草业学报 ›› 2022, Vol. 31 ›› Issue (5): 135-143.DOI: 10.11686/cyxb2021097
• 研究论文 • 上一篇
张晴(), 邢静, 姚佳明, 殷庭超, 黄心如, 何悦, 张敬(), 徐彬
收稿日期:
2021-03-16
修回日期:
2021-03-29
出版日期:
2022-05-20
发布日期:
2022-03-30
通讯作者:
张敬
作者简介:
Corresponding author. E-mail: nauzj@njau.edu.cn基金资助:
Qing ZHANG(), Jing XING, Jia-ming YAO, Ting-chao YIN, Xin-ru HUANG, Yue HE, Jing ZHANG(), Bin XU
Received:
2021-03-16
Revised:
2021-03-29
Online:
2022-05-20
Published:
2022-03-30
Contact:
Jing ZHANG
摘要:
镉(Cd)是矿区重金属污染的主要元素之一,严重限制了植物的生长、发育。细胞分裂素(CTK)能够缓解镉对植物的毒害,但具体机制尚不清楚。本研究克隆了多年生黑麦草CTK信号通路基因LpARR10,该基因具有6个外显子,编码598个氨基酸。进化分析表明,LpARR10与拟南芥B类ARR转录因子(B-ARRs)聚为一组,其中与AtARR10和AtARR12的亲缘关系较近。氨基酸序列分析结果显示,LpARR10具有B-ARRs典型的磷酸受体结构域、磷酸化和金属离子结合位点。表达模式分析表明,CTK(25 μmol·L-1 6-BA)和Cd(200 μmol·L-1 CdCl2)处理0.5、2、6、12、24和48 h均显著提高了黑麦草根部LpARR10的表达;而在叶片中,LpARR10的表达仅在CTK和Cd处理2和6 h后显著升高。过量表达LpARR10转基因和野生型拟南芥在无Cd的MS培养基上生长10 d后,根长和鲜重没有显著差异;而在含有Cd(180 μmol·L-1 CdCl2)的MS培养基中,过量表达转基因株系的根长和鲜重显著高于野生型对照。综上,LpARR10在细胞分裂素调控的植物耐镉机理中发挥重要作用。
张晴, 邢静, 姚佳明, 殷庭超, 黄心如, 何悦, 张敬, 徐彬. 多年生黑麦草细胞分裂素信号通路B类ARR转录因子LpARR10的耐镉功能分析[J]. 草业学报, 2022, 31(5): 135-143.
Qing ZHANG, Jing XING, Jia-ming YAO, Ting-chao YIN, Xin-ru HUANG, Yue HE, Jing ZHANG, Bin XU. The role of a cytokinin signaling pathway type-B ARR transcription factor, LpARR10, in cadmium tolerance of perennial ryegrass[J]. Acta Prataculturae Sinica, 2022, 31(5): 135-143.
引物名称Primer | 上游引物序列Forward primer sequence (5′-3′) | 下游引物序列Reverse primer sequence (5′-3′) |
---|---|---|
LpARR10-CDS | ATTTggatccATGCGCGTGCTCGCCGTC | ATTTactagtGACCAGCTGCCAGTCCCCAT |
LpARR10-qRT | GATGTCGGGAATACGGGCGG | GAGCCCCCTTTGCAGCCTAC |
AtTUBULIN4-qRT | CTGTTTCCGTACCCTCAAGC | AGGGAAACGAAGACAGCAAG |
Bar gene | TCAAATCTCGGTGACGGGCAGGAC | AACCGCAGGAGTGGACGGACGA |
表1 试验所用引物
Table 1 Primers used in the study
引物名称Primer | 上游引物序列Forward primer sequence (5′-3′) | 下游引物序列Reverse primer sequence (5′-3′) |
---|---|---|
LpARR10-CDS | ATTTggatccATGCGCGTGCTCGCCGTC | ATTTactagtGACCAGCTGCCAGTCCCCAT |
LpARR10-qRT | GATGTCGGGAATACGGGCGG | GAGCCCCCTTTGCAGCCTAC |
AtTUBULIN4-qRT | CTGTTTCCGTACCCTCAAGC | AGGGAAACGAAGACAGCAAG |
Bar gene | TCAAATCTCGGTGACGGGCAGGAC | AACCGCAGGAGTGGACGGACGA |
图2 LpARR10的基因组结构及其同源基因的氨基酸序列和功能域分析a:多年生黑麦草LpARR10的基因组结构。黑色框代表外显子,灰色框代表内含子,黑色框里数字代表外显子碱基数;b: LpARR10与其同源基因氨基酸序列和功能域分析。红线标注区域为B类ARR转录因子典型的phosphoaccepter receiver domain(REC)功能域,红色三角形标注氨基酸D为金属结合位点,紫色箭头标注氨基酸S为磷酸化结合位点,YXXK是B-ARRs功能域(active site,红色三角形标注)。图中ARRs基因的NCBI登录号分别为:多年生黑麦草LpARR10 (ALT32069.1, L. perenne);大麦HvARR12 (KAE8766928.1, H. vulgare);水稻OsORR24 (XP_015626716.1, O. sativa);高粱SbARR12 (XP_002453411.1, S. bicolor);拟南芥AtARR12 (AT2G25180, A. thaliana)和AtARR10 (AT4G31920, A. thaliana)。 