Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (9): 116-129.DOI: 10.11686/cyxb2022414
Chun-yan REN(), Guo-ling LIANG(), Wen-hui LIU, Kai-qiang LIU, Jia-lei DUAN
Received:
2022-10-18
Revised:
2022-12-12
Online:
2023-09-20
Published:
2023-07-12
Contact:
Guo-ling LIANG
Chun-yan REN, Guo-ling LIANG, Wen-hui LIU, Kai-qiang LIU, Jia-lei DUAN. Screening and adaptability evaluation of early maturing oats in alpine regions of the Qinghai-Tibetan Plateau[J]. Acta Prataculturae Sinica, 2023, 32(9): 116-129.
来源Origin | 份数Amount | 来源Origin | 份数Amount | 来源Origin | 份数Amount |
---|---|---|---|---|---|
中国China | 88 | 德国Germany | 3 | 瑞典Sweden | 12 |
澳大利亚Australia | 6 | 法国France | 3 | 瑞士Switzerland | 3 |
保加利亚Bulgaria | 4 | 荷兰Netherland | 4 | 苏联Soviet Union | 19 |
丹麦Denmark | 345 | 加拿大Canada | 79 | 匈牙利Hungary | 19 |
日本Japan | 4 | 罗马尼亚Romania | 5 | 挪威Norway | 1 |
Table 1 The origin and amount of oats germplasm resources
来源Origin | 份数Amount | 来源Origin | 份数Amount | 来源Origin | 份数Amount |
---|---|---|---|---|---|
中国China | 88 | 德国Germany | 3 | 瑞典Sweden | 12 |
澳大利亚Australia | 6 | 法国France | 3 | 瑞士Switzerland | 3 |
保加利亚Bulgaria | 4 | 荷兰Netherland | 4 | 苏联Soviet Union | 19 |
丹麦Denmark | 345 | 加拿大Canada | 79 | 匈牙利Hungary | 19 |
日本Japan | 4 | 罗马尼亚Romania | 5 | 挪威Norway | 1 |
燕麦熟性 Oat maturity | 划分标准 Classification standard (d) | 资源份数 Amount | 平均值 Average (d) | 标准差 Standard deviation | 最大值 Maximum (d) | 最小值 Minimum (d) | 极差 Range (d) | 变异系数 CV (%) |
---|---|---|---|---|---|---|---|---|
特晚熟Extra-late maturing | D>124 | 25 | 129.2 | 5.5 | 149 | 125 | 24 | 4.3 |
晚熟Late-maturing | 114<D≤124 | 51 | 119.0 | 2.8 | 124 | 115 | 9 | 2.4 |
中熟Mid-maturing | 93<D≤114 | 410 | 103.7 | 4.5 | 114 | 94 | 20 | 4.3 |
早熟Early-maturing | 83<D≤93 | 94 | 89.7 | 1.9 | 93 | 85 | 6 | 2.1 |
特早熟Earliest-maturing | D≤83 | 15 | 79.2 | 2.7 | 82 | 72 | 8 | 3.4 |
Table 2 Classification of 595 oat germplasm resources for maturity
燕麦熟性 Oat maturity | 划分标准 Classification standard (d) | 资源份数 Amount | 平均值 Average (d) | 标准差 Standard deviation | 最大值 Maximum (d) | 最小值 Minimum (d) | 极差 Range (d) | 变异系数 CV (%) |
---|---|---|---|---|---|---|---|---|
特晚熟Extra-late maturing | D>124 | 25 | 129.2 | 5.5 | 149 | 125 | 24 | 4.3 |
晚熟Late-maturing | 114<D≤124 | 51 | 119.0 | 2.8 | 124 | 115 | 9 | 2.4 |
中熟Mid-maturing | 93<D≤114 | 410 | 103.7 | 4.5 | 114 | 94 | 20 | 4.3 |
早熟Early-maturing | 83<D≤93 | 94 | 89.7 | 1.9 | 93 | 85 | 6 | 2.1 |
特早熟Earliest-maturing | D≤83 | 15 | 79.2 | 2.7 | 82 | 72 | 8 | 3.4 |
品种名称 Varieties | 出苗-拔节 Seedling-jointing (d) | 拔节-孕穗 Jointing-booting (d) | 孕穗-开花 Booting-flowering (d) | 开花-完熟 Flowering-ripe (d) | 生育天数 Growth duration (d) | |||||
---|---|---|---|---|---|---|---|---|---|---|
海北HB | 湟中HZ | 海北HB | 湟中HZ | 海北HB | 湟中HZ | 海北HB | 湟中HZ | 海北HB | 湟中HZ | |
巴燕3号BY No.3 | 27 | 24 | 13 | 11 | 23 | 12 | 52 | 40 | 115 | 87 |
巴燕5号BY No.5 | 20 | 24 | 13 | 10 | 28 | 13 | 51 | 34 | 112 | 81 |
青海444 QH 444 | 26 | 28 | 12 | 19 | 24 | 14 | 50 | 37 | 112 | 98 |
青燕1号 QY No.1 | 19 | 18 | 11 | 8 | 31 | 15 | 48 | 40 | 109 | 81 |
青引2号 QY No.2 | 24 | 19 | 16 | 17 | 31 | 17 | 44 | 36 | 115 | 89 |
青永久016 QYJ 016 | 23 | 22 | 16 | 11 | 35 | 20 | - | 40 | - | 93 |
青永久065 QYJ 065 | 30 | 19 | 12 | 13 | 18 | 15 | 45 | 33 | 105 | 80 |
青永久088 QYJ 088 | 25 | 20 | 13 | 6 | 21 | 21 | 50 | 44 | 109 | 91 |
青永久109 QYJ 109 | 26 | 20 | 7 | 6 | 29 | 21 | 48 | 37 | 110 | 84 |
青永久120 QYJ 120 | 20 | 19 | 6 | 7 | 31 | 21 | 40 | 45 | 97 | 92 |
青永久144 QYJ 144 | 24 | 18 | 12 | 7 | 22 | 15 | 45 | 51 | 103 | 91 |
青永久233 QYJ 233 | 30 | 24 | 15 | 15 | 33 | 20 | - | 38 | - | 97 |
青永久271 QYJ271 | 33 | 21 | 11 | 15 | 22 | 17 | 46 | 47 | 112 | 100 |
青永久390 QYJ 390 | 26 | 35 | 19 | 10 | 33 | 19 | - | 42 | - | 106 |
