Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (2): 125-137.DOI: 10.11686/cyxb2023106
Yuan MA1(), Xiao-li WANG1(), Yu-shou MA1, De-gang ZHANG2
Received:
2023-04-06
Revised:
2023-04-24
Online:
2024-02-20
Published:
2023-12-12
Contact:
Yuan MA,Xiao-li WANG
Yuan MA, Xiao-li WANG, Yu-shou MA, De-gang ZHANG. Effects of the degree of alpine meadow degradation on the rhizosphere soil fungal community and the ecological network of dominant species[J]. Acta Prataculturae Sinica, 2024, 33(2): 125-137.
样地 Plot | 海拔 Altitude (m) | 纬度 Latitude | 经度 Longitude | 优势物种 Dominant plant species | 盖度 Coverage (%) | 高度 Height (cm) | 地上生物量 Above-ground biomass (g·m-2) |
---|---|---|---|---|---|---|---|
未退化草地 ND | 3008.3 | 37°13′05″N | 102°44′11″E | 珠芽蓼P.viviparum、垂穗披碱草 E.dahuricus、线叶嵩草K.capillifolia | 98~100 | 20.87 | 403.31 |
轻度退化草地 LD | 2940.0 | 37°11′58″ N | 102°46′17″E | 线叶嵩草K.capillifolia、矮生嵩草 K.humilus、扁蓿豆M.ruthenicus | 82~85 | 18.62 | 364.18 |
中度退化草地 MD | 2869.8 | 37°11′42″N | 102°47′01″E | 矮生嵩草K.humilus、线叶嵩草 K.capillifolia、扁蓿豆M.ruthenicus | 70~78 | 17.38 | 245.42 |
重度退化草地 SD | 2893.6 | 37°12′05″N | 102°45′59″E | 乳白香青A.lactea、矮生嵩草K.humilus、 垂穗披碱草E.dahuricus | 32~38 | 2.16 | 99.05 |
Table 1 Basic information of alpine meadow plots with different degrees of degradation
样地 Plot | 海拔 Altitude (m) | 纬度 Latitude | 经度 Longitude | 优势物种 Dominant plant species | 盖度 Coverage (%) | 高度 Height (cm) | 地上生物量 Above-ground biomass (g·m-2) |
---|---|---|---|---|---|---|---|
未退化草地 ND | 3008.3 | 37°13′05″N | 102°44′11″E | 珠芽蓼P.viviparum、垂穗披碱草 E.dahuricus、线叶嵩草K.capillifolia | 98~100 | 20.87 | 403.31 |
轻度退化草地 LD | 2940.0 | 37°11′58″ N | 102°46′17″E | 线叶嵩草K.capillifolia、矮生嵩草 K.humilus、扁蓿豆M.ruthenicus | 82~85 | 18.62 | 364.18 |
中度退化草地 MD | 2869.8 | 37°11′42″N | 102°47′01″E | 矮生嵩草K.humilus、线叶嵩草 K.capillifolia、扁蓿豆M.ruthenicus | 70~78 | 17.38 | 245.42 |
重度退化草地 SD | 2893.6 | 37°12′05″N | 102°45′59″E | 乳白香青A.lactea、矮生嵩草K.humilus、 垂穗披碱草E.dahuricus | 32~38 | 2.16 | 99.05 |
样品编号 Sample number | Observed_species指数 OTUs | 香农-威纳指数 Shannon-Weiner index | 辛普森指数 Simpson index | Chao1指数 Chao1 index | ACE指数 ACE index | 覆盖度 Coverage (%) |
---|---|---|---|---|---|---|
ND | 1121.17±43.70a | 6.77±0.20a | 0.95±0.01a | 1219.75±44.90a | 1230.37±44.90a | 99.72±0.12a |
LD | 1147.00±87.50a | 6.75±0.63a | 0.92±0.02a | 1284.89±53.80a | 1296.45±52.30a | 99.68±0.11a |
MD | 1068.50±44.20a | 6.53±0.18a | 0.97±0.01a | 1171.07±44.50a | 1176.99±43.20a | 99.73±0.09a |
SD | 1063.33±28.10a | 6.51±0.17a | 0.96±0.01a | 1167.33±30.40a | 1175.14±30.90a | 99.74±0.15a |
Table 2 The rhizosphere soil fungal diversity index of dominant species in degraded alpine meadows with different degrees
样品编号 Sample number | Observed_species指数 OTUs | 香农-威纳指数 Shannon-Weiner index | 辛普森指数 Simpson index | Chao1指数 Chao1 index | ACE指数 ACE index | 覆盖度 Coverage (%) |
---|---|---|---|---|---|---|
ND | 1121.17±43.70a | 6.77±0.20a | 0.95±0.01a | 1219.75±44.90a | 1230.37±44.90a | 99.72±0.12a |
LD | 1147.00±87.50a | 6.75±0.63a | 0.92±0.02a | 1284.89±53.80a | 1296.45±52.30a | 99.68±0.11a |
MD | 1068.50±44.20a | 6.53±0.18a | 0.97±0.01a | 1171.07±44.50a | 1176.99±43.20a | 99.73±0.09a |
SD | 1063.33±28.10a | 6.51±0.17a | 0.96±0.01a | 1167.33±30.40a | 1175.14±30.90a | 99.74±0.15a |
Fig.2 Principal co-ordinates analysis(A)and non-metric multi-dimensional scaling analysis (B) based on OTU level of rhizosphere soil fungi in alpine meadows with different degradation degrees
