Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (5): 159-170.DOI: 10.11686/cyxb2022217
Rui-xin YANG1(), Yong LI1,2, Xiao-fang CAI1, Cheng-xing HAN1, Yan-li GUO1()
Received:
2022-05-18
Revised:
2022-08-31
Online:
2023-05-20
Published:
2023-03-20
Contact:
Yan-li GUO
Rui-xin YANG, Yong LI, Xiao-fang CAI, Cheng-xing HAN, Yan-li GUO. Effects of starter feed in different physical forms on the rumen transcriptome of lambs[J]. Acta Prataculturae Sinica, 2023, 32(5): 159-170.
基因代码 Gene ID | 基因名称 Gene name | 引物序列 Primer sequence (5′→3′) | 扩增大小 Amplicon size (bp) |
---|---|---|---|
443059 | BAX | F: TGTCCTCCCCCAGAGATCAG;R: GGGCCCTAGAGGAGAAAGGA | 97 |
101104112 | BDH1 | F: GAGAAGGAAACGGCGGTAG;R: AAAAGGCAGAATGGTCAGG | 169 |
101107334 | CASP8 | F: TCCAGGATTCGCCTCTGGTA;R: CCGGCTTAGGAACTTGAGGG | 133 |
443318 | IGF1 | F: GCTCTCAACATCTCCCATCTCC;R: CCCATTGCTTCTGAAGTGCAAA | 94 |
443408 | LPL | F: GATTAGCGATTCCTACTTCAGC;R: AGACTTGTCATGGCATTTCAC | 181 |
808252 | COX2 | F: TCCCAACATCAAACCGACTA;R: TTACGGCTCCTGCTCACA | 249 |
101106011 | BDH2 | F: ATTGATGGAGGCTGGAGTT;R: ATTGGAAAGAGAGGTTGGG | 121 |
101119699 | HMGCL | F: TGGGGACTGTGTGGGAATA;R: CAGCAGCAAGTTGTGGAGA | 312 |
101111590 | HMGCS2 | F: TACCTGGAGCGAGTGGATGA;R: GGCGAGTCATCTGGATCTGG | 362 |
100187551 | IGFBP6 | F: GGGTCTACACTCCCAACTGC;R: TAGGATTCTCTCCCGAGGGC | 132 |
443133 | IGFBP5 | F: TGAAGGCTGAGGCTGTGAAG;R: GGCCCCTGCTCAGATTCC | 133 |
100216432 | CDK1 | F: CCAATAATGAAGTGTGGCCAGAAG;R: AGAAATTCGTTTGGCAGGATCATAG | 164 |
443469 | IGFBP2 | F: GTCCTGGAACGGATCTCCAC;R: GAGGTTGTACAGGCCATGCT | 108 |
101108399 | RFC3 | F: AACAGTGGCACAATCACAGCAA;R: AGTTGTGGAGGAAGATTTAGACCC | 294 |
101115335 | ANAPC13 | F: TCTTGGATTTGATTGACG;R: CAGATTCTGTGGTGCCTC | 149 |
Table 1 Primer sequences of target genes uses for real-time PCR
基因代码 Gene ID | 基因名称 Gene name | 引物序列 Primer sequence (5′→3′) | 扩增大小 Amplicon size (bp) |
---|---|---|---|
443059 | BAX | F: TGTCCTCCCCCAGAGATCAG;R: GGGCCCTAGAGGAGAAAGGA | 97 |
101104112 | BDH1 | F: GAGAAGGAAACGGCGGTAG;R: AAAAGGCAGAATGGTCAGG | 169 |
101107334 | CASP8 | F: TCCAGGATTCGCCTCTGGTA;R: CCGGCTTAGGAACTTGAGGG | 133 |
443318 | IGF1 | F: GCTCTCAACATCTCCCATCTCC;R: CCCATTGCTTCTGAAGTGCAAA | 94 |
443408 | LPL | F: GATTAGCGATTCCTACTTCAGC;R: AGACTTGTCATGGCATTTCAC | 181 |
808252 | COX2 | F: TCCCAACATCAAACCGACTA;R: TTACGGCTCCTGCTCACA | 249 |
101106011 | BDH2 | F: ATTGATGGAGGCTGGAGTT;R: ATTGGAAAGAGAGGTTGGG | 121 |
101119699 | HMGCL | F: TGGGGACTGTGTGGGAATA;R: CAGCAGCAAGTTGTGGAGA | 312 |
101111590 | HMGCS2 | F: TACCTGGAGCGAGTGGATGA;R: GGCGAGTCATCTGGATCTGG | 362 |
100187551 | IGFBP6 | F: GGGTCTACACTCCCAACTGC;R: TAGGATTCTCTCCCGAGGGC | 132 |
443133 | IGFBP5 | F: TGAAGGCTGAGGCTGTGAAG;R: GGCCCCTGCTCAGATTCC | 133 |
100216432 | CDK1 | F: CCAATAATGAAGTGTGGCCAGAAG;R: AGAAATTCGTTTGGCAGGATCATAG | 164 |
443469 | IGFBP2 | F: GTCCTGGAACGGATCTCCAC;R: GAGGTTGTACAGGCCATGCT | 108 |
101108399 | RFC3 | F: AACAGTGGCACAATCACAGCAA;R: AGTTGTGGAGGAAGATTTAGACCC | 294 |
