草业学报 ›› 2025, Vol. 34 ›› Issue (4): 64-81.DOI: 10.11686/cyxb2024215
蒋鹏1(
), 李磊2, 解昊郡3, 徐得甲3, 王锐3, 虎强4, 孙权3(
)
收稿日期:2024-02-06
修回日期:2024-07-25
出版日期:2025-04-20
发布日期:2025-02-19
通讯作者:
孙权
作者简介:Corresponding author. E-mail: sqnxu@sina.com基金资助:
Peng JIANG1(
), Lei LI2, Hao-jun XIE3, De-jia XU3, Rui WANG3, Qiang HU4, Quan SUN3(
)
Received:2024-02-06
Revised:2024-07-25
Online:2025-04-20
Published:2025-02-19
Contact:
Quan SUN
摘要:
针对宁夏草畜产业“种养结合”不紧密,种植端土壤质量下降、作物生产力不高,而养殖端大量粪污直接施用存在环境和健康风险等问题,采用多级过滤工艺获得净化沼液,设置不同滴灌量(0、225、450、675、900、1125、1350 m3·hm-2),以液肥形式滴灌于指示作物青贮玉米,系统研究其对土壤质量、青贮玉米生产力的影响及开展安全消纳容量分析。结果表明,土壤pH、全盐、速效氮、有效磷、速效钾及重金属铜(Cu)、锌(Zn)、铅(Pb)、镉(Cd)、铬(Cr)含量随着净化沼液滴灌量增加呈显著增加趋势,而土壤有机质含量随着净化沼液滴灌量增加表现为先增加后降低趋势,其中,还田量为900 m3·hm-2时土壤有机质含量最高,同时,该处理显著提高了土壤水稳性大团聚体(>0.25 mm)含量、平均质量直径(MWD)、几何平均直径(GMD)、微生物生物量碳(MBC)含量及酶活性,且提高了土壤质量指数(SQI)。青贮玉米产量、干物质及淀粉含量随着净化沼液施用量增加均呈先增加后降低趋势,线性回归方程模拟得出净化沼液还田量为805.56~925.00 m3·hm-2可更好地促进青贮玉米产量与品质提升。此外,青贮玉米中Cu、Zn、Pb、Cd、Cr含量随着净化沼液施用量增加呈增加趋势,但远远低于饲料卫生限量值。净化沼液滴灌量900 m3·hm-2下SQI及青贮玉米生产力最高,以此滴灌量为计算依据,按照重金属Cd元素“木桶效应”则可计算出土壤环境消纳容量为连续滴灌 25 年可维持土壤重金属含量不超标,而按照全国第二次土壤普查宁夏土壤盐渍化划分标准可计算出连续滴灌19年可能不会发生土壤次生盐渍化。
蒋鹏, 李磊, 解昊郡, 徐得甲, 王锐, 虎强, 孙权. 净化沼液滴灌对砂壤土质量、青贮玉米生产力的影响及安全消纳容量分析[J]. 草业学报, 2025, 34(4): 64-81.
Peng JIANG, Lei LI, Hao-jun XIE, De-jia XU, Rui WANG, Qiang HU, Quan SUN. Effect of purified biogas slurry drip irrigation on sandy loam soil quality, silage maize productivity and analysis of safe application rate[J]. Acta Prataculturae Sinica, 2025, 34(4): 64-81.
