Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (4): 124-136.DOI: 10.11686/cyxb2024206
Tian-rong LUO1(
), Jian-zhi MA1, Ming-yang DU1, Jie-cuo DUO2, Hui-yan XIONG2, Rui-jun DUAN1(
)
Received:2024-06-03
Revised:2024-07-22
Online:2025-04-20
Published:2025-02-19
Contact:
Rui-jun DUAN
Tian-rong LUO, Jian-zhi MA, Ming-yang DU, Jie-cuo DUO, Hui-yan XIONG, Rui-jun DUAN. Identification and expression analysis of LACS gene family members in Medicago sativa[J]. Acta Prataculturae Sinica, 2025, 34(4): 124-136.
| 基因Gene | 上游引物Forward primer (5′-3′) | 下游引物Reverse primer (3′-5′) |
|---|---|---|
| MsLACS1-1 | CATGCTGGGATGGCGTAAAAT | AGTGAAGCACTTTTTGCAACC |
| MsLACS1-2 | TACCATGGGGTCAAAGCTCG | CCAACAGTACCAAGCATGCAC |
| MsLACS2 | TTGGTTTCATACAGCCATGAAAAT | TTCTGTCGGGGACTACCACA |
| MsLACS3 | CGGGGCTGTGGAGTTTGTTA | CATGACCCCCGATCTTCTCA |
| MsLACS5 | GGAACGGGACCTTATCACTCC | GCAGTCAGTAAAAGACAGCTCAT |
| MsLACS8 | ACTGGTGACATTGGGCGATT | CCAGAGACTGACGTGAAGCA |
| MsLACS9-2 | TTCAGGGTTGTTTCAGGCGA | CAGCCGTGTCCAACAGATGA |
| Msactin | CAAAAGATGGCAGATGCTGAGGAT | CATGACACCAGTATGACGAGGTCG |
Table 1 qRT-PCR primers
| 基因Gene | 上游引物Forward primer (5′-3′) | 下游引物Reverse primer (3′-5′) |
|---|---|---|
| MsLACS1-1 | CATGCTGGGATGGCGTAAAAT | AGTGAAGCACTTTTTGCAACC |
| MsLACS1-2 | TACCATGGGGTCAAAGCTCG | CCAACAGTACCAAGCATGCAC |
| MsLACS2 | TTGGTTTCATACAGCCATGAAAAT | TTCTGTCGGGGACTACCACA |
| MsLACS3 | CGGGGCTGTGGAGTTTGTTA | CATGACCCCCGATCTTCTCA |
| MsLACS5 | GGAACGGGACCTTATCACTCC | GCAGTCAGTAAAAGACAGCTCAT |
| MsLACS8 | ACTGGTGACATTGGGCGATT | CCAGAGACTGACGTGAAGCA |
| MsLACS9-2 | TTCAGGGTTGTTTCAGGCGA | CAGCCGTGTCCAACAGATGA |
| Msactin | CAAAAGATGGCAGATGCTGAGGAT | CATGACACCAGTATGACGAGGTCG |
基因 Gene | 基因ID号 Gene ID | 氨基酸数 Number of amino acids (aa) | 分子质量 Molecular mass (kD) | 等电 点pI | 不稳定系数 Instability coefficient | 脂溶性系数 Fat solubility coefficient | 染色体定位 Chromosomal localization | 亚细胞定位 Subcellular localization |
|---|---|---|---|---|---|---|---|---|
| MsLACS1-1 | MsG0180004774.01.T01 | 610 | 27.09 | 88.48 | Chr1 | 叶绿体Chloroplast | ||
| MsLACS1-2 | MsG0780041383.01.T01 | 597 | 31.70 | 84.00 | Chr7 | 细胞质Cytoplasm | ||
| MsLACS2 | MsG0180001276.01.T02 | 654 | 73203.98 | 5.74 | 40.29 | 86.90 | Chr1 | 细胞核Cell nucleus |
| MsLACS3 | MsG0480023684.01.T01 | 584 | Chr4 | 细胞质Cytoplasm | ||||
| MsLACS4 | MsG0580024346.01.T01 | 662 | 6.37 | 33.60 | 89.18 | Chr5 | 细胞核Cell nucleus | |
| MsLACS5 | MsG0580024344.01.T01 | 744 | Chr5 | 细胞质Cytoplasm | ||||
| MsLACS6 | MsG0180005634.01.T01 | 692 | 6.35 | 29.23 | 88.03 | Chr1 | 细胞质Cytoplasm | |
| MsLACS8 | MsG0380016055.01.T02 | 727 | 7.19 | 29.26 | 93.59 | Chr3 | 叶绿体Chloroplast | |
| MsLACS9-1 | MsG0380016352.01.T01 | 860 | Chr3 | 叶绿体Chloroplast | ||||