101115335 | ANAPC13 | F: TCTTGGATTTGATTGACG;R: CAGATTCTGTGGTGCCTC | 149 |
基因编号 Gene ID | 基因名称 Gene name | 基因描述 Gene description | 差异倍数 log2 (fold change) | P值 P value |
---|---|---|---|---|
101120062 | PLA2G5 | V型磷脂酶A2 Phospholipase A2 group V | 2.734 | 0.012 |
100216432 | CDK1 | 细胞周期依赖性激酶1 Cyclin dependent kinase 1 | 0.900 | 0.049 |
101120931 | CARD14 | 细胞凋亡募集结构域蛋白14 Caspase recruitment domain family member 14 | -1.156 | 0.030 |
Table 2 Different expressed genes in key metabolic pathways pre-weaning
基因编号 Gene ID | 基因名称 Gene name | 基因描述 Gene description | 差异倍数 log2 (fold change) | P值 P value |
---|---|---|---|---|
101120062 | PLA2G5 | V型磷脂酶A2 Phospholipase A2 group V | 2.734 | 0.012 |
100216432 | CDK1 | 细胞周期依赖性激酶1 Cyclin dependent kinase 1 | 0.900 | 0.049 |
101120931 | CARD14 | 细胞凋亡募集结构域蛋白14 Caspase recruitment domain family member 14 | -1.156 | 0.030 |
基因编号 Gene ID | 基因名称 Gene name | 基因描述 Gene description | 差异倍数 log2(fold change) | P值 P value |
---|---|---|---|---|
101104112 | BDH1 | 3-羟基丁酸脱氢酶1 3-hydroxybutyrate dehydrogenase 1 | 1.100 | 0.000 |
101119699 | HMGCL | 3-羟基-3-甲基戊二酰裂解酶3-hydroxy-3-methylglutaryl-CoA lyase | 0.973 | 0.004 |
101111590 | HMGCS2 | 3-羟基-3-甲基戊酰辅酶合成酶异构体2 3-hydroxy-3-methylglutaryl-CoA synthase 2 | 1.103 | 0.000 |
101117625 | PPARD | 过氧化物酶体增殖物激活受体δ Peroxisome proliferator activated receptor delta | 0.908 | 0.000 |
101114126 | ACSS2 | 乙酰辅酶A合成酶2基因Acyl-CoA synthetase short chain family member 2 | 0.748 | 0.001 |
105606089 | CDK18 | 细胞周期依赖性激酶18 Cyclin dependent kinase 18 | 1.056 | 0.000 |
101109788 | CDK9 | 细胞周期依赖性激酶9 Cyclin dependent kinase 9 | 0.583 | 0.011 |
101111140 | CDK2AP2 | 细胞周期蛋白依赖性激酶2关联蛋白2 Cyclin dependent kinase 2 associated protein 2 | 0.701 | 0.027 |
101117113 | CCNK | 细胞周期蛋白K Cyclin K | 0.584 | 0.024 |
100147798 | CCND3 | 细胞周期蛋白D3 Cyclin D3 | 0.562 | 0.045 |
101103350 | SART3 | T细胞识别的鳞状细胞癌抗原3 Spliceosome associated factor 3 | 0.519 | 0.044 |
101120931 | CARD14 | 细胞凋亡募集结构域蛋白14 Caspase recruitment domain family member 14 | -0.986 | 0.015 |
101109100 | CASP8AP2 | 半胱氨酸-天冬氨酸蛋白酶8相关蛋白2 Caspase 8 associated protein 2 | -1.237 | 0.000 |
101107334 | CASP8 | 半胱氨酸-天冬氨酸蛋白酶8 Caspase 8 | -0.711 | 0.021 |
443133 | IGFBP5 | 胰岛素样生长因子结合蛋白5 Insulin like growth factor binding protein 5 | 0.737 | 0.006 |
443470 | IGFBP4 | 胰岛素样生长因子结合蛋白4 Insulin like growth factor binding protein 4 | 0.907 | 0.012 |
443318 | IGF1 | 胰岛素样生长因子1 Insulin like growth factor 1 | -1.314 | 0.000 |
Table 3 Different expressed genes in key metabolic pathways post-weaning
基因编号 Gene ID | 基因名称 Gene name | 基因描述 Gene description | 差异倍数 log2(fold change) | P值 P value |
---|---|---|---|---|
101104112 | BDH1 | 3-羟基丁酸脱氢酶1 3-hydroxybutyrate dehydrogenase 1 | 1.100 | 0.000 |
101119699 | HMGCL | 3-羟基-3-甲基戊二酰裂解酶3-hydroxy-3-methylglutaryl-CoA lyase | 0.973 | 0.004 |
101111590 | HMGCS2 | 3-羟基-3-甲基戊酰辅酶合成酶异构体2 3-hydroxy-3-methylglutaryl-CoA synthase 2 | 1.103 | 0.000 |
101117625 | PPARD | 过氧化物酶体增殖物激活受体δ Peroxisome proliferator activated receptor delta | 0.908 | 0.000 |
