草业学报 ›› 2024, Vol. 33 ›› Issue (2): 93-111.DOI: 10.11686/cyxb2023117
曾兵1(), 尚盼盼1, 沈秉娜1, 王胤晨2, 屈明好1, 袁扬2, 毕磊1, 杨兴云1, 李文文1, 周晓丽1, 郑玉倩1, 郭文强1, 冯彦龙1, 曾兵1()
收稿日期:
2023-04-11
修回日期:
2023-06-29
出版日期:
2024-02-20
发布日期:
2023-12-12
作者简介:
基金资助:
Bing ZENG1(), Pan-pan SHANG1, Bing-na SHEN1, Yin-chen WANG2, Ming-hao QU1, Yang YUAN2, Lei BI1, Xing-yun YANG1, Wen-wen LI1, Xiao-li ZHOU1, Yu-qian ZHENG1, Wen-qiang GUO1, Yan-long FENG1, Bing ZENG1()
Received:
2023-04-11
Revised:
2023-06-29
Online:
2024-02-20
Published:
2023-12-12
摘要:
近年来我国南方地区洪涝灾害频繁发生,严重制约草牧业的发展。鸭茅作为重要的生态草种和优质牧草,耐淹性较差的特性严重影响其在频繁遭受洪涝区域的推广应用。本研究以国审品种“安巴”鸭茅为研究对象,对淹水胁迫0、8和24 h处理后的幼苗根系生理和转录等进行分析,以探究鸭茅在淹水胁迫下的响应机制。结果显示,淹水胁迫引起鸭茅根系中可溶性糖、可溶性蛋白和丙二醛含量显著增加,相对电导率先减少后显著升高。在淹水胁迫处理8 h后(相较于0 h),鸭茅根系中有5788个差异表达基因,包括上调基因2872个,下调基因2916个。胁迫处理24 h后,鸭茅根系中共有8807个差异表达基因,包括上调基因4123个,下调基因4684个。GO富集显示,这些差异表达基因功能主要涉及多糖代谢、微管结合、纤维素代谢过程、抗氧化反应等。KEGG富集显示,鸭茅根系主要通过苯丙烷生物合成、碳代谢、谷胱甘肽代谢、氨基酸生物合成、淀粉和蔗糖代谢以及糖酵解/糖异生等途径来响应淹水胁迫。进一步分析苯丙烷生物合成、碳代谢、谷胱甘肽代谢通路中的差异表达基因,推测 HXK1、HXK2、ADH1、GST和APX2等关键基因在鸭茅响应胁迫中发挥重要作用。MYB、NB-ARC、WRKY、GRAS和AP2等转录因子家族基因在淹水胁迫中表达丰富,可能与鸭茅的耐淹性密切相关。本研究结果为进一步探究鸭茅耐淹的分子机理提供了基础数据,也为后续的鸭茅耐淹性状改良工作提供理论支撑。
曾兵, 尚盼盼, 沈秉娜, 王胤晨, 屈明好, 袁扬, 毕磊, 杨兴云, 李文文, 周晓丽, 郑玉倩, 郭文强, 冯彦龙, 曾兵. 淹水胁迫下鸭茅根系基因差异表达及相关通路分析[J]. 草业学报, 2024, 33(2): 93-111.
Bing ZENG, Pan-pan SHANG, Bing-na SHEN, Yin-chen WANG, Ming-hao QU, Yang YUAN, Lei BI, Xing-yun YANG, Wen-wen LI, Xiao-li ZHOU, Yu-qian ZHENG, Wen-qiang GUO, Yan-long FENG, Bing ZENG. Differentially expressed genes and related pathways in root systems of Dactylis glomerata under flooding stress[J]. Acta Prataculturae Sinica, 2024, 33(2): 93-111.