青永久400 QYJ 400 | 20 | 35 | 7 | 7 | 38 | 22 | - | 47 | - | 111 |
青永久469 QYJ 469 | 26 | 35 | 11 | 16 | 37 | 19 | - | 38 | - | 108 |
青永久470 QYJ 470 | 21 | 26 | 15 | 17 | 25 | 18 | 55 | 26 | 116 | 87 |
青永久714 QYJ 714 | 28 | 14 | 9 | 7 | 23 | 14 | 56 | 54 | 116 | 89 |
青永久719 QYJ 719 | 27 | 18 | 5 | 9 | 22 | 21 | 58 | 44 | 112 | 92 |
青永久762 QYJ 762 | 29 | 24 | 7 | 7 | 22 | 15 | 36 | 34 | 94 | 80 |
青永久770 QYJ 770 | 27 | 21 | 9 | 5 | 20 | 12 | 38 | 42 | 94 | 80 |
青永久773 QYJ 773 | 22 | 21 | 9 | 7 | 19 | 15 | 45 | 50 | 95 | 93 |
青永久775 QYJ 775 | 23 | 25 | 9 | 8 | 14 | 17 | 44 | 35 | 90 | 85 |
青永久782 QYJ 782 | 17 | 21 | 15 | 11 | 32 | 15 | 33 | 44 | 97 | 91 |
青永久797 QYJ 797 | 29 | 32 | 10 | 10 | 21 | 20 | 45 | 29 | 105 | 91 |
青永久799 QYJ 799 | 32 | 21 | 10 | 14 | 20 | 21 | 41 | 33 | 103 | 89 |
青永久882 QYJ 882 | 30 | 19 | 7 | 6 | 24 | 22 | 48 | 34 | 109 | 81 |
平均值Average | 25.3 | 23.1 | 11.1 | 10.3 | 25.9 | 17.4 | 46.3 | 39.8 | 105.9 | 90.6 |
标准差Standard deviation | 4.2 | 5.6 | 3.5 | 4.1 | 6.3 | 3.2 | 6.3 | 6.8 | 8.2 | 8.5 |
最大Maximum | 33.0 | 35.0 | 19.0 | 19.0 | 38.0 | 22.0 | 58.0 | 54.0 | 116.0 | 111.0 |
最小Minimum | 17.0 | 14.0 | 5.0 | 5.0 | 14.0 | 12.0 | 33.0 | 26.0 | 90.0 | 80.0 |
极差Range | 21.2 | 17.5 | 7.6 | 6.3 | 19.5 | 14.2 | 40.0 | 33.0 | 97.8 | 82.1 |
变异系数Coefficient of variation (%) | 16.5 | 24.3 | 31.7 | 39.2 | 24.4 | 18.4 | 13.6 | 17.0 | 7.7 | 9.4 |
Table 3 The comparison of growth stage of early-maturing oat varieties in different ecoregions
品种名称 Varieties | 出苗-拔节 Seedling-jointing (d) | 拔节-孕穗 Jointing-booting (d) | 孕穗-开花 Booting-flowering (d) | 开花-完熟 Flowering-ripe (d) | 生育天数 Growth duration (d) | |||||
---|---|---|---|---|---|---|---|---|---|---|
海北HB | 湟中HZ | 海北HB | 湟中HZ | 海北HB | 湟中HZ | 海北HB | 湟中HZ | 海北HB | 湟中HZ | |
巴燕3号BY No.3 | 27 | 24 | 13 | 11 | 23 | 12 | 52 | 40 | 115 | 87 |
巴燕5号BY No.5 | 20 | 24 | 13 | 10 | 28 | 13 | 51 | 34 | 112 | 81 |
青海444 QH 444 | 26 | 28 | 12 | 19 | 24 | 14 | 50 | 37 | 112 | 98 |
青燕1号 QY No.1 | 19 | 18 | 11 | 8 | 31 | 15 | 48 | 40 | 109 | 81 |
青引2号 QY No.2 | 24 | 19 | 16 | 17 | 31 | 17 | 44 | 36 | 115 | 89 |
青永久016 QYJ 016 | 23 | 22 | 16 | 11 | 35 | 20 | - | 40 | - | 93 |
青永久065 QYJ 065 | 30 | 19 | 12 | 13 | 18 | 15 | 45 | 33 | 105 | 80 |
青永久088 QYJ 088 | 25 | 20 | 13 | 6 | 21 | 21 | 50 | 44 | 109 | 91 |
青永久109 QYJ 109 | 26 | 20 | 7 | 6 | 29 | 21 | 48 | 37 | 110 | 84 |
青永久120 QYJ 120 | 20 | 19 | 6 | 7 | 31 | 21 | 40 | 45 | 97 | 92 |
青永久144 QYJ 144 | 24 | 18 | 12 | 7 | 22 | 15 | 45 | 51 | 103 | 91 |
青永久233 QYJ 233 | 30 | 24 | 15 | 15 | 33 | 20 | - | 38 | - | 97 |
青永久271 QYJ271 | 33 | 21 | 11 | 15 | 22 | 17 | 46 | 47 | 112 | 100 |
青永久390 QYJ 390 | 26 | 35 | 19 | 10 | 33 | 19 | - | 42 | - | 106 |
青永久400 QYJ 400 | 20 | 35 | 7 | 7 | 38 | 22 | - | 47 | - | 111 |
青永久469 QYJ 469 | 26 | 35 | 11 | 16 | 37 | 19 | - | 38 | - | 108 |
青永久470 QYJ 470 | 21 | 26 | 15 | 17 | 25 | 18 | 55 | 26 | 116 | 87 |
青永久714 QYJ 714 | 28 | 14 | 9 | 7 | 23 | 14 | 56 | 54 | 116 | 89 |
青永久719 QYJ 719 | 27 | 18 | 5 | 9 | 22 | 21 | 58 | 44 | 112 | 92 |
青永久762 QYJ 762 | 29 | 24 | 7 | 7 | 22 | 15 | 36 | 34 | 94 | 80 |
青永久770 QYJ 770 | 27 | 21 | 9 | 5 | 20 | 12 | 38 | 42 | 94 | 80 |
青永久773 QYJ 773 | 22 | 21 | 9 | 7 | 19 | 15 | 45 | 50 | 95 | 93 |
青永久775 QYJ 775 | 23 | 25 | 9 | 8 | 14 | 17 | 44 | 35 | 90 | 85 |
青永久782 QYJ 782 | 17 | 21 | 15 | 11 | 32 | 15 | 33 | 44 | 97 | 91 |
青永久797 QYJ 797 | 29 | 32 | 10 | 10 | 21 | 20 | 45 | 29 | 105 | 91 |
青永久799 QYJ 799 | 32 | 21 | 10 | 14 | 20 | 21 | 41 | 33 | 103 | 89 |
青永久882 QYJ 882 | 30 | 19 | 7 | 6 | 24 | 22 | 48 | 34 | 109 | 81 |
平均值Average | 25.3 | 23.1 | 11.1 | 10.3 | 25.9 | 17.4 | 46.3 | 39.8 | 105.9 | 90.6 |
标准差Standard deviation | 4.2 | 5.6 | 3.5 | 4.1 | 6.3 | 3.2 | 6.3 | 6.8 | 8.2 | 8.5 |