101114126 | ACSS2 | 乙酰辅酶A合成酶2基因Acyl-CoA synthetase short chain family member 2 | 0.748 | 0.001 |
105606089 | CDK18 | 细胞周期依赖性激酶18 Cyclin dependent kinase 18 | 1.056 | 0.000 |
101109788 | CDK9 | 细胞周期依赖性激酶9 Cyclin dependent kinase 9 | 0.583 | 0.011 |
101111140 | CDK2AP2 | 细胞周期蛋白依赖性激酶2关联蛋白2 Cyclin dependent kinase 2 associated protein 2 | 0.701 | 0.027 |
101117113 | CCNK | 细胞周期蛋白K Cyclin K | 0.584 | 0.024 |
100147798 | CCND3 | 细胞周期蛋白D3 Cyclin D3 | 0.562 | 0.045 |
101103350 | SART3 | T细胞识别的鳞状细胞癌抗原3 Spliceosome associated factor 3 | 0.519 | 0.044 |
101120931 | CARD14 | 细胞凋亡募集结构域蛋白14 Caspase recruitment domain family member 14 | -0.986 | 0.015 |
101109100 | CASP8AP2 | 半胱氨酸-天冬氨酸蛋白酶8相关蛋白2 Caspase 8 associated protein 2 | -1.237 | 0.000 |
101107334 | CASP8 | 半胱氨酸-天冬氨酸蛋白酶8 Caspase 8 | -0.711 | 0.021 |
443133 | IGFBP5 | 胰岛素样生长因子结合蛋白5 Insulin like growth factor binding protein 5 | 0.737 | 0.006 |
443470 | IGFBP4 | 胰岛素样生长因子结合蛋白4 Insulin like growth factor binding protein 4 | 0.907 | 0.012 |
443318 | IGF1 | 胰岛素样生长因子1 Insulin like growth factor 1 | -1.314 | 0.000 |
1 | Li Y. Effects of starter feeds of two different physical forms on growth and rument development of lambs and its mechanisms. Lanzhou: Gansu Agricultural University, 2020. |
李勇. 两种不同物理形态开食料对羔羊生长和瘤胃发育的影响及其机制研究. 兰州: 甘肃农业大学, 2020. | |
2 | Ma J N, Tu Y. Research progress on feeding patterns of different solid and liquid feed level on growth and gastrointestinal tract development in Holstein calves. Journal of Domestic Animal Ecology, 2017, 38(5): 7-12. |
马俊南, 屠焰. 固液饲料饲喂水平对犊牛生长及胃肠道发育影响的研究进展. 家畜生态学报, 2017, 38(5): 7-12. | |
3 | Moeini H, Mahdavi A H, Riasi A, et al. Effects of physical form of starter and forage provision to young calves on blood metabolites, liver composition and intestinal morphology. Journal of Animal Physiology and Animal Nutrition, 2017, 101(4): 755-766. |
4 | Terre M, Pedrals E, Dalmau A, et al. What do pre weaned and weaned calves need in the diet: A high fiber content or a forage source? Journal of Dairy Science, 2013, 96(8): 5217-5225. |
5 | Porter J C, Warner R G, Kertz A F. Effect of fiber level and physical form of starter on growth and development of dairy calves fed no forage. The Professional Animal Scientist, 2007, 23(4): 395-400. |
6 | Beharka A A, Nagaraja T G, Morrill J L, et al. Effects of form of the diet on anatomical, microbial, and fermentative development of the rumen of neonatal calves. Journal of Dairy Science, 1998, 81(7): 1946-1955. |
7 | Simayi A M N M. Effects of texturized and pelleted starter on growth characteristics and gastrointestinal development in Holstein male calves. Urumqi: Xinjiang Agricultural University, 2014. |
阿米娜木·司马义. 口感化和颗粒化开食料对荷斯坦公犊牛生长性能及胃肠道发育的影响. 乌鲁木齐: 新疆农业大学, 2014. | |
8 | Lesmeisster K E, Heinrichs A J. Effects of corn processing on growth characteristics, rumen development, and rumen parameters in neonatal dairy calves. Journal of Dairy Science, 2004, 87(10): 3434-3450. |