基因编号 Gene ID | 正向引物Forward primer (5'-3') | 反向引物Reverse primer (5'-3') |
---|---|---|
DG4C05841 | GAGAAGGTGACCGAGAAC | GAGTGGGTGAAGAGGATG |
DG3C00580 | CGGCTACAGAAGAGGAGAGT | TGAAGAACAACAACGACAGACA |
DG3C06505 | CACTACTCCAAGACATGCCCGAATG | AAGCAGCACCGATCCATCACAAC |
DG3C01167 | TGCTCTGAACGACAACTT | ATGAACTCTTCTTCTCTCTGG |
DG7C01296 | ACTGCTGTGAAAGTGGTGCTGATC | TTCGCCGAGGATTCTGTTACAACTG |
DG7C02648 | TCAACAAGATGCGGTCCAACTGAG | GTACTTACACCACGTCGAGTTCCAC |
Actin | GATCTTCGCCTCGCCAGGTTATC | ATATCGCCGTGCTTCATCCATGTC |
表1 鸭茅根系差异基因引物序列
Table 1 Sequence list of primers for differentially expressed genes in D. glomerata roots
基因编号 Gene ID | 正向引物Forward primer (5'-3') | 反向引物Reverse primer (5'-3') |
---|---|---|
DG4C05841 | GAGAAGGTGACCGAGAAC | GAGTGGGTGAAGAGGATG |
DG3C00580 | CGGCTACAGAAGAGGAGAGT | TGAAGAACAACAACGACAGACA |
DG3C06505 | CACTACTCCAAGACATGCCCGAATG | AAGCAGCACCGATCCATCACAAC |
DG3C01167 | TGCTCTGAACGACAACTT | ATGAACTCTTCTTCTCTCTGG |
DG7C01296 | ACTGCTGTGAAAGTGGTGCTGATC | TTCGCCGAGGATTCTGTTACAACTG |
DG7C02648 | TCAACAAGATGCGGTCCAACTGAG | GTACTTACACCACGTCGAGTTCCAC |
Actin | GATCTTCGCCTCGCCAGGTTATC | ATATCGCCGTGCTTCATCCATGTC |
图1 淹水胁迫下鸭茅根系生理指标变化不同小写字母表示不同淹水时间生理指标差异显著(P<0.05)。Different lowercase letters indicate that there are significant differences in physiological indexes of different flooding time (P<0.05).
Fig.1 Changes of physiological indexes of D. glomerata roots under flooding stress
样品编号 Sample number | 原始数据 Raw reads | 过滤数据 Clean reads | Q20 (%) | Q30 (%) | GC (%) | 总比对率 Total mapping rate | 唯一比对率 Unique mapping rate | 多比对率 Multiple mapping rate | |||
---|---|---|---|---|---|---|---|---|---|---|---|
A | B (%) | A | C (%) | A | D (%) | ||||||
AB0h-1 | 44620874 | 42773100 | 98.04 | 94.27 | 53.94 | 31478723 | 73.59 | 30319134 | 70.88 | 1159589 | 2.71 |
AB0h-2 | 46136466 | 44761494 | 98.00 | 94.28 | 54.79 | 32380485 | 72.34 | 31351666 | 70.04 | 1028819 | 2.30 |
AB0h-3 | 44129532 | 42808268 | 97.99 | 94.22 | 53.97 | 30601830 | 71.49 | 29397803 | 68.67 | 1204027 | 2.81 |
AB8h-1 | 43448316 | 42799686 | 98.17 | 94.69 | 54.83 | 29514489 | 68.96 | 28122605 | 65.71 | 1391884 | 3.25 |
AB8h-2 | 41701902 | 39685822 | 98.07 | 94.31 | 52.56 | 27539115 | 69.39 | 26220686 | 66.07 | 1318429 | 3.32 |
AB8h-3 | 42842338 | 41560508 | 98.10 | 94.44 | 55.58 | 29288776 | 70.47 | 28052239 | 67.50 | 1236537 | 2.98 |
AB24h-1 | 43175864 | 41932282 | 97.94 | 94.19 | 56.10 | 27742677 | 66.16 | 25974820 | 61.94 | 1767857 | 4.22 |
AB24h-2 | 47368352 | 46014046 | 97.98 | 94.24 | 55.61 | 30684212 | 66.68 | 29002064 | 63.03 | 1682148 | 3.66 |
AB24h-3 | 49040614 | 47826980 | 97.91 | 94.05 | 55.25 | 31306578 | 65.46 | 29261089 | 61.18 | 2045489 | 4.28 |
表2 各样本测序数据质控结果
Table 2 Quality control results of sequencing data for each sample
样品编号 Sample number | 原始数据 Raw reads | 过滤数据 Clean reads | Q20 (%) | Q30 (%) | GC (%) | 总比对率 Total mapping rate | 唯一比对率 Unique mapping rate | 多比对率 Multiple mapping rate | |||
---|---|---|---|---|---|---|---|---|---|---|---|
A | B (%) | A | C (%) | A | D (%) | ||||||
AB0h-1 | 44620874 | 42773100 | 98.04 | 94.27 | 53.94 | 31478723 | 73.59 | 30319134 | 70.88 | 1159589 | 2.71 |
AB0h-2 | 46136466 | 44761494 | 98.00 | 94.28 | 54.79 | 32380485 | 72.34 | 31351666 | 70.04 | 1028819 | 2.30 |
