草业学报 ›› 2020, Vol. 29 ›› Issue (4): 168-183.DOI: 10.11686/cyxb2019322
赵媛媛1,2, 刘自扬1,2, 边佳辉1,2, 孙占敏2, 周焘2, 唐益雄2, 吴燕民1,2,*
收稿日期:
2019-07-16
修回日期:
2019-10-08
出版日期:
2020-04-20
发布日期:
2020-04-20
通讯作者:
E-mail: wuyanmin@caas.cn
作者简介:
赵媛媛(1991-),女,山东威海人,在读博士。E-mail: 18893147262@163.com
基金资助:
ZHAO Yuan-yuan1,2, LIU Zi-yang1,2, BIAN Jia-hui1,2, SUN Zhan-min2, ZHOU Tao2, TANG Yi-xiong2, WU Yan-min1,2,*
Received:
2019-07-16
Revised:
2019-10-08
Online:
2020-04-20
Published:
2020-04-20
Contact:
E-mail: wuyanmin@caas.cn
摘要: 表观遗传是指在DNA序列不变的情况下基因表达发生变化的现象。表观遗传现象与外界环境条件的变化紧密相关,它参与植物的生长发育、胁迫响应、衰老死亡等重要生命过程并在其中起到了关键作用。表观遗传学作为一门新兴学科在近20年间得到了快速发展,成为当前动植物和医学领域的研究热点。目前植物表观遗传学的相关研究主要集中在DNA甲基化、组蛋白修饰、RNA甲基化、染色质重塑和非编码RNA修饰等方面,并取得了许多重要成果。然而,相对于模式植物拟南芥和其他主要作物而言,牧草的表观遗传学研究仍处于起步阶段。因此,开展牧草表观遗传学研究对我国草牧业的可持续发展具有重要意义。本研究对表观遗传学的概念、研究方法、研究内容(包括DNA甲基化、组蛋白修饰、RNA甲基化、染色质重塑和非编码RNA修饰等)及牧草表观遗传学相关研究进行了全面总结和综述,并对表观遗传在草牧业中的发展前景进行了展望。
赵媛媛, 刘自扬, 边佳辉, 孙占敏, 周焘, 唐益雄, 吴燕民. 牧草表观遗传学研究进展[J]. 草业学报, 2020, 29(4): 168-183.
ZHAO Yuan-yuan, LIU Zi-yang, BIAN Jia-hui, SUN Zhan-min, ZHOU Tao, TANG Yi-xiong, WU Yan-min. Research advances in epigenetics of forage grasses[J]. Acta Prataculturae Sinica, 2020, 29(4): 168-183.
[1] Eichten S R, Schmitz R J, Springer N M. Epigenetics: Beyond chromatin modifications and complex genetic regulation. Plant Physiology, 2014, 165(3): 933-947. [2] Holliday R. Epigenetics: A historical overview. Epigenetics, 2006, 1(2): 76-80. [3] Jean Finnegan E, Kovac K A, Jaligot E, [4] He Y. Chromatin regulation of flowering. Trends in Plant Science, 2012, 17(9): 556-562. [5] Schmitz R J, Tamada Y, Doyle M R, [6] Stam M, Belele C, Ramakrishna W, [7] Banerjee A, Roychoudhury A. Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. Protoplasma, 2017, 254(1): 3-16. [8] Yaish M W. DNA methylation-associated epigenetic changes in stress tolerance of plants//Rout G R, Das A B. Molecular stress physiology of plants. Berlin: Springer, 2013: 427-440. [9] Ding Y, Avramova Z, Fromm M. The [10] Al-Lawati A, Al-Bahry S, Victor R, [11] Iyer N J, Tang Y, Mahalingam R. Physiological, biochemical and molecular responses to a combination of drought and ozone in [12] Trindade I, Capitão C, Dalmay T, [13] Wang T, Zhao M, Zhang X, [14] Banerjee A, Roychoudhury A. Epigenetic regulation during salinity and drought stress in plants: Histone modifications and DNA methylation. Plant Gene, 2017, 11: 199-204. [15] Karan R, DeLeon T, Biradar H, [16] Sherman J D, Talbert L E. Vernalization-induced changes of the DNA methylation pattern in winter wheat. Genome, 2002, 45(2): 253-260. [17] Satge C, Moreau S, Sallet E, [18] Yaish M W, Al-Lawati A, Al-Harrasi I, [19] Chen Y. Analysis of genetic diversity of two kinds of forage grass and methylation levels under stress. Qufu: Qufu Normal University, 2015. 陈云. 两种牧草遗传多样性及逆境条件下甲基化水平分析. 