a: Genome structure of perennial ryegrass LpARR10. The black box represents exons, the gray box represents introns, and the number in the black box represents the base number in each exon. b: Amino acid sequence and functional domain analysis of LpARR10 and its homologous genes. The red line represents the REC functional domain of type-B ARR transcription factors. The red triangle represents the metal binding site of amino acid D, and the purple arrow represents the phosphorylated binding site of amino acid S. YXXK is the B-ARRS functional domain (active site, highlighted in red triangle). NCBI registration numbers of ARRs genes in the figure are as follows: LpARR10 (ALT32069.1, L. perenne); HvARR12 (KAE8766928.1, H. vulgare); OsORR24 (XP_015626716.1, O. sativa); SbARR12 (XP_002453411.1, S. bicolor); AtARR12 (AT2G25180, A. thaliana) and AtARR10 (AT4G31920, A. thaliana).
Fig.2 Genetic structure, amino acid sequence and function domain analysis of LpARR10 and its homologus genes
图3 外源细胞分裂素处理下多年生黑麦草叶片和根中LpARR10基因表达分析*: P<0.05, **: P<0.01, ***: P<0.001. 下同The same below.
Fig.3 Expression analysis of LpARR10 gene in perennial ryegrass leaves and roots treated with cytokinin
图5 LpARR10转基因阳性株系的鉴定M代表DNA指示带,ND代表未检测出数据,不同字母表示差异显著(P<0.05)。下同。M represents DNA indicator band, ND represents no data detected, and different letter represents significant difference (P<0.05). The same below.
Fig.5 Identification of LpARR10 overexpression transgenic lines
1 | Ding J J, Pan Y Z, Liu S L, et al. Effect and mechanisms of soil cadmium stress on Dianthus chinensis seedling growth. Acta Prataculturae Sinica, 2013, 22(6): 77-85. |
丁继军, 潘远智, 刘柿良, 等. 土壤重金属镉胁迫对石竹幼苗生长的影响及其机理. 草业学报, 2013, 22(6): 77-85. | |
2 | Peng J, Lv D N, Zhang T, et al. Systematic cognition of ecological protection and restoration of mountains-rivers-forests-farmlands-lakes-grasslands. Acta Ecologica Sinica, 2019, 39(23): 8755-8762. |
彭建, 吕丹娜, 张甜, 等. 山水林田湖草生态保护修复的系统性认知. 生态学报, 2019, 39(23): 8755-8762. | |
3 | Verma V, Ravindran P, Kumar P P. Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 2016, 16(1): 86. |
4 | Xu Y, Gianfagna T, Huang B. Proteomic changes associated with expression of a gene (ipt) controlling cytokinin synthesis for improving heat tolerance in a perennial grass species. Journal of Experimental Botany, 2010, 61(12): 3273-3289. |
5 | Ghaleh Z R, Sarmast M K, Atashi S. 6-Benzylaminopurine (6-BA) ameliorates drought stress response in tall fescue via the influencing of biochemicals and strigolactone-signaling genes. Plant Physiology and Biochemistry, 2020, 155: 877-887. |
6 | Ma X, Zhang J, Huang B. Cytokinin-mitigation of salt-induced leaf senescence in perennial ryegrass involving the activation of antioxidant systems and ionic balance. Environmental and Experimental Botany, 2016, 125: 1-11. |