网络 Networks | 项目 Item | 样地 Plot | |||
---|---|---|---|---|---|
ND | LD | MD | SD | ||
分子生态网络 Molecular ecological networks | 总节点Total nodes | 839 | 1219 | 971 | 768 |
总边Total edges | 6901 | 12929 | 8445 | 5985 | |
幂律系数 R2 of power-law | 0.712 | 0.806 | 0.760 | 0.728 | |
负相关边比例 Negative edges percentage (%) | 54.31 | 62.19 | 69.37 | 73.92 | |
连通性Connectedness | 0.693 | 0.859 | 0.783 | 0.742 | |
平均度Average degree | 17.39 | 21.21 | 16.45 | 13.63 | |
平均路径长度Average path length | 3.365 | 3.517 | 3.844 | 3.969 | |
平均聚集系数Average clustering coefficient | 0.143 | 0.146 | 0.141 | 0.139 | |
模块化指数 Modularity | 0.366 | 0.405 | 0.341 | 0.329 | |
介数中心性Centralization of betweenness | 0.021 | 0.036 | 0.051 | 0.084 | |
随机网络 Random network | 平均路径长度Average path length | 2.914±0.012 | 2.851±0.010 | 2.929±0.013 | 3.047±0.015 |
平均聚集系数Average clustering coefficient | 0.086±0.005 | 0.088±0.003 | 0.084±0.004 | 0.076±0.004 | |
模块性Modularity | 0.176±0.002 | 0.151±0.002 | 0.169±0.002 | 0.197±0.003 |
Table 3 Rhizosphere soil fungal molecular ecological network characteristics of alpine meadow with different degradation degrees
网络 Networks | 项目 Item | 样地 Plot | |||
---|---|---|---|---|---|
ND | LD | MD | SD | ||
分子生态网络 Molecular ecological networks | 总节点Total nodes | 839 | 1219 | 971 | 768 |
总边Total edges | 6901 | 12929 | 8445 | 5985 | |
幂律系数 R2 of power-law | 0.712 | 0.806 | 0.760 | 0.728 | |
负相关边比例 Negative edges percentage (%) | 54.31 | 62.19 | 69.37 | 73.92 | |
连通性Connectedness | 0.693 | 0.859 | 0.783 | 0.742 | |
平均度Average degree | 17.39 | 21.21 | 16.45 | 13.63 | |
平均路径长度Average path length | 3.365 | 3.517 | 3.844 | 3.969 | |
平均聚集系数Average clustering coefficient | 0.143 | 0.146 | 0.141 | 0.139 | |
模块化指数 Modularity | 0.366 | 0.405 | 0.341 | 0.329 | |
介数中心性Centralization of betweenness | 0.021 | 0.036 | 0.051 | 0.084 | |
随机网络 Random network | 平均路径长度Average path length | 2.914±0.012 | 2.851±0.010 | 2.929±0.013 | 3.047±0.015 |
平均聚集系数Average clustering coefficient | 0.086±0.005 | 0.088±0.003 | 0.084±0.004 | 0.076±0.004 | |
模块性Modularity | 0.176±0.002 | 0.151±0.002 | 0.169±0.002 | 0.197±0.003 |
1 | Bardgett R D, Bullock J M, Lavorel S, et al. Combatting global grassland degradation. Nature Reviews Earth and Environment, 2021, 2(10): 720-735. |
2 | Zhou H K, Yao B Q, Yu L, et al. Degraded succession and ecological restoration of alpine grassland in the Three-River Source region. Beijing: Science Press, 2016. |
周华坤, 姚步青, 于龙, 等. 三江源区高寒草地退化演替与生态恢复. 北京: 科学出版社, 2016. | |
3 | Ma Y, Li L Z, Zhang D G, et al. Responses of stoichiometric characteristics of rhizosphere soil to the degradation of alpine meadow. Chinese Journal of Applied Ecology, 2019, 30(9): 3039-3048. |
马源, 李林芝, 张德罡, 等. 高寒草甸根际土壤化学计量特征对草地退化的响应. 应用生态学报, 2019, 30(9): 3039-3048. | |
4 | Kang L, Chen L, Zhang D, et al. Stochastic processes regulate belowground community assembly in alpine grasslands on the Tibetan Plateau. Environmental Microbiology, 2022, 24(1): 179-194. |
5 | Wu G L, Ren G H, Dong Q M, et al. Above- and belowground response along degradation gradient in an alpine grassland of the Qinghai-Tibetan Plateau. CLEAN-Soil, Air, Water, 2014, 42(3): 319-323. |
6 | Wagg C, Schlaeppi K, Banerjee S, et al. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications, 2019, 10(1): 1-10. |