| MsLACS9-2 | MsG0180001085.01.T01 | 697 | 6.51 | 30.95 | 95.24 | Chr1 | 叶绿体Chloroplast |
Table 2 Physicochemical property analysis of MsLACS gene encoded protein
基因 Gene | 基因ID号 Gene ID | 氨基酸数 Number of amino acids (aa) | 分子质量 Molecular mass (kD) | 等电 点pI | 不稳定系数 Instability coefficient | 脂溶性系数 Fat solubility coefficient | 染色体定位 Chromosomal localization | 亚细胞定位 Subcellular localization |
|---|---|---|---|---|---|---|---|---|
| MsLACS1-1 | MsG0180004774.01.T01 | 610 | 27.09 | 88.48 | Chr1 | 叶绿体Chloroplast | ||
| MsLACS1-2 | MsG0780041383.01.T01 | 597 | 31.70 | 84.00 | Chr7 | 细胞质Cytoplasm | ||
| MsLACS2 | MsG0180001276.01.T02 | 654 | 73203.98 | 5.74 | 40.29 | 86.90 | Chr1 | 细胞核Cell nucleus |
| MsLACS3 | MsG0480023684.01.T01 | 584 | Chr4 | 细胞质Cytoplasm | ||||
| MsLACS4 | MsG0580024346.01.T01 | 662 | 6.37 | 33.60 | 89.18 | Chr5 | 细胞核Cell nucleus | |
| MsLACS5 | MsG0580024344.01.T01 | 744 | Chr5 | 细胞质Cytoplasm | ||||
| MsLACS6 | MsG0180005634.01.T01 | 692 | 6.35 | 29.23 | 88.03 | Chr1 | 细胞质Cytoplasm | |
| MsLACS8 | MsG0380016055.01.T02 | 727 | 7.19 | 29.26 | 93.59 | Chr3 | 叶绿体Chloroplast | |
| MsLACS9-1 | MsG0380016352.01.T01 | 860 | Chr3 | 叶绿体Chloroplast | ||||
| MsLACS9-2 | MsG0180001085.01.T01 | 697 | 6.51 | 30.95 | 95.24 | Chr1 | 叶绿体Chloroplast |
| 1 | Wang Y P, Zeng Y, Luo P. Advances in metabolic engineering of plant fatty acids. Chinese Journal of Oil Crop Science, 1998, 20(4): 88-92. |
| 王幼平, 曾宇, 罗鹏. 植物脂肪酸代谢工程研究进展. 中国油料作物学报, 1998, 20(4): 88-92. | |
| 2 | Li Q G, Tao Z, Yang Y Z, et al. Research progress of long chain acyl-CoA synthetase. China Animal Husbandry and Veterinary Medicine, 2012, 39(6): 137-140. |
| 李庆岗, 陶著, 杨玉增, 等. 长链脂酰CoA合成酶(ACSL)的研究进展. 中国畜牧兽医, 2012, 39(6): 137-140. | |
| 3 | Zhou D, Zhao J Z, Bai Y, et al. Research advance in triacylglycerol synthesis,metabolism, and regulation in plants. Journal of Nanjing Agricultural University, 2012, 35(5): 77-86. |
| 周丹, 赵江哲, 柏杨, 等. 植物油脂合成代谢及调控的研究进展. 南京农业大学学报, 2012, 35(5): 77-86. | |
| 4 | Somerville C, Browse J. Plant lipids: Metabolism, mutants, and membranes. Science, 1991, 252(5002): 80-87. |
| 5 | Hills M J, Beevers H. ATPase in lipid body membranes of castor bean endosperm. Plant Physiology, 1986, 82(3): 671-674. |
| 6 | Mukherjee K D. Plant lipases and their application in lipid bio-transformations. Progress Lipid Research, 1994, 33(1/2): 165-174. |
| 7 | Lv J B, Tan X F, Long H X, et al. Research progress in the study of plant long-chain acyl-coenzyme A(coA). Journal of Plant Physiology, 2017, 53(7): 1185-1191. |
| 吕佳斌, 谭晓风, 龙洪旭, 等. 植物长链脂酰辅酶A合成酶研究进展. 植物生理学报, 2017, 53(7): 1185-1191. | |
| 8 | Shockey J M, Fulda M S, Browse J A. Arabidopsis contains nine long-chain acyl-coenzyme A synthetase genes that participate in fatty acid and glycerolipid metabolism. Plant Physiology, 2002, 129(4): 1710-1722. |