9 | Zhang Y Q, Meng Q X, Ren L P, et al. A comparison of the relationship between different processing methods of corn and full fat soybean in starter diets and enzyme development in the rumen of calves. Chinese Journal of Animal Nutrition, 2011, 23(5): 740-747. |
张元庆, 孟庆翔, 任丽萍, 等. 开食料玉米和全脂大豆的加工方式与犊牛瘤胃酶系发育关系的比较研究. 动物营养学报, 2011, 23(5): 740-747. | |
10 | Li Y, Guo Y L, Zhang C X, et al. Effects of physical forms of starter feed on growth, nutrient digestibility, gastrointestinal enzyme activity, and morphology of pre- and post-weaning lambs. Animal, 2021, 15: 1-6. |
11 | Wang C B, Lu W H, Lin Y, et al. Development and application of transcriptome sequencing. Eucalypt Science & Technology, 2018, 35(4): 20-26. |
王楚彪, 卢万鸿, 林彦, 等. 转录组测序的发展和应用. 桉树科技, 2018, 35(4): 20-26. | |
12 | Yang B, Chen H W, Cao J W, et al. Transcriptome analysis reveals that alfalfa promotes rumen development through enhanced metabolic processes and calcium transduction in Hu lambs. Frontiers in Genetics, 2019, 3: 1-14. |
13 | Sun D M, Yin Y Y, Guo C Z, et al. Transcriptomic analysis reveals the molecular mechanisms of rumen wall morphological and functional development induced by different solid diet introduction in a lamb model. Journal of Animal Science and Biotechnology, 2021, 12: 1-15. |
14 | National Research Council, Division on Earth and Life Studies, Board on Agriculture and Natural Resource. National nutrient requirements of small ruminants: Sheep, goat, cervids, and new world camelids. Washington D C: National Academy of Sciences, 2007. |
15 | Kim D, Langmead B, Salzberg S L. HISAT: A fast spliced aligner with low memory requirements. Techniques for Life Scientists and Chemists, 2015, 12(4): 357-360. |
16 | Mortazavi A, Williams B A, Mccue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 2008, 5(7): 621-628. |
17 | Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biology, 2010, 11(10): R106. |
18 | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔ CT method. Methods, 2002, 25(4): 402-408. |
19 | Blencowe B J, Ahmad S, Lee L J. Current-generation high-throughput sequencing: deepening insights into mammalian transcriptomes. Genes & Development, 2009, 23(12): 1379-1386. |
20 | Cai X F, Zhang C X, Li Y, et al. Effect of texturized and pelleted starter on growth and gastrointestinal development of early weaning lambs. Pratacultural Science, 2021, 38(8): 1596-1604. |
蔡小芳, 张成新, 李勇, 等. 口感化及颗粒化开食料对早期断奶羔羊生长和胃肠道发育的影响. 草业科学, 2021, 38(8): 1596-1604. | |
21 | Pazoki A, Ghorbani G R, Kargar S, et al. Growth performance, nutrient digestibility, ruminal fermentation, and rumen development of calves during transition from liquid to solid feed: Effects of physical form of starter feed and forage provision. Animal Feed Science and Technology, 2017, 234: 173-185. |
22 | Fu Y, Guo J P, Li S L. Effect of texturized starter on growth performance, gastrointestinal tract indexes and rumen fermentation parameters of Montbeliard×Holstein crossed calves. Chinese Journal of Animal Nutrition, 2020, 32(2): 715-725. |