最大Maximum | 33.0 | 35.0 | 19.0 | 19.0 | 38.0 | 22.0 | 58.0 | 54.0 | 116.0 | 111.0 |
最小Minimum | 17.0 | 14.0 | 5.0 | 5.0 | 14.0 | 12.0 | 33.0 | 26.0 | 90.0 | 80.0 |
极差Range | 21.2 | 17.5 | 7.6 | 6.3 | 19.5 | 14.2 | 40.0 | 33.0 | 97.8 | 82.1 |
变异系数Coefficient of variation (%) | 16.5 | 24.3 | 31.7 | 39.2 | 24.4 | 18.4 | 13.6 | 17.0 | 7.7 | 9.4 |
品种名称 Varieties | 干草产量Hay yield (kg·hm-2) | F | 种子产量Seed yield (kg·hm-2) | F | ||
---|---|---|---|---|---|---|
海北HB | 湟中HZ | 海北HB | 湟中HZ | |||
巴燕3号BY No.3 | 9529.0±222.7ghi | 6533.4±289.2j | 202.051** | 2496.1±144.6fg | 2772.6±202.9efg | 3.693ns |
巴燕5号BY No.5 | 9394.0±250.0hi | 7111.4±124.6i | 200.364** | 3200.2±150.6bc | 3748.8±171.6a | 17.319* |
青海444 QH 444 | 13067.9±328.0bc | 11537.5±327.6c | 32.698* | 3438.0±121.0ab | 3955.8±304.6a | 7.485ns |
青燕1号 QY No.1 | 9725.1±560.6ghi | 8257.2±286.7gh | 16.301* | 3621.3±219.7a | 3861.8±160.9a | 2.341ns |
青引2号 QY No.2 | 12702.2±352.8bcd | 8628.8±143.5gh | 343.182** | 2904.1±112.0cde | 3237.5±183.7b | 7.200ns |
青永久016 QYJ 016 | 10547.1±250.9fg | 8189.5±253.2h | 131.216** | - | 1540.6±75.1k | / |
青永久065 QYJ 065 | 10816.0±786.5f | 8775.8±154.4g | 85.627** | 2149.8±135.6hi | 2476.9±88.9gh | 12.200* |
青永久088 QYJ 088 | 6499.6±139.5j | 3826.3±39.1n | 1021.252** | 1554.8±97.6kl | 1957.5±85.4j | 28.917** |
青永久109 QYJ 109 | 9566.4±558.3ghi | 6617.3±570.0j | 40.981** | 2436.1±190.5fgh | 2867.8±238.8def | 5.991ns |
青永久120 QYJ 120 | 5154.4±354.8k | 3737.7±168.7n | 38.999** | 2048.3±184.3ij | 2496.1±108.2gh | 13.169* |
青永久144 QYJ 144 | 9428.7±844.5hi | 7367.2±147.7i | 17.348* | 2159.0±139.8hi | 2758.3±194.1efg | 18.827* |
青永久233 QYJ 233 | 15311.5±238.1a | 12085.0±364.7b | 164.636** | - | 1649.2±118.5k | / |
青永久271 QYJ 271 | 9574.9±1066.2ghi | 7562.6±344.8i | 9.675* | 1349.4±130.5l | 1762.5±131.0jk | 14.979* |
青永久390 QYJ 390 | 11000.2±268.4ef | 9955.4±479.9e | 10.833* | - | 1567.2±78.6k | / |
青永久400 QYJ 400 | 12289.0±454.2cd | 9290.2±279.2f | 94.910* | - | 1493.1±148.3k | / |
青永久469 QYJ 469 | 13645.0±126.1b | 11063.1±310.6cd | 177.933** | - | 1547.5±80.1k | / |
青永久470 QYJ 470 | 6757.8±12.8j | 4481.1±124.9m | 986.729** | 2855.3±118.4de | 3181.3±177.0bc | 7.028ns |
青永久714 QYJ 714 | 7315.0±264.4j | 5724.4±128.6k | 87.809** | 2142.0±147.6hi | 2584.0±196.8fg | 9.682* |
青永久719 QYJ 719 | 10423.2±334.9fgh | 8412.6±153.4gh | 89.362** | 2415.1±265.5gh | 2915.1±140.5cde | 8.311* |
青永久762 QYJ 762 | 11849.0±368.5de | 8381.3±382.8gh | 127.778** | 2962.3±171.6cde | 3350.6±191.0b | 6.860ns |
青永久770 QYJ 770 | 6539.7±298.8j | 4109.5±142.6mn | 161.632** | 2069.0±61.2ij | 2475.9±243.0gh | 7.911* |
青永久773 QYJ 773 | 7303.1±574.1j | 5214.3±190.6l | 35.768** | 2844.6±297.8de | 3132.5±176.8bcd | 2.073ns |
青永久775 QYJ 775 | 9304.4±235.7i | 7217.8±397.0i | 61.274** | 2640.2±103.3efg | 3184.5±119.2bc | 35.718** |
青永久782 QYJ 782 | 12479.3±452.7cd | 10975.0±350.7d | 20.700** | 3005.4±125.6cd | 3272.8±102.6b | 8.156* |
青永久797 QYJ 797 | 9243.3±415.7i | 6331.6±156.0j | 128.998** | 2740.3±278.6def | 3186.0±100.8bc | 6.788ns |
青永久799 QYJ 799 | 10496.5±715.6fg | 8238.4±459.5gh | 21.149** | 1817.8±233.3jk | 2284.4±168.2hi | 7.895* |
青永久882 QYJ 882 | 15695.0±144.3a | 12776.3±369.1a | 162.683** | 1667.7±173.2k | 2037.5±162.8ij | 7.256ns |
平均值Average | 10209.5±433.8 | 7866.7±264.4 | 33.807** | 2019.1±133.4 | 2640.6±153.7 | 4.004ns |
F | 65.724** | 215.009** | / | 36.163** | 63.215** | / |
Table 4 The comparison of hay yield and seed yield of early-maturing oat varieties in different ecoregions
品种名称 Varieties | 干草产量Hay yield (kg·hm-2) | F | 种子产量Seed yield (kg·hm-2) | F | ||
---|---|---|---|---|---|---|
海北HB | 湟中HZ | 海北HB | 湟中HZ | |||
巴燕3号BY No.3 | 9529.0±222.7ghi | 6533.4±289.2j | 202.051** | 2496.1±144.6fg | 2772.6±202.9efg | 3.693ns |