7 | Xu L L, Li P, Wang Y L, et al. Effect of exogenous cytokinins on growth, activities of antioxidative enzymes and proline content in corn seedlings (Zea mays L.) under cadmium stress. Acta Scientiae Circumstantiae, 2010, 30(11): 2256-2263. |
徐莉莉, 李萍, 王玉林, 等. 细胞分裂素类物质对镉胁迫下玉米幼苗生长和抗氧化酶活性及脯氨酸含量的影响. 环境科学学报, 2010, 30(11): 2256-2263. | |
8 | Gemrotová M, Kulkarni M G, Stirk W A, et al. Seedlings of medicinal plants treated with either a cytokinin antagonist (PI-55) or an inhibitor of cytokinin degradation (INCYDE) are protected against the negative effects of cadmium. Plant Growth Regulation, 2013, 71(2): 137-145. |
9 | Hwang I, Sheen J. Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature, 2001, 413(6854): 383-389. |
10 | To J P, Deruère J, Maxwell B B, et al. Cytokinin regulates type-A Arabidopsis response regulator activity and protein stability via two-component phosphorelay. The Plant Cell, 2007, 19(12): 3901-3914. |
11 | To J P, Haberer G, Ferreira F J, et al. Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. The Plant Cell, 2004, 16(3): 658-671. |
12 | Cortleven A, Marg I, Yamburenko M V, et al. Cytokinin regulates etioplast-chloroplast transition through activation of chloroplast-related genes. Plant Physiology, 2016, 172: 464-478. |
13 | Kiba T, Yamada H, Sato S, et al. The type-A response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana. Plant & Cell Physiology, 2003, 44: 868-874. |
14 | Sun W. Cytokinin type B response regulators regulate auxin related genes during shoot induction in Arabidopsis. Tai’an: Shandong Agricultural University, 2011. |
孙伟. 细胞分裂素B类ARRs通过调控生长素相关基因的表达参与拟南芥离体苗的发育. 泰安: 山东农业大学, 2011. | |
15 | Hou L Y. Molecular mechanism of freezing tolerance regulated by cytokinin type-B response regulators in Arabidopsis. Beijing: China Agricultural University, 2018. |
侯凌燕. 细胞分裂素B型响应调节子调控拟南芥抗冻性的分子机制. 北京: 中国农业大学, 2018. | |
16 | Shan G L, Zhang M Y, Liao X L, et al. Adaptability evaluation of 12 perennial forage cultivars in alpine region of Diqing. Pratacultural Science, 2016, 33(9): 1793-1800. |
单贵莲, 张美艳, 廖祥龙, 等. 12个多年生牧草品种在迪庆高寒地区的引种评价. 草业科学, 2016, 33(9): 1793-1800. | |
17 | Xu B, Yu G H, Li H, et al. Knockdown of STAYGREEN in perennial ryegrass (Lolium perenne L.) leads to transcriptomic alterations related to suppressed leaf senescence and improved forage quality. Plant and Cell Physiology, 2019, 60(1): 202-212. |
18 | Hoagland D R, Arnon D I. The water-culture method for growing plants without soil. California Agricultural Experimental Station Circular, 1950, 347: 1-32. |
19 | Luo H, Li H, Fu Z J. Antioxidant responses and gene expression in perennial ryegrass (Lolium perenne L.) under cadmium stress. Ecotoxicology, 2011, 20(4): 770-778. |