付瑶, 郭江鹏, 李胜利. 口感化开食料对蒙贝利亚×荷斯坦杂交犊牛生长性能、胃肠道指标及瘤胃发酵参数的影响. 动物营养学报, 2020, 32(2): 715-725. | |
23 | Mirzaei M, Khorvash M, Ghorbani G R, et al. Interactions between the physical form of starter (mashed versus textured) and corn silage provision on performance, rumen fermentation, and structural growth of Holstein calves. Journal of Animal Science, 2016, 94(2): 678-686. |
24 | Wang M Y. Effects of subacute rumen acidosis on intestinal epithelial barrier function and its transcriptome study in dairy goats. Hohhot: Inner Mongolia Agricultural University, 2019. |
王梦雅. 亚急性瘤胃酸中毒对奶山羊肠道上皮屏障功能的影响及其转录组学研究. 呼和浩特: 内蒙古农业大学, 2019. | |
25 | Wang W M, Li C, Li F D, et al. Effects of early feeding on the host rumen transcriptome and bacterial diversity in lambs. Scientific Reports, 2016, 6: 32479. |
26 | Li Y, Cai X F, Zhang C X, et al. Effects of starters with different processing methods of corn on rumen fermentation and microflora of pre-weaning and post-weaning lambs. Chinese Journal of Animal Nutrition, 2022, 34(6): 3788-3798. |
李勇, 蔡小芳, 张成新, 等. 玉米不同加工方式的开食料对羔羊早期断奶前和断奶后瘤胃发酵和微生物区系的影响. 动物营养学报, 2022, 34(6): 3788-3798. | |
27 | Ci Y Y, Zhang W D, Lin Y, et al. Advances in biological functions and inhibitors of secretory phospholipase PLA2G3. Progress in Biochemistry and Biophysics, 2021, 48(9): 1006-1015. |
慈钰莹, 张伟东, 蔺勇, 等. 分泌型磷脂酶PLA2G5的生物学功能及其抑制剂研究进展. 生物化学与生物物理进展, 2021, 48(9): 1006-1015. | |
28 | Jamila S, Lu Z Y, Gui H B, et al. Synchronous and time-dependent expression of cyclins, cyclin-dependent kinases, and apoptotic genes in the rumen epithelia of butyrate-infused goats. Frontiers in Physiology, 2018, 9: 496. |
29 | Gui H B, Shen Z M. Concentrate diet modulation of ruminal genes involved in cell proliferation and apoptosis is related to combined effects of short-chain fatty acid and pH in rumen of goats. Journal of Dairy Science, 2016, 99(8): 6627-6638. |
30 | Ma H Z, Seebacheer N A, Hornicek F J, et al. Cyclin-dependent kinase 9 (CDK9) is a novel prognostic marker and therapeutic target in osteosarcoma. EBioMedicine, 2018, 39: 182-193. |
31 | Pan Y C, Jiang Z P, Sun D Y, et al. Cyclin-dependent kinase 18 promotes oligodendrocyte precursor cell differentiation through activating the extracellular signal-regulated kinase signaling pathway. Neuroscience Bulletin, 2019, 35(5): 802-814. |
32 | Deshpande A M, Khalid O, Kim J J, et al. Cdk2ap2 is a novel regulator for self-renewal of murine embryonic stem cells. Stem Cells and Development, 2012, 21(16): 3010-3018. |
33 | Tsuda N, Murayama K, Ishida H, et al. Expression of a newly defined tumor-rejection antigen SART3 in musculoskeletal tumors and induction of HLA class Ⅰ-restricted cytotoxic T lymphocytes by SART3-derived peptides. Journal of Orthopaedic Research, 2001, 19(3): 346-351. |
34 | Lim J Y, Kim S W, Kim B, et al. Knockdown of CARD14 inhibits cell proliferation and migration in breast cancer cells. Anticancer Research, 2020, 40(4): 1953-1962. |