AB0h-3 | 44129532 | 42808268 | 97.99 | 94.22 | 53.97 | 30601830 | 71.49 | 29397803 | 68.67 | 1204027 | 2.81 |
AB8h-1 | 43448316 | 42799686 | 98.17 | 94.69 | 54.83 | 29514489 | 68.96 | 28122605 | 65.71 | 1391884 | 3.25 |
AB8h-2 | 41701902 | 39685822 | 98.07 | 94.31 | 52.56 | 27539115 | 69.39 | 26220686 | 66.07 | 1318429 | 3.32 |
AB8h-3 | 42842338 | 41560508 | 98.10 | 94.44 | 55.58 | 29288776 | 70.47 | 28052239 | 67.50 | 1236537 | 2.98 |
AB24h-1 | 43175864 | 41932282 | 97.94 | 94.19 | 56.10 | 27742677 | 66.16 | 25974820 | 61.94 | 1767857 | 4.22 |
AB24h-2 | 47368352 | 46014046 | 97.98 | 94.24 | 55.61 | 30684212 | 66.68 | 29002064 | 63.03 | 1682148 | 3.66 |
AB24h-3 | 49040614 | 47826980 | 97.91 | 94.05 | 55.25 | 31306578 | 65.46 | 29261089 | 61.18 | 2045489 | 4.28 |
差异表达基因比较组合 Comparative combinations of differentially expressed genes | 差异表达基因数目 Number of differentially expressed genes | 上调基因数目 Number of up-regulated genes | 下调基因数目 Number of down-regulated genes |
---|---|---|---|
AB8h vs AB0h | 5788 | 2872 | 2916 |
AB24h vs AB0h | 8807 | 4123 | 4684 |
AB24h vs AB8h | 1687 | 515 | 1172 |
表3 差异表达基因数量统计
Table 3 Statistical of number of differentially expressed genes
差异表达基因比较组合 Comparative combinations of differentially expressed genes | 差异表达基因数目 Number of differentially expressed genes | 上调基因数目 Number of up-regulated genes | 下调基因数目 Number of down-regulated genes |
---|---|---|---|
AB8h vs AB0h | 5788 | 2872 | 2916 |
AB24h vs AB0h | 8807 | 4123 | 4684 |
AB24h vs AB8h | 1687 | 515 | 1172 |
图2 差异表达基因的韦恩图a:上调差异基因 Up-regulate differential expressed genes;b:下调差异基因 Down-regulated differentially expressed genes.
Fig.2 Venn diagram of differentially expressed genes
图4 部分显著富集GO条目差异表达基因分析GO:0007018:基于微管的运动Microtubule-based movement;GO:0030243:纤维素代谢过程Cellulose metabolic process;GO:0044042:葡聚糖代谢过程Glucan metabolic process;GO:0044262:细胞碳水化合物代谢过程Cellular carbohydrate metabolic process;GO:0008092:细胞骨架蛋白结合Cytoskeletal protein binding;GO:0016462:焦磷酸酶活性Pyrophosphatase activity;GO:0006979:抗氧化反应Response to oxidative stress;GO:0006260:DNA复制DNA replication;GO:0008017:微管结合Microtubule binding.
Fig.4 Analysis of some significantly enriched GO entries with differentially expressed genes
转录因子 Transcription factors | 比较组合 Comparison group | 差异基因数 Number of differentially expressed genes | 上调差异基因数 Number of up-regulated genes | 下调差异基因数 Number of down-regulated genes | 主要富集通路 Primary pathways enrichment |
---|---|---|---|---|---|
MYB | AB8h vs AB0h | 39 | 19 | 20 | 昼夜节律-植物 Circadian rhythm-plant |
AB24h vs AB0h | 71 | 32 | 39 | ||
NB-ARC | AB8h vs AB0h | 39 | 23 | 16 | 植物-病原互作 Plant-pathogen interaction |
AB24h vs AB0h | 56 | 20 | 32 | ||
WRKY | AB8h vs AB0h | 16 | 4 | 12 | 植物-病原互作、植物MAPK信号通路 Plant-pathogen interaction, plant MAPK signaling pathway |
AB24h vs AB0h | 17 | 5 | 12 | ||
GRAS | AB8h vs AB0h | 4 | 2 | 2 | 植物激素信号转导 Plant hormone signal transduction |
AB24h vs AB0h | 11 | 7 | 4 | ||
AP2 | AB8h vs AB0h | 27 | 8 | 19 | 植物激素信号转导、植物MAPK信号通路 Plant hormone signal transduction, plant MAPK signaling pathway |
AB24h vs AB0h | 41 | 28 | 13 |
表4 重要转录因子差异基因数量统计
Table 4 Statistics on the number of differential genes of important transcription factors