巴燕5号BY No.5 | 9394.0±250.0hi | 7111.4±124.6i | 200.364** | 3200.2±150.6bc | 3748.8±171.6a | 17.319* |
青海444 QH 444 | 13067.9±328.0bc | 11537.5±327.6c | 32.698* | 3438.0±121.0ab | 3955.8±304.6a | 7.485ns |
青燕1号 QY No.1 | 9725.1±560.6ghi | 8257.2±286.7gh | 16.301* | 3621.3±219.7a | 3861.8±160.9a | 2.341ns |
青引2号 QY No.2 | 12702.2±352.8bcd | 8628.8±143.5gh | 343.182** | 2904.1±112.0cde | 3237.5±183.7b | 7.200ns |
青永久016 QYJ 016 | 10547.1±250.9fg | 8189.5±253.2h | 131.216** | - | 1540.6±75.1k | / |
青永久065 QYJ 065 | 10816.0±786.5f | 8775.8±154.4g | 85.627** | 2149.8±135.6hi | 2476.9±88.9gh | 12.200* |
青永久088 QYJ 088 | 6499.6±139.5j | 3826.3±39.1n | 1021.252** | 1554.8±97.6kl | 1957.5±85.4j | 28.917** |
青永久109 QYJ 109 | 9566.4±558.3ghi | 6617.3±570.0j | 40.981** | 2436.1±190.5fgh | 2867.8±238.8def | 5.991ns |
青永久120 QYJ 120 | 5154.4±354.8k | 3737.7±168.7n | 38.999** | 2048.3±184.3ij | 2496.1±108.2gh | 13.169* |
青永久144 QYJ 144 | 9428.7±844.5hi | 7367.2±147.7i | 17.348* | 2159.0±139.8hi | 2758.3±194.1efg | 18.827* |
青永久233 QYJ 233 | 15311.5±238.1a | 12085.0±364.7b | 164.636** | - | 1649.2±118.5k | / |
青永久271 QYJ 271 | 9574.9±1066.2ghi | 7562.6±344.8i | 9.675* | 1349.4±130.5l | 1762.5±131.0jk | 14.979* |
青永久390 QYJ 390 | 11000.2±268.4ef | 9955.4±479.9e | 10.833* | - | 1567.2±78.6k | / |
青永久400 QYJ 400 | 12289.0±454.2cd | 9290.2±279.2f | 94.910* | - | 1493.1±148.3k | / |
青永久469 QYJ 469 | 13645.0±126.1b | 11063.1±310.6cd | 177.933** | - | 1547.5±80.1k | / |
青永久470 QYJ 470 | 6757.8±12.8j | 4481.1±124.9m | 986.729** | 2855.3±118.4de | 3181.3±177.0bc | 7.028ns |
青永久714 QYJ 714 | 7315.0±264.4j | 5724.4±128.6k | 87.809** | 2142.0±147.6hi | 2584.0±196.8fg | 9.682* |
青永久719 QYJ 719 | 10423.2±334.9fgh | 8412.6±153.4gh | 89.362** | 2415.1±265.5gh | 2915.1±140.5cde | 8.311* |
青永久762 QYJ 762 | 11849.0±368.5de | 8381.3±382.8gh | 127.778** | 2962.3±171.6cde | 3350.6±191.0b | 6.860ns |
青永久770 QYJ 770 | 6539.7±298.8j | 4109.5±142.6mn | 161.632** | 2069.0±61.2ij | 2475.9±243.0gh | 7.911* |
青永久773 QYJ 773 | 7303.1±574.1j | 5214.3±190.6l | 35.768** | 2844.6±297.8de | 3132.5±176.8bcd | 2.073ns |
青永久775 QYJ 775 | 9304.4±235.7i | 7217.8±397.0i | 61.274** | 2640.2±103.3efg | 3184.5±119.2bc | 35.718** |
青永久782 QYJ 782 | 12479.3±452.7cd | 10975.0±350.7d | 20.700** | 3005.4±125.6cd | 3272.8±102.6b | 8.156* |
青永久797 QYJ 797 | 9243.3±415.7i | 6331.6±156.0j | 128.998** | 2740.3±278.6def | 3186.0±100.8bc | 6.788ns |
青永久799 QYJ 799 | 10496.5±715.6fg | 8238.4±459.5gh | 21.149** | 1817.8±233.3jk | 2284.4±168.2hi | 7.895* |
青永久882 QYJ 882 | 15695.0±144.3a | 12776.3±369.1a | 162.683** | 1667.7±173.2k | 2037.5±162.8ij | 7.256ns |
平均值Average | 10209.5±433.8 | 7866.7±264.4 | 33.807** | 2019.1±133.4 | 2640.6±153.7 | 4.004ns |
F | 65.724** | 215.009** | / | 36.163** | 63.215** | / |
品种名称 Varieties | 千粒重Thousand kernel weight (g) | F | 粒长 Grain length (mm) | F | 粒宽 Grain width (mm) | F | |||
---|---|---|---|---|---|---|---|---|---|
海北HB | 湟中HZ | 海北HB | 湟中HZ | 海北HB | 湟中HZ | ||||
巴燕3号BY No.3 | 26.6±0.6f | 24.9±2.0d | 1.819ns | 17.1±0.9ab | 17.1±1.2a | 0.000ns | 2.6±0.0cd | 2.6±0.2cd | 0.007ns |
巴燕5号BY No.5 | 30.6±0.7c | 28.6±0.7b | 11.878** | 17.4±0.5a | 16.8±1.0ab | 1.313ns | 2.8±0.1bc | 2.6±0.2cd | 5.298ns |
青海444 QH 444 | 28.5±1.2de | 27.2±0.4bc | 3.094ns | 13.8±0.8d | 15.4±0.8c | 8.955* | 2.8±0.1bc | 2.8±0.2ab | 0.669ns |
青燕1号 QY No.1 | 29.7±0.6cd | 28.3±0.4b | 10.068* | 14.8±0.5c | 14.1±0.3d | 9.284* | 3.0±0.2a | 2.9±0.1a | 0.098ns |
青引2号 QY No.2 | 33.6±0.6a | 31.2±0.9a | 15.138* | 16.9±0.9ab | 17.1±1.1a | 0.066ns | 2.7±0.2bc | 2.7±0.1bc | 0.032ns |
青永久065 QYJ 065 | 29.0±0.3de | 26.2±0.9cd | 23.956** | 13.6±0.9d | 13.9±1.1d | 0.190ns | 2.8±0.2b | 2.9±0.1ab | 1.801ns |
