草业学报 ›› 2024, Vol. 33 ›› Issue (7): 94-104.DOI: 10.11686/cyxb2023417
宋淑珍1(), 朱才业2, 刘立山1, 宫旭胤1, 雒瑞瑞1
收稿日期:
2023-11-01
修回日期:
2023-12-14
出版日期:
2024-07-20
发布日期:
2024-04-08
通讯作者:
宋淑珍
作者简介:
宋淑珍(1980-),女,甘肃通渭人,博士。E-mail: songshuzhen@gsagr.ac.cn基金资助:
Shu-zhen SONG1(), Cai-ye ZHU2, Li-shan LIU1, Xu-ying GONG1, Rui-rui LUO1
Received:
2023-11-01
Revised:
2023-12-14
Online:
2024-07-20
Published:
2024-04-08
Contact:
Shu-zhen SONG
摘要:
旨在观察断尾对兰州大尾羊尾部脂肪细胞数量、结构以及皮下脂肪、大网膜脂肪、尾部脂肪、肾周脂肪和背最长肌脂肪代谢相关基因表达的影响,明确断尾引起脂肪沉积重新分布后,脂肪细胞和各脂肪沉积部位脂肪代谢相关基因表达的变化,为阐明断尾对脂尾型绵羊脂肪代谢调控的分子机理提供参考。选择5日龄[(3.79±0.12) kg]单羔兰州大尾羊羔羊18只,随机分为对照组(C组)和试验组(T组),每组9只羔羊,试验组羔羊采用橡皮圈结扎法断尾。试验羊2月龄断奶后饲喂配合日粮,两组羊日粮相同。试验期240 d。试验结束后,采集样品进行分析。1)相对于背最长肌肌内脂肪和内脏脂肪,断尾对尾部脂肪、皮下脂肪基因表达影响较大,断尾组尾部脂肪SCD、LEP、PLIN1的mRNA表达量显著升高,LPL、FAS、PEPCK的表达量显著降低(P<0.05);皮下脂肪中SCD显著升高,LEP、ADPN、FABP4、PLIN1显著降低(P<0.05);肾周脂肪中LPL、ADPN、PEPCK、UCP1和大网膜脂肪中的PEPCK显著降低(P<0.05);背最长肌中SCD显著升高,PEPCK、PLIN1显著降低(P<0.05)。2)断尾组背最长肌的肌内脂肪含量(6.96%和6.05%)、脂滴面积比(4.28%和3.04%)显著增加(P<0.05),脂滴面积比增加了约1%,而尾部脂肪中脂滴面积比例降低了约10%(87.43%和97.58%),尾部脂肪细胞直径显著降低(P<0.05);3) 兰州大尾羊尾部脂肪细胞被融合的大脂滴填充,细胞核、细胞质等被大脂滴挤到细胞边缘,细胞边缘的细胞质薄层中含有线粒体、内质网、高尔基体、自噬小体等细胞器和小脂滴,断尾组尾部脂肪细胞质中单个脂滴体积较小,周围糖原颗粒较多。综上所述,长脂尾型绵羊兰州大尾羊早期断尾后,背最长肌的脂滴面积比增加,尾部脂肪中脂滴面积比降低,尾部脂肪细胞直径减小,各部位脂肪代谢相关基因表达也发生变化,断尾后脂肪沉积分布改变可能是在SCD、PLIN1、LPL、FAS、PEPCK等一系列脂肪代谢相关基因的调控下实现的。
宋淑珍, 朱才业, 刘立山, 宫旭胤, 雒瑞瑞. 断尾对兰州大尾羊脂肪细胞结构和脂肪代谢相关基因表达的影响[J]. 草业学报, 2024, 33(7): 94-104.
Shu-zhen SONG, Cai-ye ZHU, Li-shan LIU, Xu-ying GONG, Rui-rui LUO. The effect of tail-docking on adipocyte structure and lipid metabolism-related gene expression in Lanzhou fat-tailed sheep[J]. Acta Prataculturae Sinica, 2024, 33(7): 94-104.