35 | Nakano K, Iwanaga M, Utsunomiya A, et al. Functional analysis of aberrantly spliced caspase 8 variants in adult T-cell leukemia cells. Molecular Cancer Research, 2019, 17(12): 2522-2536. |
36 | Juarze V R, Reyes L A, Salas L C, et al. Significance of CASP8AP2 and H2AFZ expression in survival and risk of relapse in children with acute lymphoblastic leukemia. Leukemia & Lymphoma, 2014, 55(10): 2305-2311. |
37 | Wang B, Wang D M, Wu X H, et al. Effects of dietary physical or nutritional factors on morphology of rumen papillae and transcriptome changes in lactating dairy cows based on three different forage-based diets. BMC Genomics, 2017, 18(1): 353. |
38 | Wang Y, Han X F, Tan Z L, et al. Rumen-protected glucose stimulates the insulin-like growth factor system and mTOR/AKT pathway in the endometrium of early postpartum dairy cows. Animals, 2020, 10(2): 357. |
39 | Steele M A, Aizahal O, Walpole M E, et al. Short communication: Grain-induced subacute ruminal acidosis is associated with the differential expression of insulin-like growth factor-binding proteins in rumen papillae of lactating dairy cattle. Journal of Dairy Science, 2012, 95(10): 6072-6076. |
40 | Liu T, Li F D, Wang W M, et al. Effects of starter feeding on rumen papilla genes expression involved in cellular growth and morphology in Hu lamb at different ages. Acta Veterinaria et Zootechnica Sinica, 2016, 47(12): 2441-2449. |
刘婷, 李发弟, 王维民, 等. 不同日龄补饲开食料对湖羊羔羊瘤胃形态及表皮生长相关基因表达的影响. 畜牧兽医学报, 2016, 47(12): 2441-2449. |
[1] | Tao ZHANG, Ying-yu MU, Wang-pan QI, Ji-you ZHANG, Sheng-yong MAO. Comparison of rumen epithelium morphology and function in dairy cows with differences in susceptibility for subacute ruminal acidosis [J]. Acta Prataculturae Sinica, 2023, 32(2): 131-139. |
[2] | Qian-long YANG, Qian-qian WEI, De-hui ZHAO, Xiao-lan GUO, Tie-tao ZHANG, Xiao-xu WANG, Kun BAO, Kai-ying WANG. Effects of dietary rumen-protected cysteine on growth performance, nutrient apparent digestibility and serum biochemical indexes of sika deer during weight gain [J]. Acta Prataculturae Sinica, 2023, 32(2): 148-159. |
[3] | Dong-wen DAI, Kai-yue Pang, xun WANG, Ying-kui YANG, Sha-tuo CHAI, Shu-xiang WANG. Effects of different concentrate supplement levels on rumen fermentation and microbial community structure of grazing yaks in the warm season [J]. Acta Prataculturae Sinica, 2022, 31(5): 169-177. |
[4] | Di ZHOU, Shuai YANG, Xin-xin ZHANG, Jing YUAN, Yan-xia GAO, Jian-guo LI, Bo WANG, Guang-sheng ZHOU, Ting-dong FU, Jun YE, Li-guo YANG, Guo-hua HUA. Effects of additive types and combinations on silage quality of whole-plant rape after harvesting and air-drying [J]. Acta Prataculturae Sinica, 2022, 31(4): 124-135. |
[5] | Xun-gang WANG, Xiao-ling ZHANG, Tian-wei XU, Yuan-yue GENG, Lin-yong HU, Na ZHAO, Hong-jin LIU, Sheng-ping KANG, Shi-xiao XU. Effects of dietary protein levels on ruminal fungal community structure and function in Tibetan sheep [J]. Acta Prataculturae Sinica, 2022, 31(2): 182-191. |