转录因子 Transcription factors | 比较组合 Comparison group | 差异基因数 Number of differentially expressed genes | 上调差异基因数 Number of up-regulated genes | 下调差异基因数 Number of down-regulated genes | 主要富集通路 Primary pathways enrichment |
---|---|---|---|---|---|
MYB | AB8h vs AB0h | 39 | 19 | 20 | 昼夜节律-植物 Circadian rhythm-plant |
AB24h vs AB0h | 71 | 32 | 39 | ||
NB-ARC | AB8h vs AB0h | 39 | 23 | 16 | 植物-病原互作 Plant-pathogen interaction |
AB24h vs AB0h | 56 | 20 | 32 | ||
WRKY | AB8h vs AB0h | 16 | 4 | 12 | 植物-病原互作、植物MAPK信号通路 Plant-pathogen interaction, plant MAPK signaling pathway |
AB24h vs AB0h | 17 | 5 | 12 | ||
GRAS | AB8h vs AB0h | 4 | 2 | 2 | 植物激素信号转导 Plant hormone signal transduction |
AB24h vs AB0h | 11 | 7 | 4 | ||
AP2 | AB8h vs AB0h | 27 | 8 | 19 | 植物激素信号转导、植物MAPK信号通路 Plant hormone signal transduction, plant MAPK signaling pathway |
AB24h vs AB0h | 41 | 28 | 13 |
1 | An M Z, Han B, Jiang H, et al. Research progress of Dactylis species origin and phylogeny analysis. Acta Agrestia Sinica, 2021, 29 (12): 2637-2644. |
安明珠, 韩博, 姜华, 等. 鸭茅物种起源与系统发育分析研究进展. 草地学报, 2021, 29(12): 2637-2644. | |
2 | Zeng B, Luo D, Xie W G, et al. Research progress on the genetic diversity, origin and distribution of Dactylis glomerata species. Acta Agrestia Sinica, 2014, 22(3): 448-454. |
曾兵, 罗登, 谢文刚, 等. 鸭茅物种的起源、分布及其遗传多样性研究进展. 草地学报, 2014, 22(3): 448-454. | |
3 | Peng Y, Zhang X Q. Progress in studies on genetic diversity of Dactylis glomerata L. Journal of Plant Genetic Resources, 2003(2): 179-183. |
彭燕, 张新全. 鸭茅种质资源多样性研究进展. 植物遗传资源学报, 2003(2): 179-183. | |
4 | Xie G Q, Wang D P, Yang S T, et al. Comparative test of eight orchardgrass cultivars (lines) in Chengdu Plain. Journal of Grassland and Forage Science, 2019(6): 39-44, 52. |
解关琦, 王登平, 杨盛婷, 等. 8个鸭茅品种(系)在成都平原品种比较试验. 草学, 2019(6): 39-44, 52. | |
5 | Zheng M L, Mao P C, Tai J H, et al. Effect of feeding white clover and orchard grass mixed silage on slaughter performance and meat quality of Hu sheep. Henan Agricultural Science, 2021, 50(5): 142-148. |
郑明利, 毛培春, 邰建辉, 等. 白三叶和鸭茅混合青贮饲喂对湖羊屠宰性能及肉品质的影响. 河南农业科学, 2021, 50(5): 142-148. | |
6 | Ministry of Emergency Management of the People’s Republic of China. The top 10 national natural disasters in 2022. China Disaster Reduction, 2023(3): 8-9. |
中华人民共和国应急管理部. 2022年全国十大自然灾害. 中国减灾, 2023(3): 8-9. | |
7 | Nie G P, Chen M M, Yang L Y, et al. Plant response to waterlogging stress: research progress. Chinese Agricultural Science Bulletin, 2021, 37(18): 57-64. |
聂功平, 陈敏敏, 杨柳燕, 等. 植物响应淹水胁迫的研究进展. 中国农学通报, 2021, 37(18): 57-64. | |
8 | Deng X, Yang D, Sun H, et al. Time-course analysis and transcriptomic identification of key response strategies of Nelumbo nucifera to complete submergence. Horticulture Research, 2022, 9: uhac001. |
9 | Qi B Y, Yang Y, Yin Y L, et al. De novo sequencing, assembly, and analysis of the Taxodium ‘Zhongshansa’ roots and shoots transcriptome in response to short-term waterlogging. BMC Plant Biology, 2014, 14(1): 1-12. |
10 | Komatsu S, Yamamoto A, Nakamura T, et al. Comprehensive analysis of mitochondria in roots and hypocotyls of soybean under flooding stress using proteomics and metabolomics techniques. Journal of Proteome Research, 2011, 10(9): 3993-4004. |