青永久271 QYJ 271 | 21.4±1.0g | 20.0±0.6e | 4.081ns | 16.1±0.6b | 15.7±0.6bc | 0.956ns | 2.5±0.1d | 2.5±0.2d | 0.270ns |
青永久782 QYJ 782 | 27.8±0.9ef | 25.0±0.6d | 21.241** | 16.3±0.9b | 16.0±0.9abc | 0.174ns | 2.7±0.1bcd | 2.4±0.1d | 10.417* |
青永久797 QYJ 797 | 32.1±0.8b | 30.9±0.8a | 3.332ns | 16.9±0.5ab | 17.2±0.9a | 0.562ns | 2.8±0.2b | 2.6±0.2cd | 3.703ns |
平均值Average | 28.8±3.5 | 26.9±3.5 | 4.061* | 15.9±1.4 | 15.9±1.3 | 0.044ns | 2.7±0.2 | 2.7±0.2 | 1.673ns |
F | 58.886** | 40.838** | / | 17.675** | 9.583** | / | 5.718** | 8.968** | / |
Table 5 The comparison of grain length, grain width and thousand kernel weight of early-maturing oat varieties in different ecoregions
品种名称 Varieties | 千粒重Thousand kernel weight (g) | F | 粒长 Grain length (mm) | F | 粒宽 Grain width (mm) | F | |||
---|---|---|---|---|---|---|---|---|---|
海北HB | 湟中HZ | 海北HB | 湟中HZ | 海北HB | 湟中HZ | ||||
巴燕3号BY No.3 | 26.6±0.6f | 24.9±2.0d | 1.819ns | 17.1±0.9ab | 17.1±1.2a | 0.000ns | 2.6±0.0cd | 2.6±0.2cd | 0.007ns |
巴燕5号BY No.5 | 30.6±0.7c | 28.6±0.7b | 11.878** | 17.4±0.5a | 16.8±1.0ab | 1.313ns | 2.8±0.1bc | 2.6±0.2cd | 5.298ns |
青海444 QH 444 | 28.5±1.2de | 27.2±0.4bc | 3.094ns | 13.8±0.8d | 15.4±0.8c | 8.955* | 2.8±0.1bc | 2.8±0.2ab | 0.669ns |
青燕1号 QY No.1 | 29.7±0.6cd | 28.3±0.4b | 10.068* | 14.8±0.5c | 14.1±0.3d | 9.284* | 3.0±0.2a | 2.9±0.1a | 0.098ns |
青引2号 QY No.2 | 33.6±0.6a | 31.2±0.9a | 15.138* | 16.9±0.9ab | 17.1±1.1a | 0.066ns | 2.7±0.2bc | 2.7±0.1bc | 0.032ns |
青永久065 QYJ 065 | 29.0±0.3de | 26.2±0.9cd | 23.956** | 13.6±0.9d | 13.9±1.1d | 0.190ns | 2.8±0.2b | 2.9±0.1ab | 1.801ns |
青永久271 QYJ 271 | 21.4±1.0g | 20.0±0.6e | 4.081ns | 16.1±0.6b | 15.7±0.6bc | 0.956ns | 2.5±0.1d | 2.5±0.2d | 0.270ns |
青永久782 QYJ 782 | 27.8±0.9ef | 25.0±0.6d | 21.241** | 16.3±0.9b | 16.0±0.9abc | 0.174ns | 2.7±0.1bcd | 2.4±0.1d | 10.417* |
青永久797 QYJ 797 | 32.1±0.8b | 30.9±0.8a | 3.332ns | 16.9±0.5ab | 17.2±0.9a | 0.562ns | 2.8±0.2b | 2.6±0.2cd | 3.703ns |
平均值Average | 28.8±3.5 | 26.9±3.5 | 4.061* | 15.9±1.4 | 15.9±1.3 | 0.044ns | 2.7±0.2 | 2.7±0.2 | 1.673ns |
F | 58.886** | 40.838** | / | 17.675** | 9.583** | / | 5.718** | 8.968** | / |
1 | Xu C L. A study on growth characteristics of different cultivars of oat (Avena sativa) in alpine region. Acta Prataculturae Sinica, 2012, 21(2): 280-285. |
徐长林. 高寒牧区不同燕麦品种生长特性比较研究. 草业学报, 2012, 21(2): 280-285. | |
2 | Bao G S, Zhou Q P, Han Z L. Effects of nitrogen and potassium fertilizer on yield and quality of oat. Pratacultural Science, 2008(10): 48-53. |
鲍根生, 周青平, 韩志林. 氮、钾不同配比施肥对燕麦产量和品质的影响. 草业科学, 2008(10): 48-53. | |
3 | Liu Z H, Wu G L, Ren Q C, et al. Sustainable development of animal husbandry based on oat in alpine grassland area. Pratacultural Science, 2007(9): 67-69. |
刘振恒, 武高林, 仁青草, 等. 发展以燕麦为支柱产业的可持续高寒草地畜牧业. 草业科学, 2007(9): 67-69. | |
4 | Xiao X J, Zhou Q P, Chen Y J, et al. Effect of seedling rate on production performance and photosynthetic characteristics of Avena sativa cv. LENA in alpine pastoral regions. Pratacultural Science, 2017, 34(4): 761-771. |
肖雪君, 周青平, 陈有军, 等. 播种量对高寒牧区林纳燕麦生产性能及光合特性的影响. 草业科学, 2017, 34(4): 761-771. | |
5 | Rammig A, Jonas T, Zimmermann N E, et al. Changes in alpine plant growth under future climate conditions. Biogeosciences, 2010, 7(6): 2013-2024. |
6 | Zhao G Q, Shi S L. The current situation of oat research and production, problems and strategy in Tibetan Plateau. Pratacultural Science, 2004(11): 17-21. |
赵桂琴, 师尚礼. 青藏高原饲用燕麦研究与生产现状、存在问题与对策. 草业科学, 2004(11): 17-21. | |
7 | Gang Y H, Zhang H B. The position ang function of oats in the sustainable development of grassland animal husbandry in Qinghai Alpine Region. Grassland and Prataculture, 2019, 31(3): 12-15. |
刚永和, 张海博. 燕麦在青海高寒地区草原畜牧业可持续发展中的地位和作用. 草原与草业, 2019, 31(3): 12-15. | |