曲阜: 曲阜师范大学, 2015. [20] Meng D B. Studies on low temperature stress resistance and some physiological and biochemical indexes and genomic DNA methylation of alfalfa. Hohhot: Inner Mongolia University, 2018. 孟德斌. 紫花苜蓿耐低温胁迫性能与若干生理生化指标及基因组DNA甲基化研究. 呼和浩特: 内蒙古大学, 2018. [21] Chwedorzewska K, Bednarek P. Genetic and epigenetic variation in a cosmopolitan grass [22] Wolny E, Braszewska-Zalewska A, Hasterok R. Spatial distribution of epigenetic modifications in [23] Yan H D, Bombarely A, Xu B, [24] Zhang J F. Molecular genetic and epigenetic diversity and genetic structure of 张剑锋. 松嫩平原天然羊草( [25] Qiu T, Jiang L, Yang Y. Genetic and epigenetic diversity and structure of [26] Tang X M, Wang Y, Ma D W, 唐晓梅, 王艳, 马东伟, 等. 干旱胁迫下高羊茅基因组甲基化分析. 草业学报, 2015, 24(4): 164-173. [27] Wang X L, Wang Q, Shu J H, 王小利, 王茜, 舒健虹, 等. 氮胁迫下高羊茅基因组DNA甲基化的MSAP分析. 基因组学与应用生物学, 2015, 34(11): 2362-2371. [28] Yan W H, Ma Y B, Chen Y, 闫伟红, 马玉宝, 陈云, 等. 干旱胁迫对老芒麦DNA表观遗传变化的MSAP分析. 草原与草坪, 2016, 36(1): 1-6. [29] Martelotto L G, Ortiz J P A, Stein J, [30] Rodriguez M, Cervigni G, Quarin C, [31] Tang X M, Tao X, Wang Y, [32] Ciannamea S, Busscher-Lange J, de Folter S, [33] He Y. Study on the enhancement of drought tolerance of ryegrass by introduction of the glycine-methylation biosynthetic pathway of glycinebetaine. Jinan: Shandong University, 2010. 何影. 引入甘氨酸甲基化合成甜菜碱途径提高黑麦草抗旱性研究. 济南: 山东大学, 2010. [34] Li X, Yu X, Wang N, [35] Li Y, Shan X, Liu X, [36] Liang Z, Jiang S J, Wei L, 梁哲, 姜三杰, 未丽, 等. 三叶草基因工程研究进展. 草业学报, 2009, 18(2): 205-211. [37] Ma J T, Wang Z L, Huang D G, 马江涛, 王宗礼, 黄东光, 等. 基因工程在牧草培育中的应用. 草业学报, 2010, 19(6): 248-262. [38] Jablonka E, Lamb M J. The changing concept of epigenetics. Annals of the New York Academy of Sciences, 2002, 981(1): 82-96. [39] Holliday R. The inheritance of epigenetic defects. Science, 1987, 238: 163-170. [40] Holliday R. Epigenetics: An overview. Developmental Genetics, 1994, 15(6): 453-457. [41] Bird A. Perceptions of epigenetics. Nature, 2007, 447: 396-398. [42] Goldberg A D, Allis C D, Bernstein E. Epigenetics: A landscape takes shape. Cell, 2007, 128(4): 635-638. [43] Dou L, Jia X, Wei H, [44] Karayan-Tapon L, Quillien V, Guilhot J, [45] Dahl C, Guldberg P. DNA methylation analysis techniques. Biogerontology, 2003, 4: 233-250. [46] Kremer D, Metzger S, Kolb-Bachofen V. Quantitative measurement of genome-wide DNA methylation by a reliable and cost-efficient enzyme-linked immunosorbent assay technique. Analytical biochemistry, 2012, 422(2): 74-78. [47] Mandava V, Fernandez J P, Deng H, [48] Zheng H, Liu J-Y, Song F-J, [49] Vanyushin B. Enzymatic DNA methylation is an epigenetic control for genetic functions of the cell. Biochemistry (Moscow), 2005, 70(5): 488-499. [50] Finnegan E, Kovac K. Plant DNA methyltransferases. Plant Molecular Biology, 2000, 43: 189-201. [51] Chan S W L, Henderson I R, Jacobsen S E. Gardening the genome: DNA methylation in [52] Matzke M A, Kanno T, Matzke A J. RNA-directed DNA methylation: The evolution of a complex epigenetic pathway in flowering plants. Annual Review of Plant Biology, 2015, 66: 243-267. [53] Jean Finnegan E, Dennis E S. Isolation and identification by sequence homology of a putative cytosine methyltransferase from [54] Cao X, Aufsatz W, Zilberman D, [55] Aufsatz W, Mette M, Matzke A, [56] Sharma R, Mohan Singh R, Malik G, [57] Zhang X, Yazaki J, Sundaresan A, [58] Stroud H, Greenberg M V, Feng S, [59] Zemach A, Kim M Y, Hsieh P H, [60] Lindroth A M, Shultis D, Jasencakova Z, [61] Chan S W L, Zilberman D, Xie Z, [62] Santos D, Fevereiro P. Loss of DNA methylation affects somatic embryogenesis in [63] Kothapalli N, Camporeale G, Kueh A, [64] Mirsky A, Burdick C, Davidson E, [65] Bartke T, Vermeulen M, Xhemalce B, [66] Zhang Y, Reinberg D. Transcription regulation by histone methylation: Interplay between different covalent modifications of the core histone tails. Genes & Development, 2001, 15: 2343-2360. [67] Reamon-Buettner S M, Borlak J. A new paradigm in toxicology and teratology: Altering gene activity in the absence of DNA sequence variation. Reproductive Toxicology, 2007, 24(1): 20-30. [68] Kuo M H, Brownell J E, Sobel R E, [69] Peterson C L, Laniel M A. Histones and histone modifications. Current Biology, 2004, 14(14): 546-551. [70] Alvarez-Venegas R, Avramova Z. Methylation patterns of histone H3 Lys 4, Lys 9 and Lys 27 in transcriptionally active and inactive [71] Peláez I M, Kalogeropoulou M, Ferraro A, [72] Weake V M, Workman J L. Histone ubiquitination: Triggering gene activity. Molecular Cell, 2008, 29(6): 653-663. [73] Sang Q, Liu H Z, Zhang G S, 桑青, 刘红占, 张改生, 等. 小麦染色体组蛋白泛素化与生理型雄性不育相关性的研究. 农业生物技术学报, 2013, 21(4): 396-406. [74] Rossetto D, Avvakumov N, Côté J. Histone phosphorylation: A chromatin modification involved in diverse nuclear events. Epigenetics, 2012, 7(10): 1098-1108. [75] Oki M, Aihara H, Ito T. Role of histone phosphorylation in chromatin dynamics and its implications in diseases. Subcellar Biochemistry, 2007, 41: 323-340. [76] Kim J M, To T K, Ishida J, [77] Pu L, Sung Z R. PcG and trxG in plants-friends or foes. Trends in Genetics, 2015, 31(5): 252-262. [78] Pien S, Grossniklaus U. Polycomb group and trithorax group proteins in [79] Zheng M, Wang Y, Wang Y, [80] Kim S Y, Lee J, Eshed-Williams L, [81] Akkers R C, van Heeringen S J, Jacobi U G, [82] Paz Sanchez M, Aceves-García P, Petrone E, [83] Napsucialy-Mendivil S, Alvarez-Venegas R, Shishkova S, [84] Aichinger E, Villar C B, Di Mambro R, [85] Ogas J, Kaufmann S, Henderson J, [86] Orłowska A, Kępczyńska E. Identification of [87] Kim M Y, Kang Y J, Lee T, [88] Jaudal M, Zhang L, Che C, [89] Shahbazian M D, Grunstein M. Functions of site-specific histone acetylation and deacetylation. Annual Review Biochemistry, 2007, 76: 