20 | Clough S J, Bent A F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 2010, 16(6): 735-743. |
21 | Lv Z, Hu X M, An J, et al. Joint effects of galaxolide and cadmium on soil microbial community function and abundance. Journal of Agro-Environment Science, 2017, 36(1): 66-75. |
律泽, 胡筱敏, 安婧, 等. 佳乐麝香与镉复合污染对土壤微生物群落功能和丰度的影响. 农业环境科学学报, 2017, 36(1): 66-75. | |
22 | Sun L J, Qin Q, Song K, et al. The remediation and safety utilization techniques for Cd contaminated farmland soil: A review. Ecology and Environmental Sciences, 2018, 27(7): 1377-1386. |
孙丽娟, 秦秦, 宋科, 等. 镉污染农田土壤修复技术及安全利用方法研究进展. 生态环境学报, 2018, 27(7): 1377-1386. | |
23 | D’Agostino I B. Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiology, 2001, 124(4): 1706-1717. |
24 | Brandstatter I, Kieber J J. Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis. The Plant Cell, 1998, 10(6): 1009-1020. |
25 | Yan O Z, Blakley I C, Yamburenko M V, et al. Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(29): 5995-6004. |
26 | Argyros R D, Mathews D E, Chiang Y M, et al. Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development. The Plant Journal, 2008, 20(8): 2102-2116. |
27 | Zhang Y, Ran Y, Nagy I, et al. Targeted mutagenesis in ryegrass (Lolium spp.) using the CRISPR/Cas9 system. Plant Biotechnology Journal, 2020, 18: 1854-1856. |
[1] | 撖冬荣, 姚拓, 李海云, 黄书超, 杨琰珊, 高亚敏, 李昌宁, 张银翠. 微生物肥料与化肥减量配施对多年生黑麦草生长的影响[J]. 草业学报, 2022, 31(3): 136-143. |
[2] | 赵利清, 彭向永, 刘俊祥, 毛金梅, 孙振元. GSH对铅胁迫下多年生黑麦草生长及光合生理的影响[J]. 草业学报, 2021, 30(9): 97-104. |
[3] | 候怡谣, 李霄, 龙瑞才, 杨青川, 康俊梅, 郭长虹. 过量表达紫花苜蓿MsHB7基因对拟南芥耐旱性的影响[J]. 草业学报, 2021, 30(4): 170-179. |
[4] | 周瀚洋, 孙鹏越, 尉欣荣, 周雨, 张智伟, 高金柱, 赵东豪, 罗艺岚, 呼天明, 付娟娟. 琥珀酸黄杆菌缓解遮阴对多年生黑麦草胁迫的效应[J]. 草业学报, 2020, 29(6): 137-143. |
[5] | 刘文文, 崔会婷, 尉春雪, 龙瑞才, 康俊梅, 杨青川, 王珍. 蒺藜苜蓿叶绿素酸酯a加氧酶(MtCAO)基因的克隆与功能分析[J]. 草业学报, 2020, 29(5): 171-181. |
[6] | 魏勇, 王晓瑜, 李应德, 段廷玉. AM真菌在白三叶-黑麦草体系中对抗逆信号的传导作用[J]. 草业学报, 2020, 29(4): 138-146. |
[7] | 刘建新, 欧晓彬, 王金成, 刘瑞瑞, 贾海燕. 镉胁迫下裸燕麦幼苗对外源H2O2的生理响应[J]. 草业学报, 2020, 29(1): 125-134. |
[8] | 马碧花, 蔺伟虎, 高敏, 王兴迪, 田沛. 干旱胁迫下水杨酸和内生真菌对多年生黑麦草的影响[J]. 草业学报, 2020, 29(1): 135-144. |
[9] | 姜红岩, 滕珂, 檀鹏辉, 尹淑霞. 日本结缕草ZjZFN1基因对拟南芥的转化及其耐旱性分析[J]. 草业学报, 2019, 28(4): 129-138. |
[10] | 王日明, 王志强, 向佐湘. γ-氨基丁酸对高温胁迫下黑麦草光合特性及碳水化合物代谢的影响[J]. 草业学报, 2019, 28(2): 168-178. |
[11] | 李继伟, 悦飞雪, 王艳芳, 张亚梅, 倪瑞景, 王发园, 付国占, 刘领. 施用生物炭和AM真菌对镉胁迫下玉米生长和生理生化指标的影响[J]. 草业学报, 2018, 27(5): 120-129. |
[12] | 索雅飞,杜超,李宁宁,王燕,王迎春. 珍稀泌盐植物长叶红砂RtSOD基因的克隆及功能分析[J]. 草业学报, 2018, 27(4): 98-110. |
[13] | 辛建攀, 李文明, 祁茜, 田如男. 镉对梭鱼草叶片保护酶活性、光合及荧光特性的影响[J]. 草业学报, 2018, 27(10): 23-34. |
[14] | 董姬妃, 张帆, 胡雨寒, 李俊承, 李维, 王娴淑. 镉胁迫下增施氮对白三叶草生长的影响和镉毒害的缓解效应研究[J]. 草业学报, 2017, 26(9): 83-91. |
[15] | 郭艳娥, 王晓瑜, 高萍, 段廷玉. 磷添加条件下摩西球囊霉与禾草内生真菌对多年生黑麦草生长的影响[J]. 草业学报, 2017, 26(12): 160-169. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||