8 | Liu W H, Zhang Y C, Liang G L, et al. Effects of different agronomy treatments on the oat cultivation grassland soil carbon and nitrogen stock and the carbon/nitrogen ratio. Acta Agrestia Sinica, 2019, 27(3): 675-686. |
刘文辉, 张永超, 梁国玲, 等. 高寒区不同农艺措施对燕麦人工草地各生育期土壤碳氮储量与碳氮比的影响. 草地学报, 2019, 27(3): 675-686. | |
9 | Yuan X J, Zhang B L, Guo J, et al. Remote sensing analysis on spatial difference in phenology and mature characters of spring maize. Science Technology and Engineering, 2022, 22(1): 93-102. |
元雪娇, 张宝林, 郭佳, 等. 春玉米物候期及熟性空间分异的遥感分析. 科学技术与工程, 2022, 22(1): 93-102. | |
10 | Xiao D P, Qi Y Q, Wang R D, et al. Changes in phenology and climatic conditions of wheat and maize in Xinjiang during 1981-2009. Agricultural Research in the Arid Areas, 2015, 33(6): 189-194, 202. |
肖登攀, 齐永青, 王仁德, 等. 1981-2009年新疆小麦和玉米物候期与气候条件变化研究. 干旱地区农业研究, 2015, 33(6): 189-194, 202. | |
11 | Yu S X, Wang H T, Wei H L, et al. Research progress and application of early maturity in upland cotton. Cotton Science, 2017, 29(S1): 1-10. |
喻树迅, 王寒涛, 魏恒玲, 等. 棉花早熟性研究进展及其应用. 棉花学报, 2017, 29(S1): 1-10. | |
12 | Fu M, Feng W H, Wu J, et al. Regional adaptability identification and quality evaluation of early-maturing potato varieties in Guizhou wintergrowing area. Seed, 2021, 40(2): 121-128, 142, 149. |
付梅, 冯文豪, 吴军, 等. 贵州冬作区早熟马铃薯新品种区域适应性鉴定及品质评价. 种子, 2021, 40(2): 121-128, 142, 149. | |
13 | Sun B, Chen H J, Li J L, et al. Adaptability identification of 24 earliest maturing maize varieties in the alpine zone of northern Heilongjiang Province. China Seed Industry, 2015(4): 29-32. |
孙波, 陈海军, 李金良, 等. 24个极早熟玉米品种在黑龙江省北部高寒区适应性鉴定. 中国种业, 2015(4): 29-32. | |
14 | Yan Y H, Hu Y M. Study on sustainable development of grassland animal husbandry in alpine region. Journal of Animal Science and Veterinary Medicine, 2018, 37(1): 28-31, 33. |
闫颖慧, 虎艳梅. 高寒地区草原畜牧业的可持续发展研究. 畜牧兽医杂志, 2018, 37(1): 28-31, 33. | |
15 | Liang G L, Qin Y, Wei X X, et al. Evaluation on productivity and quality of oat strain I-D in the alpine regions of the Qinghai-Tibetan Plateau. Acta Agrestia Sinica, 2018, 26(4): 917-927. |
梁国玲, 秦燕, 魏小星, 等. 青藏高原高寒区I-D燕麦品系饲草生产性能及品质评价. 草地学报, 2018, 26(4): 917-927. | |
16 | Geng X L, Han T H, Zhang S P, et al. Adaptability evaluation of 30 oat germplasm in Tianzhu. Acta Agrestia Sinica, 2019, 27(6): 1743-1750. |
耿小丽, 韩天虎, 张少平, 等. 30个燕麦品种(品系)在甘肃天祝地区的适应性评价. 草地学报, 2019, 27(6): 1743-1750. | |
17 | Ma J H, Zhou W X, Sa R L, et al. Comprehensive evaluation of stress resistance of 8 naked oat varieties during germination stage. Journal of Inner Mongolia Minzu University (Natural Sciences), 2022, 37(6): 477-483. |
马金慧, 周文喜, 萨如拉, 等. 8个裸燕麦品种萌发期抗逆性综合评价. 内蒙古民族大学学报(自然科学版), 2022, 37(6): 477-483. | |
18 | Ma X, Liu Y, Zhang Y C, et al. Effects of different harvest time on seed germination and seedling growth of oats. Chinese Agricultural Science Bulletin, 2019, 35(24): 7-14. |
马祥, 刘勇, 张永超, 等. 不同收获时间对燕麦种子萌发和幼苗生长的影响. 中国农学通报, 2019, 35(24): 7-14. | |
19 | Fu L H, Yu S, Yu L H, et al. Analysis of saline-alkaline tolerance and screening of identification indexes of different oat genotypes at the germination stage. Crops, 2018(6): 27-35, 174. |
付鸾鸿, 于崧, 于立河, 等.不同基因型燕麦萌发期耐盐碱性分析及其鉴定指标的筛选. 作物杂志, 2018(6): 27-35, 174. | |
20 | Wang L Y. On character difference of 632 oats varieties in Xining region, Qinghai province. Pratacultural Science, 1998(3): 20-23. |
王柳英. 燕麦品种性状变异的研究. 草业科学, 1998(3): 20-23. | |
21 | Li M, Wang L Y, Yan H B, et al. Study on the trait variation of 98 oat varieties. Journal of Anhui Agricultural Sciences, 2010, 38(26): 14289-14290, 14304. |
黎明, 王柳英, 颜红波, 等. 98份燕麦品种性状变异的研究. 安徽农业科学, 2010, 38(26): 14289-14290, 14304. | |