7 | Ye F, Wang X, Wang Y, et al. Different pioneer plant species have similar rhizosphere microbial communities. Plant and Soil, 2021, 464(1): 165-181. |
8 | Bonanomi G, De Filippis F, Cesarano G, et al. Organic farming induces changes in soil microbiota that affect agro-ecosystem functions. Soil Biology and Biochemistry, 2016, 103: 327-336. |
9 | Wu X, Yang J, Ruan H, et al. The diversity and co-occurrence network of soil bacterial and fungal communities and their implications for a new indicator of grassland degradation. Ecological Indicators, 2021, 129: 107989. |
10 | He J S, Bu H Y, Hu X W, et al. Close-to-nature restoration of degraded alpine grasslands: Theoretical basis and technical approach. Chinese Science Bulletin, 2020, 65(34): 3898-3908. |
贺金生, 卜海燕, 胡小文, 等. 退化高寒草地的近自然恢复: 理论基础与技术途径. 科学通报, 2020, 65(34): 3898-3908. | |
11 | Dong L, Li J, Sun J, et al. Soil degradation influences soil bacterial and fungal community diversity in overgrazed alpine meadows of the Qinghai-Tibet Plateau. Scientific Reports, 2021, 11(1): 1-11. |
12 | Ren J Z. Scientific research methods of grass industry. Beijing: China Agriculture Press, 1998. |
任继周. 草业科学研究方法. 北京: 中国农业出版社, 1998. | |
13 | Chaudhary D R, Gautam R K, Yousuf B, et al. Nutrients, microbial community structure and functional gene abundance of rhizosphere and bulk soils of halophytes. Applied Soil Ecology, 2015, 91: 16-26. |
14 | Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 2012, 41(D1): 590-596. |
15 | Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal, 2011, 17(1): 10-12. |
16 | Edgar R. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 2013, 10(10): 996-998. |
17 | Edgar R C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 2004, 32(5): 1792-1797. |
18 | Xiao N, Zhou A, Kempher M L, et al. Disentangling direct from indirect relationships in association networks. Proceedings of the National Academy of Sciences, 2022, 119(2): e2109995119. |
19 | Barberán A, Bates S T, Casamayor E O, et al. Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal, 2012, 6(2): 343-351. |
20 | Bastian M, Heymann S, Jacomy M. Gephi: An open source software for exploring and manipulating networks//Proceedings of the international AAAI conference on web and social media. 2009, 3(1): 361-362.https://ojs.aaai.org/index.php/ICWSM/ article/view/13937. |
21 | Zhang X, Zhao W, Liu Y, et al. Dominant plant species and soil properties drive differential responses of fungal communities and functions in the soils and roots during secondary forest succession in the subalpine region. Rhizosphere, 2022, 21: 100483. |
22 | Bertin C, Yang X, Weston L A. The role of root exudates and allelochemicals in the rhizosphere. Plant and Soil, 2003, 256(1): 67-83. |
23 | Dotaniya M L, Meena V D. Rhizosphere effect on nutrient availability in soil and its uptake by plants: A review. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 2015, 85(1): 1-12. |
24 | Wagg C, Bender S F, Widmer F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, 2014, 111(14): 5266-5270. |
25 | Schmidt P A, Schmitt I, Otte J, et al. Season-long experimental drought alters fungal community composition but not diversity in a grassland soil. Microbial Ecology, 2018, 75(2): 468-478. |
26 | Gao X, Dong S, Xu Y, et al. Revegetation significantly increased the bacterial-fungal interactions in different successional stages of alpine grasslands on the Qinghai-Tibetan Plateau. Catena, 2021, 205: 105385. |