75-100. [90] Schilderink S. Epigenetic control of root and nodule development: The role of plant-specific histone deacetylases and LHP1 in root cell reprogramming. Wageningen: Wageningen University, 2012. [91] Exner V, Aichinger E, Shu H, [92] Zhang X, Germann S, Blus B J, [93] Lorvellec M. Chromatin organisation during [94] Maden B. The numerous modified nucleotides in eukaryotic ribosomal RNA. Progress in Nucleic Acid Research and Molecular Biology, 1990, 39: 241-303. [95] Wang X, Lu Z, Gomez A, [96] Chu J M, Ye T T, Ma C J, [97] Shen L, Liang Z, Gu X, [98] Cui X, Liang Z, Shen L, [99] Jia G, Fu Y, Zhao X, [100] Bodi Z, Zhong S, Mehra S, [101] Lusser A, Kadonaga J T. Chromatin remodeling by ATP-dependent molecular machines. Bioessays, 2003, 25(12): 1192-1200. [102] Li J, Ma L G. Chromatin remodeling and flowering time control in higher plant. Chinese Journal of Cell Biology, 2005, 27(1): 24-28. 李健, 马力耕. 染色质重塑和高等植物开花时间控制. 中国细胞生物学学报, 2005, 27(1): 24-28. [103] Hong L, Wei Z X, Wei W H, 洪林, 魏召新, 魏文辉, 等. 染色质重塑及其参与植物病害防御应答的研究进展. 植物保护, 2016, 42(4): 9-17. [104] Reyes J C, Hennig L, Gruissem W. Chromatin-remodeling and memory factors. New regulators of plant development. Plant Physiology, 2002, 130(3): 1090-1101. [105] Cairns B R. The logic of chromatin architecture and remodelling at promoters. Nature, 2009, 461: 193-198. [106] Li J J. Functional analysis of chromatin remodeler CHR729 in rice. Wuhan: Huazhong Agricultural University, 2014. 李健健. 水稻染色质重塑因子CHR729功能研究. 武汉: 华中农业大学, 2014. [107] Becker P B, Hörz W. ATP-dependent nucleosome remodeling. Annual Review of Biochemistry, 2002, 71: 247-273. [108] Kasten M M, Clapier C R, Cairns B R. SnapShot: Chromatin remodeling: SWI/SNF. Cell, 2011, 144(2): 310. [109] Yadon A N, Tsukiyama T. SnapShot: Chromatin remodeling: ISWI. Cell, 2011, 144(3): 454. [110] Sims J K, Wade P A. SnapShot: Chromatin remodeling: CHD. Cell, 2011, 144(4): 626. [111] Bao Y, Shen X. SnapShot: Chromatin remodeling: INO80 and SWR1. Cell, 2011, 144(1): 158. [112] Zhang H, Bishop B, Ringenberg W, [113] Braybrook S A, Harada J J. LECs go crazy in embryo development. Trends in Plant Science, 2008, 13(12): 624-630. [114] Nolan K E, Song Y, Liao S, [115] Li G, Bishop K J, Chandrasekharan M B, [116] Gallardo K, Thompson R, Burstin J. Reserve accumulation in legume seeds. Comptes Rendus Biologies, 2008, 331(10): 755-762. [117] Mattick J S. Non-coding RNAs: The architects of eukaryotic complexity. EMBO Reports, 2001, 2(11): 986-991. [118] Taft R J, Pang K C, Mercer T R, [119] Wang J, Li L C. Small RNA and its application in andrology and urology. Translational Andrology and Urology, 2012, 1(1): 33-43. [120] Zhu F, Wang X, Liu Q Y, 朱锋, 王旭, 刘倩莹, 等. 表观遗传学及其研究方法. 