项目Items | 含量Content |
---|---|
原料Ingredients | |
苜蓿干草Alfalfa hay (%) | 6.00 |
玉米秆Corn straw (%) | 20.00 |
小麦秆Wheat straw (%) | 4.00 |
玉米Corn (%) | 36.00 |
大豆粕Soybean meal (%) | 14.00 |
麸皮Wheat bran (%) | 8.00 |
菜籽粕Rapeseed meal (%) | 4.00 |
玉米胚芽粕Corn germ meal (%) | 6.00 |
磷酸氢钙CaHPO4 (%) | 0.20 |
碳酸钙CaCO3 (%) | 0.30 |
氯化钠NaCl (%) | 0.50 |
预混料Premixture1) (%) | 1.00 |
合计Total (%) | 100.00 |
营养水平Nutrient levels2) | |
消化能Digestible energy (DE, MJ·kg-1) | 12.50 |
代谢能Metabolic energy (ME, MJ·kg-1) | 10.32 |
粗蛋白质Crude protein (CP,%) | 15.80 |
粗脂肪Ether extract (EE,%) | 3.02 |
钙Ca (%) | 0.56 |
总磷Total phosphorus (TP,%) | 0.45 |
中性洗涤纤维Neutral detergent fiber (NDF,%) | 35.20 |
酸性洗涤纤维Acid detergent fiber (ADF,%) | 22.53 |
表1 日粮组成及营养水平(干物质基础)
Table 1 Composition and nutrient levels of experimental diets (DM basis)
项目Items | 含量Content |
---|---|
原料Ingredients | |
苜蓿干草Alfalfa hay (%) | 6.00 |
玉米秆Corn straw (%) | 20.00 |
小麦秆Wheat straw (%) | 4.00 |
玉米Corn (%) | 36.00 |
大豆粕Soybean meal (%) | 14.00 |
麸皮Wheat bran (%) | 8.00 |
菜籽粕Rapeseed meal (%) | 4.00 |
玉米胚芽粕Corn germ meal (%) | 6.00 |
磷酸氢钙CaHPO4 (%) | 0.20 |
碳酸钙CaCO3 (%) | 0.30 |
氯化钠NaCl (%) | 0.50 |
预混料Premixture1) (%) | 1.00 |
合计Total (%) | 100.00 |
营养水平Nutrient levels2) | |
消化能Digestible energy (DE, MJ·kg-1) | 12.50 |
代谢能Metabolic energy (ME, MJ·kg-1) | 10.32 |
粗蛋白质Crude protein (CP,%) | 15.80 |
粗脂肪Ether extract (EE,%) | 3.02 |
钙Ca (%) | 0.56 |
总磷Total phosphorus (TP,%) | 0.45 |
中性洗涤纤维Neutral detergent fiber (NDF,%) | 35.20 |
酸性洗涤纤维Acid detergent fiber (ADF,%) | 22.53 |
名称 Name | 序列 Accession number | 引物序列 Primer sequence (5′-3′) | 片段大小 Product length (bp) | 退火温度 Annealing temperature (℃) |
---|---|---|---|---|
SCD | NM_001009254 | F: GAAGAAGACATCCGCCCTGA R: GCAGCCGAGCTTTGTAGGTT | 271 | 56 |
PPARγ | NM_001100921 | F: CGAACTTGGGCTCCATAAAG R: GCTGGCCTCCTTGATGAATA | 119 | 63 |
LPL | NM_001009394 | F: TACCCTAACGGAGGCACTTTCC R: TGCAATCACACGGAGAGCTTC | 63 | 54 |
LEP | XM_027968780 | F: TGTTGCTTTTGGAGTGAGGA R: TCCAGTGTGCACCTGTTTGT | 118 | 60 |