27 | Yin Y L, Wang Y Q, Li S X, et al. Effects of enclosing on soil microbial community diversity and soil stoichiometric characteristics in a degraded alpine meadow. Chinese Journal of Applied Ecology, 2019, 30(1): 127-136. |
尹亚丽, 王玉琴, 李世雄, 等. 围封对退化高寒草甸土壤微生物群落多样性及土壤化学计量特征的影响. 应用生态学报, 2019, 30(1): 127-136. | |
28 | Sergio F D A A, Bezerra W M, Dos Santos V M, et al. Fungal diversity in soils across a gradient of preserved Brazilian Cerrado. Journal of Microbiology, 2017, 55(4): 1-7. |
29 | Cho N S, Jarosz-Wilkolazka A, Staszczak M, et al. The role of laccase from white rot fungi to stress conditions. Journal Faculty of Agriculture Kyushu University, 2009, 54(1): 81-83. |
30 | Vadivelan G, Venkateswaran G. Production and enhancement of omega-3 fatty acid from Mortierella alpina CFR-GV15: Its food and therapeutic application. BioMed Research International, 2014, 2014: 657414. |
31 | Ma Y, Zhang D G. Regulation mechanisms of rhizosphere nutrient cycling processes in grassland: A review. Acta Prataculturae Sinica, 2020, 29(11): 172-182. |
马源, 张德罡. 草地根际过程对养分循环调控机制研究进展. 草业学报, 2020, 29(11): 172-182. | |
32 | Hannula S E, Morrien E, van der Putten W H, et al. Rhizosphere fungi actively assimilating plant-derived carbon in a grassland soil. Fungal Ecology, 2020, 48: 100988. |
33 | Floc’h J B, Hamel C, Harker K N, et al. Fungal communities of the canola rhizosphere: Keystone species and substantial between-year variation of the rhizosphere microbiome. Microbial Ecology, 2020, 80(4): 762-777. |
34 | Yu Y, Zheng L, Zhou Y, et al. Changes in soil microbial community structure and function following degradation in a temperate grassland. Journal of Plant Ecology, 2021, 14(3): 384-397. |
35 | de Vries F T, Griffiths R I, Bailey M, et al. Soil bacterial networks are less stable under drought than fungal networks. Nature Communications, 2018, 9(1): 1-12. |
36 | Xu P, Rong X Y, Liu C H, et al. Effects of extreme drought on community and ecological network of soil fungi in a temperate desert. Biodiversity Science, 2022, 30(3): 70-83. |
徐鹏, 荣晓莹, 刘朝红, 等. 极端干旱对温带荒漠土壤真菌群落和生态网络的影响. 生物多样性, 2022, 30(3): 70-83. | |
37 | Mapelli F, Marasco R, Fusi M, et al. The stage of soil development modulates rhizosphere effect along a high arctic desert chronosequence. The ISME Journal, 2018, 12(5): 1188-1198. |
38 | Steele J A, Countway P D, Xia L, et al. Marine bacterial, archaeal and protistan association networks reveal ecological linkages. The ISME Journal, 2011, 5(9): 1414-1425. |
[1] | Lin-zhi LI, De-gang ZHANG, Yuan MA, Zhu-zhu LUO, Dong LIN, Long HAI, Lan-ge BAI. Ecological stoichiometry characteristics of soil aggregates in alpine meadows with differing degrees of degradation [J]. Acta Prataculturae Sinica, 2023, 32(8): 48-60. |
[2] | Xiao-qin LIAO, Chang-ting WANG, Dan LIU, Guo TANG, Jun MAO. Effects of combined nitrogen and phosphorus application on root characteristics of alpine meadow [J]. Acta Prataculturae Sinica, 2023, 32(7): 160-174. |
[3] | Xin LU, Juan QI, Shang-li SHI, Mei-mei CHE, Xia LI, Shuang-shuang DU, Ning-gang SAI, Yan-wei JIA. Effects of broad-leaved grass inhibitors combined with nitrogen on soil characteristics of alpine meadow [J]. Acta Prataculturae Sinica, 2023, 32(7): 38-48. |
