] | SONG Dan-dan, HE Bing-hui, LUO Song-ping, WU Yao-peng. The effects of ryegrass and biochar on soil nutrient distribution in Karst area [J]. Acta Prataculturae Sinica, 2018, 27(4): 195-201. |
[7] | GUO Xiong-fei. Effects of biochar and arbuscular mycorrhizal fungi on soil nutrients and growth of Cassia occidentalis under heavy metal contamination [J]. Acta Prataculturae Sinica, 2018, 27(11): 150-161. |
[8] | ZHANG Xu-Hui, LI Zhi-Ling, LI Yong, WANG Yang-Qing. Effect of biochar amendment on purple and yellow soil [J]. Acta Prataculturae Sinica, 2017, 26(4): 63-72. |
[9] | MA Cong-Yu, ZHANG Ying, MA Wen-Bin, LI Jian-Hong, YAO Tuo. Identification of plant growth promoting rhizobacteria Astragalus membranaceus and their effectives [J]. Acta Prataculturae Sinica, 2017, 26(1): 149-159. |
[10] | SUN Guang-Zheng, YAO Tuo, ZHAO Gui-Qin, LI Jian-Hong, CHEN Long, LIU Huan. An assessment of the level of control of two fungal pathogens by various plant growth promoting rhizobacteria [J]. Acta Prataculturae Sinica, 2016, 25(8): 154-163. |
[11] | LIU Ting, YAO Tuo, CHEN Jian-Gang, MA Wen-Bin, LIU Huan, MA Cong-Yu, JIANG Yong-Mei. Identification and study on the effects of plant growth promoting rhizobacteria of Carex enervis [J]. Acta Prataculturae Sinica, 2016, 25(12): 130-139. |
[12] | LI Jian-Hong, LI Xue-Ping, MA Wen-Wen, YAO Tuo, SUN Jian-Jun, JIANG Yong-Mei, ZHANG Jian-Gui, SHI Shang-Li. The study of plant growth promoting rhizobacteria (PGPR) from several Poaceous species in the East Chi-lien Mountains of China [J]. Acta Prataculturae Sinica, 2016, 25(11): 173-177. |
[13] | RONG Liangyan, CHAI Qiang, YAO Tuo, ZHANG Rong, FENG Jin, YANG Hao, CAO Lei, ZHU Qian. Partial replacement of chemical fertilizer by compound microbial inoculant and potential for promoting growth of intercropped Zea mays and Pisum sativum [J]. Acta Prataculturae Sinica, 2015, 24(2): 22-30. |
[14] | MA Wen-bin,YAO Tuo,WANG Guo-ji,ZHANG Yu-xia,RONG Liang-yan. Assessment of rhizobacteria strains for Vicia sativa [J]. Acta Prataculturae Sinica, 2014, 23(5): 241-248. |
[15] | RONG Liang-yan,YAO Tuo,MA Wen-bin,LI De-ming,LI Ru-ren,ZHANG Jie,LU Sa. The inoculant potential of plant growth promoting rhizobacteria strains to improve the yield and quality of Trifolium pratense cv. Minshan [J]. Acta Prataculturae Sinica, 2014, 23(5): 231-240. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||