ADPN | NM_001308565 | F: CTGTTGCTTCTGGTCAAAATGTC R: TTCTTTCTCTGCCCTACTTGGTC | 191 | 60 |
CEBP-β | XM_004014883.5 | F: CCGGTTTCGAAGTTGATGC R: TGTTCTTAATGCTCGAAACGG | 271 | 59 |
FABP4 | NM_001114667 | F: TCAGTGTAAATGGGGATGTGGT R: GATTTCCCATCCCAGTTTTGT | 178 | 59 |
FAS | AF_479289 | F: TGGTATCAACTCTGAGGGGCT R: TCTGGCATATCTCCGTCGC | 156 | 60 |
PEPCK | XM_004014441 | F: TGTGCCCACCCCAACTCA R: GCCAAAGTTGTAGCCGAAGA | 279 | 60 |
PLIN1 | XM_042234957 | F: GCTCCAATGGCAGTTAACAAGG R: TGGTGCTGGCGTAGGTCTTC | 139 | 61 |
UCP1 | NM_001280694.1 | F: CCACTGACCAGAAGTCGGAGA R: CCACTGACCAGAAGTCGGAGA | 233 | 60 |
RXRα | XM_027966139 | F: TGTCCAGCGGGAAGGTGAT R: CTCGGGGTACTTGTGTTTGC | 118 | 60 |
Beta-actin | NM_001009784 | F: AGCCTTCCTTCCTGGGCATGGA R: GGACAGCACCGTGTTGGCGTAGA | 113 | 56~63 |
表2 qPCR引物信息
Table 2 The primer sequences for qPCR
名称 Name | 序列 Accession number | 引物序列 Primer sequence (5′-3′) | 片段大小 Product length (bp) | 退火温度 Annealing temperature (℃) |
---|---|---|---|---|
SCD | NM_001009254 | F: GAAGAAGACATCCGCCCTGA R: GCAGCCGAGCTTTGTAGGTT | 271 | 56 |
PPARγ | NM_001100921 | F: CGAACTTGGGCTCCATAAAG R: GCTGGCCTCCTTGATGAATA | 119 | 63 |
LPL | NM_001009394 | F: TACCCTAACGGAGGCACTTTCC R: TGCAATCACACGGAGAGCTTC | 63 | 54 |
LEP | XM_027968780 | F: TGTTGCTTTTGGAGTGAGGA R: TCCAGTGTGCACCTGTTTGT | 118 | 60 |
ADPN | NM_001308565 | F: CTGTTGCTTCTGGTCAAAATGTC R: TTCTTTCTCTGCCCTACTTGGTC | 191 | 60 |
CEBP-β | XM_004014883.5 | F: CCGGTTTCGAAGTTGATGC R: TGTTCTTAATGCTCGAAACGG | 271 | 59 |
FABP4 | NM_001114667 | F: TCAGTGTAAATGGGGATGTGGT R: GATTTCCCATCCCAGTTTTGT | 178 | 59 |
FAS | AF_479289 | F: TGGTATCAACTCTGAGGGGCT R: TCTGGCATATCTCCGTCGC | 156 | 60 |
PEPCK | XM_004014441 | F: TGTGCCCACCCCAACTCA R: GCCAAAGTTGTAGCCGAAGA | 279 | 60 |
PLIN1 | XM_042234957 | F: GCTCCAATGGCAGTTAACAAGG R: TGGTGCTGGCGTAGGTCTTC | 139 | 61 |
UCP1 | NM_001280694.1 | F: CCACTGACCAGAAGTCGGAGA R: CCACTGACCAGAAGTCGGAGA | 233 | 60 |
RXRα | XM_027966139 | F: TGTCCAGCGGGAAGGTGAT R: CTCGGGGTACTTGTGTTTGC | 118 | 60 |