11 | Gunawardena A H, Pearce D M, Jackson M B, et al. Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.). Planta, 2001, 212(2): 205-214. |
12 | Shang P P, Zeng B, Qu M H, et al. Analysis of metabolic pathways and differentially expressed genes of Trifolium pratense responding to waterlogging stress. Acta Prataculturae Sinica, 2023, 32(4): 112-128. |
尚盼盼, 曾兵, 屈明好, 等. 红三叶响应淹水胁迫的相关通路及差异表达基因分析. 草业学报, 2023, 32(4): 112-128. | |
13 | Zhu X, Li X, Jiu S, et al. Analysis of the regulation networks in grapevine reveals response to waterlogging stress and candidate gene-marker selection for damage severity. Royal Society Open Science, 2018, 5(6): 172253. |
14 | Thirunavukkarasu N, Hossain F, Mohan S, et al. Genome-wide expression of transcriptomes and their co-expression pattern in subtropical maize (Zea mays L.) under waterlogging stress. PLoS One, 2013, 8(8): e70433. |
15 | Qiao D, Zhang Y, Xiong X, et al. Transcriptome analysis on responses of orchard grass (Dactylis glomerata L.) leaves to a short term flooding. Hereditas, 2020, 157(1): 1-16. |
16 | Xue C M. Transcriptomic analysis of chilling tolerance mechanisms of maize different tissues under whole-plant and distal chilling. Changchun: Jilin University, 2022. |
薛春梅. 转录组学解析整株和远端冷胁迫玉米不同组织耐冷机制. 长春: 吉林大学, 2022. | |
17 | Li H S. Plant physiological and biochemical experiment principle and technology. Beijing: Higher Education Press, 2000: 134-260. |
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000: 134-260. | |
18 | Pan L, Xue L. Plant physiological mechanisms in adapting to waterlogging stress: A review. Chinese Journal of Ecology, 2012, 31(10): 2662-2672. |
潘澜, 薛立. 植物淹水胁迫的生理学机制研究进展. 生态学杂志, 2012, 31(10): 2662-2672. | |
19 | Xiang H T, Li W, He N, et al. Physiological response and effect of S3307 on water stress of adzuki bean root. Journal of Agricultural Science and Technology, 2022, 24(9): 39-49. |
项洪涛, 李琬, 何宁, 等. 小豆根系对水分胁迫的生理响应及S3307的缓解效应. 中国农业科技导报, 2022, 24(9): 39-49. | |
20 | Wu L, Zhang W W, Ge X M, et al. A review of the response mechanisms of plants to waterlogging stress. World Forestry Research, 2012, 25(6): 27-33. |
吴麟, 张伟伟, 葛晓敏, 等. 植物对淹水胁迫的响应机制研究进展. 世界林业研究, 2012, 25(6): 27-33. | |
21 | Li L T, Liu W J, Zhang G X. Physiological response and tolerance evaluation of Chionanthus retusus from different provenances under waterlogging stress. Chinese Wild Plant Resources, 2022, 41(10): 19-24, 29. |
李立婷, 刘文静, 张鸽香. 不同种源流苏树对淹水胁迫的生理响应及耐涝性评价. 中国野生植物资源, 2022, 41(10): 19-24, 29. | |
22 | Xiong X G, Xiong J, Zou X Y, et al. Research progress in selenium metabolism in plants and its influencing factors. Acta Agriculturae Jiangxi, 2022, 34(1): 63-70. |
熊信果, 熊婧, 邹小云, 等. 植物硒代谢及其影响因素研究进展. 江西农业学报, 2022, 34(1): 63-70. | |
23 | Shan Y, Ren X N, Li X M. Research progress on effects of abiotic stress on plant carbohydrates and their related enzymes in their metabolism. Journal of Anhui Agricultural Sciences, 2021, 49(20): 6-9. |
单羽, 任晓宁, 李雪梅. 非生物胁迫对植物碳水化合物及其代谢相关酶影响的研究进展. 安徽农业科学, 2021, 49(20): 6-9. | |
24 | Xu D, Dhiman R, Garibay A, et al. Cellulose defects in the Arabidopsis secondary cell wall promote early chloroplast development. The Plant Journal, 2020, 101(1): 156-170. |