22 | Peng X Q, Zhou Q P, Liu W H, et al. A comparative analysis of growth characteristics of six oat cultivars in the north-western Sichuan alpine region. Pratacultural Science, 2018, 35(5): 1208-1217. |
彭先琴, 周青平, 刘文辉, 等. 川西北高寒地区6个燕麦品种生长特性的比较分析. 草业科学, 2018, 35(5): 1208-1217. | |
23 | Zhang C L, Han B, Zhao Y L, et al. Breeding of a new early-maturing forage variety, Mengsi No.5 oat. China Seed Industry, 2021(12): 102-104. |
张春林, 韩冰, 赵瑛琳, 等. 早熟饲草新品种蒙饲5号燕麦的选育. 中国种业, 2021(12): 102-104. | |
24 | Han D L, Ji W R. A report of the Regional test on the early maturing and high yielding new cultivars of Avena sativa. Chinese Qinghai Journal of Animal and Veterinary Sciences, 1996, 26(2): 1-4. |
韩德林, 冀旺荣. 早熟高产燕麦新品种区域试验报告. 青海畜牧兽医杂志, 1996, 26(2): 1-4. | |
25 | Zhou Q P, Yan H B, Liang G L, et al. Report on breeding program for a new oat variety of early maturity and high yield, Qingyan No.1. Journal of Southwest Minzu University (Natural Science Edition), 2014, 40(2): 161-167. |
周青平, 颜红波, 梁国玲, 等. 早熟高产燕麦新品种青燕1号选育报告. 西南民族大学学报(自然科学版), 2014, 40(2): 161-167. | |
26 | Yin D H. A correlation and path-coefficient analysis in oat. Journal of Qinghai Animal Husbandry and Veterinary Medicine College, 1990, 7(1): 914. |
尹大海. 燕麦生育期与其它性状的相关及通径分析. 青海畜牧兽医学院学报, 1990, 7(1): 9-14. | |
27 | Zhou Q P, Gou X L, Tian L H, et al. Performances of early and late maturing oat varieties in cold regions. Chinese Science Bulletin, 2018, 63(17): 1722-1730. |
周青平, 苟小林, 田莉华, 等. 寒冷区早晚熟燕麦品种的生产性能分析. 科学通报, 2018, 63(17): 1722-1730. | |
28 | Li Y M. A preliminary study on photosynthetic performance of wheat, barley, oats and rye at low temperature in winter. Journal of Hebei Agricultural University, 1997, 20(3): 33-37. |
李雁鸣. 冬季低温条件下麦类作物光合性能的初步研究. 河北农业大学学报, 1997, 20(3): 33-37. | |
29 | Chen X, Liang Q, Yang H F, et al. Production performance and nutrient analysis of early and late maturing oat in Fenhe plain area. Feed Research, 2020, 43(11): 92-96. |
陈雪, 梁琪, 杨海峰, 等. 汾河平原春播早熟燕麦和晚熟燕麦生产性能与养分分析. 饲料研究, 2020, 43(11): 92-96. | |
30 | Zheng X, Wei Z W, Wu Z N, et al. Adaptability evaluation of different Avena sativa varieties in Yangzhou area. Acta Agrestia Sinica, 2013, 21(2): 272-279. |
郑曦, 魏臻武, 武自念, 等. 不同燕麦品种(系)在扬州地区的适应性评价. 草地学报, 2013, 21(2): 272-279. | |
31 | Chai J K. Study on adaptability, productivity and quality of oats in different ecological regions of Gansu. Lanzhou: Gansu Agricultural University, 2009. |
柴继宽. 燕麦在甘肃不同生态区域的适应性、生产性能及品质研究. 兰州: 甘肃农业大学, 2009. | |
32 | Chai J K, Zhao G Q, Hu K J, et al. Effect of eco-environment in different planting areas on oat nutritive value and hay production. Acta Agrestia Sinica, 2010, 18(3): 421-425, 476. |
柴继宽, 赵桂琴, 胡凯军, 等. 不同种植区生态环境对燕麦营养价值及干草产量的影响. 草地学报, 2010, 18(3): 421-425, 476. | |
33 | Zhang L, Zhang C H, Lv J P, et al. Seed germination characteristics and their correlations with seed sizes of 31 common weeds in eastern Qinghai-Tibet Plateau. Chinses Journal of Ecology, 2011, 30(10): 2115-2121. |
张蕾, 张春辉, 吕俊平, 等. 青藏高原东缘31种常见杂草种子萌发特性及其与种子大小的关系. 生态学杂志, 2011, 30(10): 2115-2121. | |
34 | Yue J M, Li M L. Review of mobilization and change of seed storage materials during germination. Seed, 2021, 40(1): 56-62. |
岳佳铭, 李曼莉. 萌发过程中种子贮藏物质的动员和变化规律概述. 种子, 2021, 40(1): 56-62. | |
35 | Wei W, Zhou J J, Bai M G W, et al. Effects of different altitudes gradient on seed size and germination characteristics of 3 grasses species from Tibet Plateau. Seed, 2018, 37(2): 29-33. |
魏巍, 周娟娟, 白玛嘎翁, 等. 海拔梯度对西藏高原3种禾本科牧草种子大小和萌发特性的影响. 种子, 2018, 37(2): 29-33. |
[1] | Yi-dan YAN, Ying-ying NIE, Li-jun XU, Xing-fa GAO, Yan-zhang RAO, Xiong RAO, Hong-zhi ZHANG, Cha-shu ZHAO, Yan-ping ZHU, Yu-bo ZHU. Potential excavation and evaluation of functional oat varieties in winter fallow field of southwest mountainous area [J]. Acta Prataculturae Sinica, 2023, 32(4): 42-53. |