Beta-actin | NM_001009784 | F: AGCCTTCCTTCCTGGGCATGGA R: GGACAGCACCGTGTTGGCGTAGA | 113 | 56~63 |
成分Composition | 体积 Volume (μL) |
---|---|
2×SYBR Green Fast Qpcr Mix | 10 |
正向引物 Forward primer (10 μmol·L-1) | 1 |
反向引物 Reverse primer (10 μmol·L-1) | 1 |
cDNA模板 cDNA template | 2 |
无核酸酶去离子水 RNase-free ddH2O | 6 |
表3 qPCR反应体系
Table 3 The reaction system of qPCR
成分Composition | 体积 Volume (μL) |
---|---|
2×SYBR Green Fast Qpcr Mix | 10 |
正向引物 Forward primer (10 μmol·L-1) | 1 |
反向引物 Reverse primer (10 μmol·L-1) | 1 |
cDNA模板 cDNA template | 2 |
无核酸酶去离子水 RNase-free ddH2O | 6 |
指标Index | 项目Item | C 组C group | T 组T group |
---|---|---|---|
生长性能Growth performance | 日增重Average daily gain (g·d-1) | 223.12±2.37a | 216.83±4.55a |
料重比Feeding intake/gain weight (%) | 6.57±0.05a | 6.44±0.08a | |
脂肪沉积Fat deposition | 尾部脂肪指数Tail fat index (%) | 7.24±0.63a | 1.86±0.31b |
皮下脂肪指数Subcutaneous fat index (%) | 2.49±0.12b | 2.89±0.05a | |
内脏脂肪指数Visceral fat index (%) | 2.85±0.20b | 3.55±0.17a | |
总脂肪指数Total fat index (%) | 12.58±0.66a | 8.30±0.41b | |
背最长肌肌内脂肪Intramuscular fat of longissimus dorsi (%) | 6.96±0.10a | 6.05±0.12b |
表4 断尾对兰州大尾羊日增重及脂肪沉积的影响
Table 4 The effect of tail docking on average daily gain and fat deposition in Lanzhou fat-tailed sheep
指标Index | 项目Item | C 组C group | T 组T group |
---|---|---|---|
生长性能Growth performance | 日增重Average daily gain (g·d-1) | 223.12±2.37a | 216.83±4.55a |
料重比Feeding intake/gain weight (%) | 6.57±0.05a | 6.44±0.08a | |
脂肪沉积Fat deposition | 尾部脂肪指数Tail fat index (%) | 7.24±0.63a | 1.86±0.31b |
皮下脂肪指数Subcutaneous fat index (%) | 2.49±0.12b | 2.89±0.05a | |
内脏脂肪指数Visceral fat index (%) | 2.85±0.20b | 3.55±0.17a | |
总脂肪指数Total fat index (%) | 12.58±0.66a | 8.30±0.41b | |
背最长肌肌内脂肪Intramuscular fat of longissimus dorsi (%) | 6.96±0.10a | 6.05±0.12b |
图1 断尾对兰州大尾羊不同组织基因表达的影响SF: 皮下脂肪Subcutaneous fat; OF: 大网膜脂肪Omental fat; TF: 尾部脂肪Tail fat; KF: 肾周脂肪Kidney fat; LD: 背最长肌Longissimus dorsi; 同一部位不同字母表示差异显著(P<0.05)。The different letters mean significant difference in the same part (P<0.05).