25 | Yin L X. Effect of saline-alkaline stress on lignin biosynthesis in maize revealed by transcriptome and biochemical. Southwest China Journal of Agricultural Sciences, 2023, 36(3): 1-18. |
尹丽兴. 基于转录组测序和生化分析揭示盐碱胁迫对玉米木质素生物合成的影响. 西南农业学报, 2023, 36(3): 1-18. | |
26 | Yang Y, Wang W, Liu H, et al. Effects of aluminum stress on root elongation of different aluminum tolerance wheat cultivars. Journal of Plant Nutrition and Fertilizers, 2010, 16(3): 584-590. |
杨野, 王伟, 刘辉, 等. 铝胁迫对不同耐铝小麦品种根伸长生长影响的研究. 植物营养与肥料学报, 2010, 16(3): 584-590. | |
27 | Jackson M B, Drew M C. Effects of flooding on growth and metabolism of Herbaceous plants. Physiological Ecology, 1984, 3: 47-128. doi:10.1016/b978-0-12-424120-6.50008-0. |
28 | Vogt T. Phenylpropanoid biosynthesis. Molecular Plant, 2010, 3(1): 2-20. |
29 | Zhao Q, Dixon R A. Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends in Plant Science, 2011, 16(4): 227-233. |
30 | Amthor J S. Efficiency of lignin biosynthesis: a quantitative analysis. Annals of Botany, 2003, 91(6): 673-695. |
31 | Wang L, Li D, Zhang Y, et al. Tolerant and susceptible sesame genotypes reveal waterlogging stress response patterns. PLoS One, 2016, 11(3): e0149912. |
32 | Nguyen T N, Son S, Jordan M C, et al. Lignin biosynthesis in wheat (Triticum aestivum L.): its response to waterlogging and association with hormonal levels. BMC Plant Biology, 2016, 16(1): 1-16. |
33 | Chen W, Yao Q, Patil G B, et al. Identification and comparative analysis of differential gene expression in soybean leaf tissue under drought and flooding stress revealed by RNA-seq. Frontiers in Plant Science, 2016, 1044(7): 1-19. |
34 | Arora K, Panda K K, Mittal S, et al. RNA-seq revealed the important gene pathways controlling adaptive mechanisms under waterlogged stress in maize. Scientific Reports, 2017, 7(1): 10950. |
35 | Wang Y C, Mao J X, Wang S Q, et al. Study on the evaluation of waterlogging tolerance about different Dactylis glomerata L. germplasm resources and the difference on microstructure of root under waterlogging stress. Pakistan Journal of Botany, 2021, 53(5): 1583-1592. |
36 | Voesenek L A C J, Bailey‐Serres J. Flood adaptive traits and processes: an overview. New Phytologist, 2015, 206(1): 57-73. |
37 | Zhang X X, Liu X, Zhou M, et al. PacBio full-length sequencing integrated with RNA-seq reveals the molecular mechanism of waterlogging and its recovery in Paeonia ostii. Frontiers in Plant Science, 2022, 13: 1030584. |
38 | Pais I P, Moreira R, Semedo J N, et al. Wheat crop under waterlogging: potential soil and plant effects. Plants, 2022, 12(1): 149. |
39 | Feng J, Zhao S, Chen X, et al. Biochemical and structural study of Arabidopsis hexokinase 1. Acta Crystallographica (Section D- Biological Crystallography), 2015, 71(Pt 2): 367-375. |
40 | Sarowar S, Lee J Y, Ahn E R, et al. A role of hexokinases in plant resistance to oxidative stress and pathogen infection. Journal of Plant Biology, 2008, 51(5): 341-346. |
41 | Sun M H. Apple glucose sensor MdHXK1 improves salt tolerance by interacting with and phosphorylating Na+/H+ exchanger MdNHX1. Tai’an: Shandong Agricultural University, 2017. |
孙美红. 苹果葡萄糖感受器MdHXK1磷酸化Na+/H+交换蛋白MdNHX1调控耐盐性的分子机理. 泰安: 山东农业大学, 2017. | |