| 9 | Tan X L. Characterization of an Arabidopsis long chain fatty acyl-coenzyme A synthetase, which is required for seedling establishment without exogenous sugar. Yangling: Northwest AF University, 2003. |
| 谭小力. 拟南芥长链脂肪酰辅酶A合成酶基因的克隆及功能鉴定. 杨凌: 西北农林科技大学, 2003. | |
| 10 | Lv S Y, Song T, Kosma D K, et al. Arabidopsis CER8 encodes long-chain acyl-CoA synthetase 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis. The Plant Journal, 2009, 59 (4): 553-564. |
| 11 | Trick H N, Finer J J. Sonication-assisted agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue. Plant Cell Reports, 1998, 17(6): 482-488. |
| 12 | Jessen D, Olbrich A, Knüfer J, et al. Combined activity of LACS1 and LACS4 is required for proper pollen coat formation in Arabidopsis: LACS activity and pollen coat formation. The Plant Journal, 2011, 68(4): 715-726. |
| 13 | Jessen D, Roth C, Wiermer M, et al. Two activities of long-chain acyl-coenzyme A synthetase are involved in lipid trafficking between the endoplasmic reticulum and the plastid in Arabidopsis. Plant Physiology, 2015, 167(2): 351-366. |
| 14 | Fulda M, Shockey J, Werber M, et al. Two long-chain acyl-CoA synthetases from Arabidopsis thaliana involved in peroxisomal fatty acid β-oxidation: Fatty acid activation in peroxisomes of plants. The Plant Journal, 2002, 32(1): 93-103. |
| 15 | Zhao L, Haslam T M, Sonntag A, et al. Functional overlap of long-chain acyl-CoA synthetases in Arabidopsis. Plant and Cell Physiology, 2019, 60(5): 1041-1054. |
| 16 | Dahlqvist A, Stahl U, Lenman M, et al. Phospholipid: Diacylglycerol acyltransferase: An enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12): 6487-6492. |
| 17 | Visser W F, van Roermund C W, Ijlst L, et al. Metabolite transport across the peroxisomal membrane. Biochemical Journal, 2007, 401(2): 365-375. |
| 18 | Zhang C L, Mao K, Zhou L J, et al. Genome-wide identification and characterization of apple long-chain acyl-CoA synthetases and expression analysis under different stresses. Plant Physiology and Biochemistry, 2018, 132: 320-332. |
| 19 | Black P N, DiRusso C C, Metzger A K, et al. Cloning, sequencing, and expression of the fadD gene of Escherichia coli encoding acyl coenzyme A synthetase. J Biol Chem, 1993, 267(35): 25513-25520. |
| 20 | Dai H P, Shan C J, Zhao H., et al. The difference in antioxidant capacity of four alfalfa cultivars in response to Zn. Ecotoxicology and Environmental Safety, 2015, 114: 312-317. |
| 21 | Song X, Fang C, Yuan Z Q, et al. Long-term alfalfa (Medicago sativa L.) establishment could alleviate phosphorus limitation induced by nitrogen deposition in the carbonate soil. Journal of Environmental Management, 2022, 324: 116346. |