Fig.1 The effect of tail docking on gene expression from different tissues in Lanzhou fat-tailed sheep
项目Item | C 组C group | T 组T group |
---|---|---|
尾部脂肪细胞密度Density of tail fat adipocytes (pieces·mm-2) | 40.25±2.95b | 58.00±2.45a |
尾部脂肪细胞直径Diameter of tail adipocytes (μm) | 100.60±5.09a | 85.12±1.34b |
尾部脂肪脂滴面积比Ratio lipid droplets of tail fat (%) | 97.58±0.61a | 87.43±2.28b |
背最长肌脂滴面积比Ratio lipid droplets of longissimus dorsi (%) | 3.04±0.12b | 4.28±0.05a |
表5 断尾对兰州大尾羊脂肪及其结构的影响
Table 5 The effect of tail docking on fat content and structure of adipocytes in Lanzhou fat-tailed sheep
项目Item | C 组C group | T 组T group |
---|---|---|
尾部脂肪细胞密度Density of tail fat adipocytes (pieces·mm-2) | 40.25±2.95b | 58.00±2.45a |
尾部脂肪细胞直径Diameter of tail adipocytes (μm) | 100.60±5.09a | 85.12±1.34b |
尾部脂肪脂滴面积比Ratio lipid droplets of tail fat (%) | 97.58±0.61a | 87.43±2.28b |
背最长肌脂滴面积比Ratio lipid droplets of longissimus dorsi (%) | 3.04±0.12b | 4.28±0.05a |
图 3 兰州大尾羊尾部脂肪超微结构(×1700和×5000)1: 融合大脂滴Big droplets of fusion; 2: 细胞质Cytoplasm; 3: 细胞核Nucleus; 4: 基膜Cell basement membrane; 5: 基膜微丝Basement membrane microfilaments; 6: 线粒体Mitochondrion; 7: 内质网Endoplasmic reticulum; 8: 自噬小体Autophagosome; 9: 高尔基体Golgi apparatus; 10: 脂滴Lipid droplet; 11: 糖原Glycogen. A~F为细胞基本结构;G和H分别为C组和T组脂滴。A-F is the basic structure of the cell; G and H were lipid droplets of C and T, respectively.
Fig.3 The ultrastructure of tail fat in Lanzhou fat-tailed sheep (×1700 and ×5000)
1 | Song S Z. The effect of energy restriction on fat deposition and mechanism in sheep. Lanzhou: Gansu Agricultural University, 2017. |
宋淑珍. 能量限制对绵羊脂肪沉积的影响及其机理研究. 兰州: 甘肃农业大学, 2017. | |
2 | Song S Z, Liu J B, Zhu C Y, et al. The effect of tail-docking on growth performance, fat deposition distribution and slaughter performance in Lanzhou fat-tailed sheep. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 642-655. |
宋淑珍, 刘俊斌, 朱才业, 等. 断尾对兰州大尾羊生长性能、脂肪沉积分布和屠宰性能的影响. 畜牧兽医学报, 2023, 54(2): 642-655. | |
3 | Bakhtiarizadeh M R, Alamouti A A. RNA-Seq based genetic variant discovery provides new insights into controlling fat deposition in the tail of sheep. Scientific Reports, 2020, 10(1): 13525. |
4 | Zeng J, Zhou S W, Yang Y X, et al. Effect of dietary nutrition on tail fat deposition and evaluation of tail-related genes in fat-tailed sheep. Electronic Journal of Biotechnology, 2020, 46: 30-37. |
5 | Yuan Z, Liu E, Liu Z, et al. Selection signature analysis reveals genes associated with tail type in Chinese indigenous sheep. Animal Genetics, 2016, 48(1): 55-66. |
6 | Stacheck A J, Woszuk N, Kolodziejski P A, et al. The importance of the nuclear positioning of the PPARG gene for its expression during porcine in vitro adipogenesis. Chromosome Research, 2019, 27(3): 271-284. |