[6] | Yu-jie FAN, Hua-zhe SI, Xiao-xu WANG, Qian-long YANG, Xin-yu ZHANG, Wei ZHONG, Kai-ying WANG. Effects of arginine level on rumen flora population structure and fermentation in weaning sika deer [J]. Acta Prataculturae Sinica, 2022, 31(10): 154-166. |
[7] | Ting WANG, Lei SONG, Xu-zhe WANG, Chun-hui MA, Bao-jun DU, Fan-fan ZHANG. Effect of compound Lactobacillus and mixture ratio on fermentation quality and rumen degradability of mixed tomato pomace and alfalfa silage mixed storage [J]. Acta Prataculturae Sinica, 2022, 31(10): 167-177. |
[8] | Yan-xia GUO, Meng-wei LI, Zhen-hua TANG, Li-juan PENG, Kai-ping PENG, Fang XIE, Hua-de XIE, Cheng-jian YANG. Effects of different doses of sodium nitrate on fatty acid composition and microbial population in in vitro simulation of buffalo rumen fermentation with added linoleic acid [J]. Acta Prataculturae Sinica, 2021, 30(9): 159-167. |
[9] | Juan-shan ZHENG, KAO Ren-qing DING, Xin-pu LI, Ze-yi LIANG, Jian-bo ZHANG, Mei DU, Xue-zhi DING. Research progress on rumen microorganisms in the utilization of lignocellulose as an energy resource [J]. Acta Prataculturae Sinica, 2021, 30(9): 182-192. |
[10] | Shi-yu ZOU, Si-kui CHEN, Qi-yuan TANG, Dong CHEN, Yuan-wei CHEN, Pan DENG, Xu-lai HUANG, Fu-qiang LI. Effects of silage additives on quality and in vitro rumen fermentation characteristics of first season ratoon rice whole silage [J]. Acta Prataculturae Sinica, 2021, 30(7): 122-132. |
[11] | Chen LI, Ali Ahmad ANUM, Jian-bo ZHANG, Ze-yi LIANG, Xue-zhi DING, Ping YAN. Comparative study of grazing behavior, serum biochemical indexes, and rumen fermentation parameters of yaks and cattle in the cold seaso [J]. Acta Prataculturae Sinica, 2021, 30(6): 162-169. |
[12] | An-qiao LU, Feng-ju ZHANG, Xing XU, Xue-qin WANG, Shan YAO. Effects of salt stress on growth and physiological characteristics of Echinochloa frumentacea seedlings [J]. Acta Prataculturae Sinica, 2021, 30(5): 84-93. |
[13] | Jiang-wei LI, Zhi-you WANG, Sheng-zhen HOU, Yun LEI, Jian-lei JIA, Li ZHOU, Lin-sheng GUI. Effects of dietary concentrate∶roughage ratio on rumen morphology and microbial flora in fattening Tibetan sheep [J]. Acta Prataculturae Sinica, 2021, 30(3): 100-109. |
[14] | Fa-ming PAN, Sheng-hua CHANG, Guo-dong WANG, Sheng-yan HAO, Jia LIU, Hui-yuan ZHANG, Yin-ping XU. Effects of phenological period on the composition of fatty acids and conjugated linoleic acids in rumen fluid, forage and milk fat of grazing yak and their correlation analysis [J]. Acta Prataculturae Sinica, 2021, 30(3): 110-120. |
[15] | Mang-li XIONG, Xu-jin WU, Xiao-fu ZHU, Wen-juan ZHANG. Effects of different apple pomace levels on lactation performance, nutrient apparent digestibility, serum biochemical indices and the rumen pH of Guanzhong dairy goats [J]. Acta Prataculturae Sinica, 2021, 30(3): 81-88. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||