现代生物医学进展, 2017, 17(12): 2371-2376. [121] Jinek M, Doudna J A. A three-dimensional view of the molecular machinery of RNA interference. Nature, 2008, 457: 405-412. [122] Moazed D. Small RNAs in transcriptional gene silencing and genome defence. Nature, 2009, 457: 413-420. [123] Zilberman D, Cao X, Jacobsen S E. [124] Seitz H, Royo H, Bortolin M-L, [125] Guil S, Esteller M. DNA methylomes, histone codes and miRNAs: Tying it all together. The International Journal of Biochemistry & Cell Biology, 2009, 41(1): 87-95. [126] Grimson A, Srivastava M, Fahey B, [127] Khurana J S, Theurkauf W. piRNAs, transposon silencing, and drosophila germline development. The Journal of Cell Biology, 2010, 191(5): 905-913. [128] Reis E M, Verjovski-Almeida S. Perspectives of long non-coding RNAs in cancer diagnostics. Frontiers in Genetics, 2012, DOI: 10.3389/fgene.2012.00032. [129] Di C, Yuan J, Wu Y, [130] Bahadur R P, Chowdhury M R, Basak J. Elucidating the functional role of predicted miRNAs in post-transcriptional gene regulation along with symbiosis in [131] De Luis A, Markmann K, Cognat V, [132] Holt D B, Gupta V, Meyer D, [133] Wang Y, Wang Z, Amyot L, [134] Yu S Q, Chen T R, Xie G W, 余素芹, 陈天任, 谢国文, 等. 大果期喷施特效植物营养素对荔枝增产效果及相关性状的影响. 广东农业科学, 2012, 39(21): 6-7. [135] Chen T R, Wang Y L, Xie G W, 陈天任, 王玉林, 谢国文, 等. 特效植物营养素对特色蔬菜迟菜心的增产效应. 广东农业科学, 2012, 39(21): 3-5. [136] Gao Y, Jiang Y J, Yu S Q, 高云, 江奕君, 余素芹, 等. 特效植物营养素对超级稻增产效应研究初报. 广东农业科学, 2009, (1): 9-10. [137] Paszkowski J. Controlled activation of retrotransposition for plant breeding. Current Opinion in Biotechnology, 2015, 32: 200-206. |
[1] | 南志标, 王彦荣, 聂斌, 李春杰, 张卫国, 夏超. 春箭筈豌豆新品种“兰箭3号”选育与特性评价[J]. 草业学报, 2021, 30(4): 111-120. |
[2] | 张茹, 李建平, 彭文栋, 王芳, 李志刚. 柠条枝条覆盖对宁夏荒漠草原土壤水热及补播牧草生物量的影响[J]. 草业学报, 2021, 30(4): 58-67. |
[3] | 潘发明, 常生华, 王国栋, 郝生燕, 刘佳, 张辉元, 徐银萍. 物候期对放牧牦牛瘤胃液、牧草中脂肪酸及乳脂中共轭亚油酸组成的影响及其相关性分析[J]. 草业学报, 2021, 30(3): 110-120. |
[4] | 牛欢欢, 王森森, 贾宏定, 陈桂华. 光叶紫花苕子浸提液对4种牧草种子萌发过程的化感作用[J]. 草业学报, 2020, 29(9): 161-168. |
[5] | 张雨桐, 石凤翎. 株型形成及牧草株型相关研究进展[J]. 草业学报, 2020, 29(9): 203-214. |
[6] | 王锐, 李希来, 张静. 四种覆土处理对高寒煤矿区排土场渣山植被恢复的影响[J]. 草业学报, 2020, 29(7): 40-51. |
[7] | 邱月, 吴鹏飞, 魏雪. 三种人工草地小型土壤节肢动物群落多样性动态及其差异[J]. 草业学报, 2020, 29(5): 21-32. |
[8] | 谢开云, 曹凯, 万江春, 王玉祥, 赵云, 朱进忠. 新疆半干旱区不同豆科/禾本科牧草混播草地生产力的变化研究[J]. 草业学报, 2020, 29(4): 29-40. |
[9] | 谢开云, 王玉祥, 万江春, 张树振, 隋晓青, 赵云, 张博. 混播草地中豆科/禾本科牧草氮转移机理及其影响因素[J]. 草业学报, 2020, 29(3): 157-170. |
[10] | 高金龙, 刘洁, 殷建鹏, 葛静, 侯蒙京, 冯琦胜, 梁天刚. 天然草地牧草营养品质的高光谱遥感研究进展[J]. 草业学报, 2020, 29(2): 172-185. |
[11] | 陆丰帅, 阿的鲁骥, 程云湘, 侯扶江. 祁连山高寒草原土壤水分与植被盖度的关系[J]. 草业学报, 2020, 29(11): 23-32. |
[12] | 张永亮, 于铁峰, 郝凤, 高凯. 施肥与混播比例对豆禾混播牧草产量及氮磷钾利用效率的影响[J]. 草业学报, 2020, 29(11): 91-101. |
[13] | 陈德霞, 刘旭, 罗林华, 黄训兵, 吕慎金, 李广阅, 张泽华. 典型草原4种优势种牧草次生代谢物对亚洲小车蝗解毒酶活性的影响[J]. 草业学报, 2020, 29(1): 183-192. |
[14] | 龙会英, 张德, 曾丽萍, 金杰, 何光熊. 氮磷肥对3种牧草的生长效应和氮磷吸收的影响[J]. 草业学报, 2019, 28(5): 171-177. |
[15] | 刘慧, NZABANITAClement, 李彦忠. 苜蓿籽蜂寄生沙打旺种子的时期研究[J]. 草业学报, 2019, 28(4): 146-156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||