7 | Li K, Liu W Z, Zhang R X, et al. AMPK regulates sheep muscle derived preadipocytes differentiation. Acta Veterinaria et Zootechnica Sinica, 2018, 49(8): 1594-1604. |
李戡, 刘文忠, 张瑞鑫, 等. AMPK调控绵羊肌内前体脂肪细胞分化的研究. 畜牧兽医学报, 2018, 49(8): 1594-1604. | |
8 | Jia Y Y, Wu C Y, Kim J Y, et al. Astaxanthin reduces hepatic lipid accumulations in high-fat-fed C57BL/6J mice via activation of peroxisome proliferator-activated receptor (PPAR) alpha and inhibition of PPAR gamma and Akt. The Journal of Nutritional Biochemistry, 2016, 28: 9-18. |
9 | Resnyk C W, Carré W, Wang X, et al. Transcriptional analysis of abdominal fat in chickens divergently selected on body weight at two ages reveals novel mechanisms controlling adiposity: Validating visceral adipose tissue as a dynamic endocrine and metabolic organ. BMC Genomics, 2017, 18(1): 626-657. |
10 | Batu M K, Nuer G L, Xie L S. The numbering and tail docking method of lambs. Hubei Journal of Animal and Veterinary Sciences, 2014, 35(12): 54-55. |
巴图孟克, 奴尔古丽, 解立松. 羔羊的编号和断尾方法. 湖北畜牧兽医, 2014, 35(12): 54-55. | |
11 | National Research Council (NRC). Nutrient requirements of small ruminants: Sheep, goats, cervids and new world camelids. Washington DC: National Academy Press, 2007. |
12 | Gao L S. Effect of energy levels on fat metabolism in Altay lamb. Lanzhou: Gansu Agricultural University, 2020. |
高良霜. 能量水平对阿勒泰羔羊脂肪代谢的影响. 兰州: 甘肃农业大学, 2020. | |
13 | Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols, 2008, 3(6): 1101-1108. |
14 | Cui F, Liu C, Yang J M, et al. Adipose tissue sample preparation for scanning electron microscopy. Journal of Southern Medical University, 2012, 32(3): 435-436. |
崔芳, 刘超, 杨建民, 等. 脂肪组织扫描电镜样品制备方法. 南方医科大学学报, 2012, 32(3): 435-436. | |
15 | Zhai S H, Xiang W W, Hu M H, et al. Comparison of the microstructure and ultrastructure of fat cells in the tail of Hetian sheep and Smalltailed Han sheep. Animal Husbandry & Veterinary Medicine, 2021, 53(8): 45-49. |
翟少华, 向微微, 胡美荷, 等. 和田羊和小尾寒羊尾脂的显微和超微结构比较. 畜牧与兽医, 2021, 53(8): 45-49. | |
16 | Zhang C H. Lanzhou fat tailed sheep germplasm conservation and development. Chinese Journal of Animal Science, 2010, 46(18): 7-9. |
张成虎. 兰州大尾羊种质资源的保护和发展. 中国畜牧杂志, 2010, 46(18): 7-9. | |
17 | Kang D J, Zhou G X, Zhou S W, et al.Comparative transcriptome analysis reveals potentially novel roles of homeobox genes in adipose deposition in fat-tailed sheep. Scientific Reports, 2017, 7(1): 14491-14514. |
18 | Semenkovich C F. Regulation of fatty acid synthase (FAS). Progress in Lipid Research, 1997, 36(1): 45243-45253. |
19 | Sampath H, Miyazaki M, Dobrzyn A, et al. Stearoyl-CoA desaturase-1 mediates the pro-lipogenic effects of dietary saturated fat. Journal of Biological Chemistry, 2007, 282(4): 2483-2493. |
20 | Ntambi J M, Miyazaki M. Regulation of stearoyl-CoA desaturases and role in metabolism. Progress in Lipid Research, 2004, 43(2): 91-104. |