[4] | Cai-feng LIU, Yuan-yuan DUAN, Ling-ling WANG, Yi-mo WANG, Zheng-gang GUO. Effects of plateau pika (Ochotona curzoniae) disturbance on the relationship between plant species diversity and soil ecological stoichiometry in alpine meadows [J]. Acta Prataculturae Sinica, 2023, 32(6): 157-166. |
[5] | Yu SUN, Yong-sheng YANG, Qi HE, Jun-bang WANG, Xiu-juan ZHANG, Hui-ting LI, Xing-liang XU, Hua-kun ZHOU, Yu-heng ZHANG. Responses of soil water conservation function and soil physicochemical properties to a range of degradation conditions in alpine meadows of the Three River Headwater Region [J]. Acta Prataculturae Sinica, 2023, 32(6): 16-29. |
[6] | Zhi-qiang YANG, Dan LIU, Xiao-qin LIAO, Dan-yang CHEN, Xiao-yan SONG, Yang LIU, Chang-ting WANG. Changes in soil phosphorus fractions and their causes under alpine meadows with different degradation status in Zoigê [J]. Acta Prataculturae Sinica, 2023, 32(12): 36-46. |
[7] | Juan-juan ZHOU, Yun-fei LIU, Jing-long WANG, Wei WEI. Effect of short-term nutrient addition on aboveground biomass, plant diversity, and functional traits of swampy alpine meadow in Tibet [J]. Acta Prataculturae Sinica, 2023, 32(11): 17-29. |
[8] | Hong-yu QIAN, Yu-lin PU, Shan-xin LANG, Yi-ran LI, Nan-ding ZHOU. Response of soil organic phosphorus mineralization to alpine meadow degradation and temperature [J]. Acta Prataculturae Sinica, 2023, 32(10): 15-27. |
[9] | Guo-hong YOU, Dan LIU, Yan-li WANG, Chang-ting WANG. Response of plant leaf ecological stoichiometric characteristics to long-term nitrogen addition in alpine meadow [J]. Acta Prataculturae Sinica, 2022, 31(9): 50-62. |
[10] | Yan PENG, Jing-yuan SUN, Su-jie MA, Xiang-tao WANG, Xue-hong WEI, Lei SUN. Plant community composition and soil nutrient status of degraded alpine meadow sites in Northern Tibet [J]. Acta Prataculturae Sinica, 2022, 31(8): 49-60. |
[11] | Yu-zhuo ZHANG, Zhi-gui YANG, Hong-yan YU, Qiang ZHANG, Shu-xia YANG, Ting ZHAO, Hua-hua XU, Bao-ping MENG, Yan-yan LV. Estimating grassland above ground biomass based on the STARFM algorithm and remote sensing data——A case study in the Sangke grassland in Xiahe County, Gansu Province [J]. Acta Prataculturae Sinica, 2022, 31(6): 23-34. |
[12] | Yang LI, Yi WANG, Guo-dong HAN, Jian SUN, Ya-feng WANG. Soil microbial biomass carbon and nitrogen levels and their controlling factors in alpine grassland, Qinghai-Tibet Plateau [J]. Acta Prataculturae Sinica, 2022, 31(6): 50-60. |
[13] | Xiao-lei ZHOU, Yue-e YAN, Jing ZHANG, Xu-jiao ZHOU, Yong-qin YAN, Fu-qiang YANG, Xue-ping CAO, An ZHAO, Yan-li ZHAO, Jing-yi SU. Vegetation community structure and diversity in a burned area of Picea asperata-Abies fabri forest on different aspects on the northeastern margin of the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2022, 31(5): 144-155. |
[14] | Yong-mei LIU, Xing-zhi DONG, Yong-qing LONG, Zhi-mei ZHU, Lei WANG, Xing-hua GE, Fan ZHAO, Jing-zhong LI. Classification of Stellera chamaejasme communities and their relationships with environmental factors in degraded alpine meadow in the central Qilian Mountains, Qinghai Province [J]. Acta Prataculturae Sinica, 2022, 31(4): 1-11. |
[15] | Xin LI, Xue WEI, Chang-ting WANG, Xiao REN, Peng-fei WU. Effects of exogenous nutrient addition on alpine meadow soil arthropod communities [J]. Acta Prataculturae Sinica, 2022, 31(4): 155-164. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||