| 22 | Li Y J, Ma J W, Li Y Q, et al. Effect of nitrogen on the phytoremediation of Cd-PAHs co-contaminated dumpsite soil by alfalfa (Medicago sativa L.) and on the soil bacterial community structure. Environmental Science, 2022, 43(10): 4779-4788. |
| 23 | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2‒ΔΔCt method. Methods, 2001, 25(4): 402-408. |
| 24 | Yang J B, Zhang Z, Zhou Z M, et al. Cloning and function analysis of a HaLACS9 gene in Helianthus annuus L. Acta Agronomica Sinica, 2023, 49(2): 426-437. |
| 杨佳宝, 张展, 周至铭, 等. 向日葵HaLACS9基因的克隆与功能分析. 作物学报, 2023, 49(2): 426-437. | |
| 25 | Deng S Y, Xiao Y, Zhang H T, et al. Bioinformatics and expression analysis of the LACS gene family in Prunus sibirica. Molecular Plant Breeding, 2018, 16(6): 1977-1984. |
| 邓舒雅, 肖羽, 张鹤婷, 等. 山杏LACS基因家族生物信息学及表达分析. 分子植物育种, 2018, 16(6): 1977-1984. | |
| 26 | Jia Q, Liu Y B, Wang F, et al. Identification of LACS family genes in Capsicum annuum L. and their response to abiotic stress. Journal of Yangtze University(Natural Science Edition), 2022, 19(6): 117-126. |
| 贾切, 刘亚博, 王飞, 等. 辣椒中LACS家族基因鉴定及其对非生物胁迫的响应. 长江大学学报(自然科学版), 2022, 19(6): 117-126. | |
| 27 | Wang R H, Wang S B, Liu S T, et al. Identification and expression analysis of LACS family genes in Chinese cabbage (Brassica rapa L.ssp.pekinensis). Shandong Agricultural Sciences, 2022, 54(6): 1-9. |
| 王荣花, 王树彬, 刘栓桃, 等. 大白菜LACS家族基因鉴定与表达分析. 山东农业科学, 2022, 54(6): 1-9. |
| [1] | Chao MA, Xi-jing SUN, Ya-lan FENG, Shuang ZHOU, Ji-hao JU, Yi WU, Tian-ning WANG, Bin-bin GUO, Jun ZHANG. Genome-wide identification of the GLK gene family in alfalfa and their transcript profiles under osmotic stress [J]. Acta Prataculturae Sinica, 2025, 34(1): 174-190. |
| [2] | Wen-qi CAI, Shu-xia LI, Xiao-tong WANG, Wen-xue SONG, Xu-xia MA, Xiao-mei MA, Xiao-hong LI, Xin-yao DAI. Effects of interaction between exogenous melatonin and ethylene on the growth and physiological characteristics of Medicago sativa seedlings under salt stress [J]. Acta Prataculturae Sinica, 2025, 34(1): 80-93. |
| [3] | Hong-li CUI, Ming-zhe SUN, Bo-wei JIA, Xiao-li SUN. Genome-wide analysis and expression of the OSCA family genes from Medicago truncatula in response to low temperature stresses [J]. Acta Prataculturae Sinica, 2024, 33(9): 111-125. |
| [4] | Xiao-tong WANG, Xiao-hong LI, Xu-xia MA, Wen-qi CAI, Xue-li FENG, Shu-xia LI. Identification and analysis of members of the FBA gene family in alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(9): 81-93. |
| [5] | Yuan MA, Huan LIU, Gui-qin ZHAO, Jing-long WANG, Ran ZHANG, Rui-rui YAO. Identification of the oat sHSP gene family and its transcript profiles in response to high temperature and aging [J]. Acta Prataculturae Sinica, 2024, 33(8): 145-158. |