21 | Goldberg I J, Merkel M. Lipoprotein lipase: Physiology, biochemistry, and molecular biology. Frontiers in Bioscience, 2001(3): 388-405. |
22 | Sun S S, Meng Q W, Luo Z, et al. Effects of dietary resveratrol supplementation during gestation and lactation of sows on milk composition of sows and fat metabolism of sucking piglets. Journal of Animal Physiology and Animal Nutrition, 2019, 103(3): 813-821. |
23 | Yu J H, Ge X P, Tang Y K, et al. Effects of carbohydrate, lipid in diets on the PEPCK gene expression of Eryghroculter ilishaeformis. Journal of Fisheries of China, 2007, 31(3): 369-373. |
俞菊华, 戈贤平, 唐永凯, 等.碳水化合物、脂肪对翘嘴红鲌PEPCK基因表达的影响. 水产学报, 2007, 31(3): 369-373. | |
24 | Wan Z, Matravadia S, Holloway G P, et al. FAT/CD36 regulates PEPCK expression in adipose tissue. American Journal of Physiology-Cell Physiology, 2013, 304(5): C478-C484. |
25 | Li S J, Raza S H A, Zhao C P, et al. Overexpression of PLIN1 promotes lipid metabolism in bovine adipocytes. Animals, 2020, 10(1994): 1-14. |
26 | Li S J. Transcriptional regulation mechanism of bovine PLIN1 gene and its effect on proliferation, differentiation and lipid metabolism of preadipocytes. Yangling: Northwest A&F University, 2020. |
李世军. 牛PLIN1基因转录调控机制及其对前体脂肪细胞增殖、分化和脂类代谢的作用研究. 杨凌: 西北农林科技大学, 2020. | |
27 | Li Y, Schwalie P C, Bast-Habersbrunner A, et al. Systems-genetics-based inference of a core regulatory network underlying white fat browning. Cell Reports, 2019, 29(12): 4099-4113. |
28 | Gao C Y, Sun S S, Li J B, et al. Lycopene modulates lipid metabolism in rats and their offspring under a high-fat diet. Food & Function, 2021, 12(19): 8960-8975. |
29 | Li D, Zhang F, Zhang X, et al. Distinct functions of PPARγ isoforms in regulating adipocyte plasticity. Biochemical and Biophysical Research Communications, 2016, 481(1/2): 132-138. |
30 | Keinan O, Valentine J M, Xiao H P, et al. Glycogen metabolism links glucose homeostasis to thermogenesis in adipocytes. Nature, 2021, 599(7884): 296-301. |
31 | Havel P J. Role of adipose tissue in body-weight regulation: Mechanisms regulating leptin production and energy balance. Proceedings of the Nutrition Society, 2000, 59(3): 359-371. |
32 | Oswal A, Yeo G. Leptin and the control of body weight: A review of its diverse central targets, signaling mechanisms, and role in pathogenesis of obesity. Obesity, 2010, 18(2): 221-229. |
33 | Kenneth K Y, Karen S L, Baile W, et al. Signaling mechanisms underlying the insulin-sensitizing effects of adiponectin. Baillieres Best Practice & Research Clinical Endocrinology & Metabolism, 2014, 28(1): 3-13. |
34 | Delrue M A, Michaud J L. Fat chance: Genetic syndromes with obesity. Clinical Genetics, 2010, 66(2): 83-93. |