42 | Zhou Y. Identification of hexokinase gene family in Glycine max and functional research of GmHXK2 under salt stress. Zhengzhou: Zhengzhou University, 2021. |
周玥. 大豆己糖激酶基因家族鉴定及盐胁迫下GmHXK2的功能研究. 郑州: 郑州大学, 2021. | |
43 | Cheng W H, Endo A, Zhou L, et al. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. The Plant Cell, 2002, 14(11): 2723-2743. |
44 | Liu F, VanToai T, Moy L P, et al. Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis. Plant Physiology, 2005, 137(3): 1115-1129. |
45 | Zhang J Y, Huang S N, Wang G, et al. Overexpression of Actinidia deliciosa pyruvate decarboxylase 1 gene enhances waterlogging stress in transgenic Arabidopsis thaliana. Plant Physiology and Biochemistry, 2016, 106: 244-252. |
46 | Luan H Y, Wang C J, Chen C Y, et al. Transcriptome analysis of barley root in response to waterlogging stress. Journal of Triticeae Crops, 2023, 43(2): 150-156. |
栾海业, 王春吉, 陈昌宇, 等. 大麦根系响应湿害胁迫的转录组分析. 麦类作物学报, 2023, 43(2): 150-156. | |
47 | Kęska K, Szcześniak M W, Makałowska I, et al. Long-term waterlogging as factor contributing to hypoxia stress tolerance enhancement in cucumber: comparative transcriptome analysis of waterlogging sensitive and tolerant accessions. Genes, 2021, 12(2): 189. |
48 | Zhang P, Lyu D, Jia L, et al. Physiological and de novo transcriptome analysis of the fermentation mechanism of Cerasus sachalinensis roots in response to short-term waterlogging. BMC Genomics, 2017, 18(1): 1-14. |
49 | Zhao N, Li C, Yan Y, et al. Comparative transcriptome analysis of waterlogging-sensitive and waterlogging-tolerant Chrysanthemum morifolium cultivars under waterlogging stress and reoxygenation conditions. International Journal of Molecular Sciences, 2018, 19(5): 1455. |
50 | Zhu H, Ai H, Cao L, et al. Transcriptome analysis providing novel insights for Cd-resistant tall fescue responses to Cd stress. Ecotoxicology and Environmental Safety, 2018, 160: 349-356. |
51 | Han J, Bai Y H, Zhu X D, et al. Molecular mechanism of glutathione response to abiotic stresses in plant. Molecular Plant Breeding, 2020, 18(5): 1672-1680. |
韩键, 白云赫, 朱旭东, 等. 植物谷胱甘肽应答非生物胁迫的分子机制. 分子植物育种, 2020, 18(5): 1672-1680. | |
52 | Song W, Shan C H, Ning M, et al. Advances in research of glutathione-S-transferase in response to cold stress in plants. The Food Industry, 2020, 41(7): 239-244. |
宋文, 单春会, 宁明, 等. 谷胱甘肽-S-转移酶在植物响应冷胁迫方面的研究进展. 食品工业, 2020, 41(7): 239-244. | |
53 | George S, Venkataraman G, Parida A. A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco. Journal of Plant Physiology, 2010, 167(4): 311-318. |
54 | Zeng N, Yang Z, Zhang Z, et al. Comparative transcriptome combined with proteome analyses revealed key factors involved in alfalfa (Medicago sativa) response to waterlogging stress. International Journal of Molecular Sciences, 2019, 20(6): 1359. |
55 | Wang J T, Chen M X, Li L B, et al. Identification and bioinformatics analysis of APX genes family in Brassica species. Journal of Nuclear Agriculture Sciences, 2020, 34(9): 1906-1920. |
王钧涛, 陈木溪, 李立斌, 等. 几种芸薹属作物APX家族基因的鉴定与序列分析. 核农学报, 2020, 34(9): 1906-1920. | |
56 | Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology, 2006, 57(1): 781-803. |