| [6] | Yi WU, Ya-lan FENG, Tian-ning WANG, Ji-hao JU, Hui-shu XIAO, Chao MA, Jun ZHANG. Genome-wide identification and expression analysis of the Hsp70 gene family in wheat and its ancestral species [J]. Acta Prataculturae Sinica, 2024, 33(7): 53-67. |
| [7] | Zhen-huan ZHANG, Li-rong YAO, Jun-cheng WANG, Er-jing SI, Hong ZHANG, Ke YANG, Xiao-le MA, Ya-xiong MENG, Hua-jun WANG, Bao-chun LI. Identification of AKR gene family members in Halogeton glomeratus and salt tolerance analysis of the root salt stress response gene HgAKR42639 [J]. Acta Prataculturae Sinica, 2024, 33(7): 68-83. |
| [8] | Shu-zhen SONG, Cai-ye ZHU, Li-shan LIU, Xu-ying GONG, Rui-rui LUO. The effect of tail-docking on adipocyte structure and lipid metabolism-related gene expression in Lanzhou fat-tailed sheep [J]. Acta Prataculturae Sinica, 2024, 33(7): 94-104. |
| [9] | Wen-wen QI, Hong-yuan MA, Ya-xiao LI, Yan DU, Meng-dan SUN, Hai-tao WU. Progress in research on breeding methods to produce new, high-quality forage varieties [J]. Acta Prataculturae Sinica, 2024, 33(6): 187-202. |
| [10] | Guo-qiang WU, Zu-long YU, Ming WEI. The mechanism of PGPR regulating plant response to abiotic stress [J]. Acta Prataculturae Sinica, 2024, 33(6): 203-218. |
| [11] | Ying TAN, Hao YIN. Effects of root application of an arbuscular mycorrhizal fungus and melatonin on the growth, photosynthetic characteristics, and antioxidant system of Medicago sativa under salt stresss [J]. Acta Prataculturae Sinica, 2024, 33(6): 64-75. |
| [12] | Hai-ming KONG, Jia-xing SONG, Jing YANG, Qian LI, Pei-zhi YANG, Yu-man CAO. Identification and transcript profiling of the CAMTA gene family under abiotic stress in alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(5): 143-154. |
| [13] | Bo-xin XI, Xiao-ning CUI, Su-qin SHANG, Gui-xin HU, Yan WANG, Chang-ning LI, Bin PENG, Xue-qiang SHI. Cloning and tissue-specific expression patterns of a gene encoding an atypical odorant receptor co-receptor in the leaf beetle Diorhabda rybakowi (Coleoptera: Chrysomelidae) [J]. Acta Prataculturae Sinica, 2024, 33(5): 204-215. |
| [14] | Hao LIU, Xian-yang LI, Fei HE, Xue WANG, Ming-na LI, Rui-cai LONG, Jun-mei KANG, Qing-chuan YANG, Lin CHEN. Identification of the alfalfa SAUR gene family and its expression pattern under abiotic stress [J]. Acta Prataculturae Sinica, 2024, 33(4): 135-153. |
| [15] | Xian-yang LI, Hao LIU, Fei HE, Xue WANG, Ming-na LI, Rui-cai LONG, Jun-mei KANG, Qing-chuan YANG, Lin CHEN. Identification and expression pattern of the WRKY transcription factor family in Medicago sativa [J]. Acta Prataculturae Sinica, 2024, 33(4): 154-170. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||