[2] | Wen-ting GUO, Guo-hua WANG, Qian-qian GOU. Effects of sodium salt stress on seed germination and seedling growth of three Chenopodiaceae annuals [J]. Acta Prataculturae Sinica, 2023, 32(3): 128-141. |
[3] | Zheng TIAN, Zheng-yu YANG, Zhong-jie LU, Ben LUO, Mao ZHANG, Rui DONG. Acid-aluminum adaptability and tolerance evaluation of 44 alfalfa cultivars [J]. Acta Prataculturae Sinica, 2023, 32(3): 142-151. |
[4] | Jian-xin LIU, Rui-rui LIU, Xiu-li LIU, Xiao-bin OU, Hai-yan JIA, Ting BU, Na LI. Effects of exogenous hydrogen sulfide on amino acid metabolism in naked oat leaves under saline-alkali stress [J]. Acta Prataculturae Sinica, 2023, 32(2): 119-130. |
[5] | Xue-ling YE, Zhen GAN, Yan WAN, Da-bing XIANG, Xiao-yong WU, Qi WU, Chang-ying LIU, Yu FAN, Liang ZOU. Advances and perspectives in forage oat breeding [J]. Acta Prataculturae Sinica, 2023, 32(2): 160-177. |
[6] | Yi-ting JIN, Wen-hui LIU, Kai-qiang LIU, Guo-ling LIANG, Zhi-feng JIA. Effect of water deficit stress on the chlorophyll fluorescence parameters of Avena sativa ‘Qingyan No.1’ over the whole crop growth period [J]. Acta Prataculturae Sinica, 2022, 31(6): 112-126. |
[7] | Dou-dou LIN, Ze-liang JU, Ji-kuan CHAI, Gui-qin ZHAO. Screening and identification of low temperature tolerant lactic acid bacterial epiphytes from oats on the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2022, 31(5): 103-114. |
[8] | Hai-yan WU, Ni QU, Zhen QU, Tongsangcuomu, Dawazhuoga, Deyang, Nimazhuoga, Zhao-ming LIU, Yu-shou MA. Comparison of crop yield and forage quality of six oat varieties in Angren County, Shigatse [J]. Acta Prataculturae Sinica, 2022, 31(4): 72-80. |
[9] | Cheng-zhen ZHAO, Qiang LI, Rong-zhen ZHONG. Effect of mowing in different phenological growth stages on shoot regrowth, root morphology and forage yield of Leymus chinensis [J]. Acta Prataculturae Sinica, 2022, 31(3): 92-100. |
[10] | Xing-yu WANG, Jing CHENG, Sheng GAO, Mo-han LI, Man-xia YANG, Jun-yong GE, Hai-tao ZHOU, Yun-xia LI, Hua-dong ZANG, Wen-bo ZUO. Evaluation of adaptability of naked oat varieties in the alpine region of North China based on the AMMI model and GGE Biplot [J]. Acta Prataculturae Sinica, 2022, 31(12): 76-84. |
[11] | Ming NAN, Jing LI, Gui-qin ZHAO, Ji-kuan CHAI, Yan-ming LIU. Relationship between lodging resistance of oats and the basal internode stem characteristics and lignin synthesis [J]. Acta Prataculturae Sinica, 2022, 31(11): 172-180. |
[12] | Jun-nian LI, Shao-hua KANG, Dong-mei YANG, Qian HE, Shuang LI, Shuang-lun TAO. Effects of substituting dietary alfalfa meal with kudzu vine (Pueraria lobata) meal on serum biochemical indexes, apparent nutrient digestibility and growth performance in Boer crossbred goats [J]. Acta Prataculturae Sinica, 2021, 30(8): 146-153. |
[13] | Yi XIAO, Zhong-fu YANG, Gang NIE, Jia-ting HAN, Yang SHUAI, Xin-quan ZHANG. Multi-trait evaluation of yield and nutritive value of 12 Lolium multiflorum varieties or lines in Chengdu Plain [J]. Acta Prataculturae Sinica, 2021, 30(5): 174-185. |
[14] | Mang-li XIONG, Xu-jin WU, Xiao-fu ZHU, Wen-juan ZHANG. Effects of different apple pomace levels on lactation performance, nutrient apparent digestibility, serum biochemical indices and the rumen pH of Guanzhong dairy goats [J]. Acta Prataculturae Sinica, 2021, 30(3): 81-88. |
[15] | Ji-qing WANG, Ji-yuan SHEN, Xiu LIU, Shao-bin LI, Yu-zhu LUO, Meng-li ZHAO, Zhi-yun HAO, Na KE, Yi-ze SONG, Li-rong QIAO. Comparative analysis of meat production traits, meat quality, and muscle nutrient and fatty acid contents between Ziwuling black goats and Liaoning cashmere goats [J]. Acta Prataculturae Sinica, 2021, 30(2): 166-177. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||