57 | Liu J H, Peng T, Dai W. Critical cis-acting elements and interacting transcription factors: key players associated with abiotic stress responses in plants. Plant Molecular Biology Reporter, 2014, 32(2): 303-317. |
58 | Ren M H, Zhang Y P, Xu T, et al. Identification and expression analysis of R2R3-MYB subfamily in alfalfa under drought stress. Acta Agrestia Sinica, 2023, 31(4): 1-16. |
任明辉, 张雨蓬, 许涛, 等. 紫花苜蓿R2R3-MYB亚家族鉴定与干旱胁迫下的表达分析. 草地学报, 2023, 31(4): 1-16. | |
59 | Yang A, Dai X, Zhang W H. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. Journal of Experimental Botany, 2012, 63(7): 2541-2556. |
60 | Pratyusha D S, Sarada D V L. MYB transcription factors-master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses. Plant Cell Reports, 2022, 41(12): 2245-2260. |
61 | Karpinska B, Karlsson M, Srivastava M, et al. MYB transcription factors are differentially expressed and regulated during secondary vascular tissue development in hybrid aspen. Plant Molecular Biology, 2004, 56(2): 255-270. |
62 | Xu X, Feng G, Huang L, et al. Genome-wide identification, structural analysis and expression profiles of GRAS gene family in orchardgrass. Molecular Biology Reports, 2020, 47(3): 1845-1857. |
63 | Tan Y J, Sun X Y, Wu Y Y, et al. Identification and expression analysis of transcription factors in Liriodendron tulipifera under flooding stress. Molecular Plant Breeding, 2020, 18(24): 8047-8054. |
谭胤静, 孙小艳, 伍祎翌, 等. 北美鹅掌楸淹水胁迫转录因子的鉴定及表达分析. 分子植物育种, 2020, 18(24): 8047-8054. | |
64 | Xu L, Feng G, Yang Z, et al. Genome-wide AP2/ERF gene family analysis reveals the classification, structure, expression profiles and potential function in orchard grass (Dactylis glomerata). Molecular Biology Reports, 2020, 47(7): 5225-5241. |
[1] | 姜瑛, 张辉红, 魏畅, 徐正阳, 赵颖, 刘芳, 李鸽子, 张雪海, 柳海涛. 外源褪黑素对干旱胁迫下玉米幼苗根系发育及生理生化特性的影响[J]. 草业学报, 2023, 32(9): 143-159. |
[2] | 魏艳, 刘有斌, 刘枭宏, 谌芸, 颜哲豪, 都艺芝. 紫色土区拉巴豆和紫花苜蓿根-土复合体抗剪性能研究[J]. 草业学报, 2023, 32(8): 82-90. |
[3] | 杨瑞杰, 何淑勤, 周树峰, 杨晶月, 金钰宪, 郑子成. 杂交粱草生长期土壤抗冲性变化特征及其根系调控效应[J]. 草业学报, 2023, 32(7): 149-159. |
[4] | 廖小琴, 王长庭, 刘丹, 唐国, 毛军. 氮磷配施对高寒草甸植物根系特征的影响[J]. 草业学报, 2023, 32(7): 160-174. |
[5] | 张浩, 胡海英, 李惠霞, 贺海明, 马霜, 马风华, 宋柯辰. 荒漠草原优势植物牛枝子对干旱胁迫的生理响应与转录组分析[J]. 草业学报, 2023, 32(7): 188-205. |
[6] | 陈晓明, 韩东英, 宋桂龙. 砷(As)胁迫对海滨雀稗As吸收特征及根系形态影响[J]. 草业学报, 2023, 32(6): 112-119. |
[7] | 崔婷, 王勇, 马晖玲. 外源IAA作用下草地早熟禾中调控Cd长距离运输的关键基因表达及其代谢通路分析[J]. 草业学报, 2023, 32(6): 146-156. |
[8] | 杨瑞鑫, 李勇, 蔡小芳, 韩铖星, 郭艳丽. 不同物理形态的开食料对羔羊瘤胃转录组的影响[J]. 草业学报, 2023, 32(5): 159-170. |
[9] | 尚盼盼, 曾兵, 屈明好, 李明阳, 杨兴云, 郑玉倩, 沈秉娜, 毕磊, 杨成, 曾兵. 红三叶响应淹水胁迫的相关通路及差异表达基因分析[J]. 草业学报, 2023, 32(4): 112-128. |
[10] | 金媛媛, 陈振江, 王添, 李春杰. 内生真菌和田间管理措施对土壤真菌群落丰度和多样性的影响[J]. 草业学报, 2023, 32(4): 142-152. |
[11] | 许爱云, 张丽华, 王晓佳, 马冲, 李元景, 曹兵. 蒙古冰草非结构性碳水化合物及碳氮磷化学计量特征对氮添加的响应[J]. 草业学报, 2023, 32(2): 35-43. |
[12] | 沈秉娜, 尚盼盼, 曾兵(学生), 李林祥, 杨兴云, 毕磊, 郑玉倩, 屈明好, 李文文, 周晓丽, 饶骏, 曾兵(老师). 两个鸭茅品种根系响应淹水胁迫的比较代谢组学分析[J]. 草业学报, 2023, 32(10): 40-57. |
[13] | 王晓龙, 杨曌, 来永才, 李红, 钟鹏, 徐艳霞, 柴华, 李莎莎, 吴玥, 宋敏超, 周景明. 不同秋眠等级苜蓿根系性状对越冬的影响[J]. 草业学报, 2023, 32(1): 144-153. |
[14] | 姜瑛, 魏畅, 焦秋娟, 申凤敏, 李鸽子, 张雪海, 杨芳, 柳海涛. 外源硅对镉胁迫下玉米生理参数及根系构型分级的影响[J]. 草业学报, 2022, 31(9): 139-154. |
[15] | 孙禄娟, 何建军, 汪军成, 姚立蓉, 司二静, 杨轲, 李葆春, 马小乐, 尚勋武, 孟亚雄, 王化俊. 基于全长转录组测序的盐生草SSR标记开发及其遗传多样性分析[J]. 草业学报, 2022, 31(8): 199-210. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||