35 | Joubert D M. A study of pre-natal growth and development in the sheep. Journal of Agricultural Science, 1956, 47(4): 382-428. |
36 | Liu Z, Zhao S G, Li H W, et al. Impact on growth performance and fat deposition distribution of ‘Lanzhou fat-tailed sheep’ and ‘Mongolian sheep’ with fat-tail removal. Chinese Agricultural Science Bulletin, 2015, 31(5): 7-11. |
刘政, 赵生国, 李华伟, 等. 脂尾去除对‘兰州大尾羊’和‘蒙古羊’生长性能及脂肪沉积分布的影响. 中国农学通报, 2015, 31(5): 7-11. | |
37 | Wang Y Q, Zhong R Z, Fang Y, et al. Influence of tail docking on carcass characteristics, meat quality and fatty acid composition of fat-tail lambs. Small Ruminant Research, 2018, 162(5): 17-21. |
38 | Tilki M, Saatci M, Aksoy A R, et al. Effect of tail docking on growth performance and carcass traits in Turkish Tuj lambs. Journal of Animal and Veterinary Advances, 2010, 9(15): 2094-2097. |
39 | Masoumi R, Afsharirad A R, Mirzaei-alamouti H, et al. Does fat-tail docking and Zilpaterol hydrochloride (ZH) supplementation affect feedlot performance and carcass characteristics of finishing lambs? Small Ruminant Research, 2021, 205: 106548. |
40 | Meng J J, Sun Z Y, Wang Z B, et al. Ultrastructure comparison of adipocyte in cattle and sheep. Chinese Journal of Veterinary Science, 2018, 38(6): 1192-1196, 1200. |
蒙建菊, 孙宗扬, 王振宝, 等. 牛和羊脂肪细胞超微结构的比较. 中国兽医学报, 2018, 38(6): 1192-1196, 1200. |
[1] | 孔海明, 宋家兴, 杨静, 李倩, 杨培志, 曹玉曼. 紫花苜蓿CAMTA基因家族鉴定及其在非生物胁迫下的表达模式分析[J]. 草业学报, 2024, 33(5): 143-154. |
[2] | 孟超楠, 赵玉洁, 陈佳欣, 张旖璐, 王彦佳, 冯丽荣, 孙玉刚, 郭长虹. 2株青贮玉米根际固氮菌的筛选鉴定及促生作用研究[J]. 草业学报, 2024, 33(3): 174-185. |
[3] | 陈嘉慧, 刘文献. 重要牧草组学数据图形可视化展示工具的构建及应用[J]. 草业学报, 2024, 33(2): 57-67. |
[4] | 管瑾, 郭一荻, 刘凌云, 尹淑霞, 滕珂. 结缕草叶肉细胞原生质体瞬时基因表达系统的构建[J]. 草业学报, 2023, 32(7): 61-71. |
[5] | 刘牧野, 郭丽珠, 岳跃森, 武菊英, 范希峰, 肖国增, 滕珂. 干旱胁迫下不同性别野牛草生理及抗氧化酶基因表达差异[J]. 草业学报, 2023, 32(10): 93-103. |
[6] | 许浩宇, 赵颖, 阮倩, 朱晓林, 王宝强, 魏小红. 不同混合盐碱下藜麦幼苗的抗性研究[J]. 草业学报, 2023, 32(1): 122-130. |
[7] | 曾令霜, 李培英, 孙宗玖, 孙晓梵. 两类新疆狗牙根抗旱基因型抗氧化酶保护系统及其基因表达差异分析[J]. 草业学报, 2022, 31(7): 122-132. |
[8] | 赵利清, 郝志刚, 崔笑岩, 彭向永. 赤霉素及其抑制剂调控草地早熟禾生长及赤霉素相关基因表达的研究[J]. 草业学报, 2022, 31(3): 85-91. |
[9] | 张国香, 郭卫冷, 毕铭钰, 张力爽, 王丹, 郭长虹. 紫花苜蓿CAX基因家族鉴定及其对非生物胁迫的响应分析[J]. 草业学报, 2022, 31(12): 106-117. |
[10] | 赵宁, 马晖玲, 张然, 张金青, 史毅. 丁二醇对热胁迫下匍匐翦股颖内源激素及其相关基因表达水平的调控[J]. 草业学报, 2022, 31(12): 118-132. |
[11] | 魏娜, 李艳鹏, 马艺桐, 刘文献. 全基因组水平紫花苜蓿TCP基因家族的鉴定及其在干旱胁迫下表达模式分析[J]. 草业学报, 2022, 31(1): 118-130. |
[12] | 马倩, 闫启, 张正社, 吴凡, 张吉宇. 紫花苜蓿CCoAOMT基因家族的鉴定、进化及表达分析[J]. 草业学报, 2021, 30(11): 144-156. |
[13] | 姜红岩, 滕珂, 檀鹏辉, 尹淑霞. 日本结缕草ZjZFN1基因对拟南芥的转化及其耐旱性分析[J]. 草业学报, 2019, 28(4): 129-138. |
[14] | 李闻娟, 齐燕妮, 王利民, 党照, 赵利, 赵玮, 谢亚萍, 王斌, 张建平, 李淑洁. 不同胡麻品种TAG合成途径关键基因表达与含油量、脂肪酸组分的相关性分析[J]. 草业学报, 2019, 28(1): 138-149. |
[15] | 刘书, 刘盼盼, 杨伟光, 齐冬梅, 李晓霞, 刘公社. 羊草种子萌发相关基因的筛选及表达分析[J]. 草业学报, 2018, 27(11): 58-66. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||