深度 Depth (cm) | 机械组成Mechanical composition (%) | 土壤质地 Soil texture | 容重BD (g·cm-3) | 田间持水量 FC (%) | ||
|---|---|---|---|---|---|---|
| 砂粒Sand (0.02~2 mm) | 粉粒Silt (0.002~0.02 mm) | 黏粒Clay (<0.002 mm) | ||||
| 0~20 | 55.54±3.72a | 32.23±0.49b | 12.23±0.47a | 砂质壤土Sandy loam | 1.42±0.04a | 16.54±0.50a |
| 20~40 | 37.14±1.08b | 48.65±3.83a | 14.21±0.10a | 粉砂质壤土Silty loam | 1.39±0.03a | 17.89±0.63a |
| 40~60 | 37.12±1.64b | 49.65±1.50a | 13.23±0.35a | 粉砂质壤土Silty loam | 1.41±0.07a | 18.03±0.27a |
表1 土壤基本物理性质
Table 1 Basic physical properties of soil
深度 Depth (cm) | 机械组成Mechanical composition (%) | 土壤质地 Soil texture | 容重BD (g·cm-3) | 田间持水量 FC (%) | ||
|---|---|---|---|---|---|---|
| 砂粒Sand (0.02~2 mm) | 粉粒Silt (0.002~0.02 mm) | 黏粒Clay (<0.002 mm) | ||||
| 0~20 | 55.54±3.72a | 32.23±0.49b | 12.23±0.47a | 砂质壤土Sandy loam | 1.42±0.04a | 16.54±0.50a |
| 20~40 | 37.14±1.08b | 48.65±3.83a | 14.21±0.10a | 粉砂质壤土Silty loam | 1.39±0.03a | 17.89±0.63a |
| 40~60 | 37.12±1.64b | 49.65±1.50a | 13.23±0.35a | 粉砂质壤土Silty loam | 1.41±0.07a | 18.03±0.27a |
深度 Depth (cm) | pH | 全盐 Total salt (g·kg-1) | 有机质 Organic matter (g·kg-1) | 速效氮Available nitrogen (mg·kg-1) | 有效磷Available phosphorus (mg·kg-1) | 速效钾Available potassium (mg·kg-1) |
|---|---|---|---|---|---|---|
| 0~20 | 8.29±0.05a | 0.23±0.01a | 15.26±0.15a | 47.78±1.42a | 22.43±0.69a | 188.62±6.65a |
| 20~40 | 8.48±0.08a | 0.25±0.02a | 10.62±0.36b | 35.15±0.90b | 7.97±0.38b | 124.39±7.61b |
| 40~60 | 8.53±0.09a | 0.27±0.01a | 8.27±0.18c | 30.76±0.52c | 6.54±0.15b | 113.54±6.18b |
表2 土壤基本化学性质
Table 2 Basic chemical properties of soil
深度 Depth (cm) | pH | 全盐 Total salt (g·kg-1) | 有机质 Organic matter (g·kg-1) | 速效氮Available nitrogen (mg·kg-1) | 有效磷Available phosphorus (mg·kg-1) | 速效钾Available potassium (mg·kg-1) |
|---|---|---|---|---|---|---|
| 0~20 | 8.29±0.05a | 0.23±0.01a | 15.26±0.15a | 47.78±1.42a | 22.43±0.69a | 188.62±6.65a |
| 20~40 | 8.48±0.08a | 0.25±0.02a | 10.62±0.36b | 35.15±0.90b | 7.97±0.38b | 124.39±7.61b |
| 40~60 | 8.53±0.09a | 0.27±0.01a | 8.27±0.18c | 30.76±0.52c | 6.54±0.15b | 113.54±6.18b |
| 深度Depth (cm) | Cu | Zn | Pb | Cd | Cr |
|---|---|---|---|---|---|
| 0~20 | 15.69±2.47a | 0.44±0.06a | 13.69±0.87a | 0.39±0.05a | 24.26±1.20a |
| 20~40 | 7.45±0.12b | 0.25±0.04b | 5.54±0.55b | 0.30±0.03a | 18.48±2.39a |
| 40~60 | 1.96±0.35c | 0.18±0.35b | 4.01±0.30b | 0.28±0.05a | 21.03±0.82a |
| 国标限量值National standard limit | 190.00 | 300.00 | 170.00 | 0.60 | 200.00 |
表3 土壤重金属含量
Table 3 Heavy metal content of soil (mg·kg-1)
| 深度Depth (cm) | Cu | Zn | Pb | Cd | Cr |
|---|---|---|---|---|---|
| 0~20 | 15.69±2.47a | 0.44±0.06a | 13.69±0.87a | 0.39±0.05a | 24.26±1.20a |
| 20~40 | 7.45±0.12b | 0.25±0.04b | 5.54±0.55b | 0.30±0.03a | 18.48±2.39a |
| 40~60 | 1.96±0.35c | 0.18±0.35b | 4.01±0.30b | 0.28±0.05a | 21.03±0.82a |
| 国标限量值National standard limit | 190.00 | 300.00 | 170.00 | 0.60 | 200.00 |
材料 Material | 化学需氧量 COD (mg·L-1) | 氨态氮 NH3-N (mg·L-1) | 固形物 Solid (mg·L-1) | pH | 电导率 EC (ms·cm-1) | 全氮 TN (g·L-1) | 全磷 AP (g·L-1) | 全钾 AK (g·L-1) |
|---|---|---|---|---|---|---|---|---|
| 沼液原液BS | 3860.00±231.26 | 1013.50±64.34 | 20420.00±740.35 | 8.03±0.04 | 7.37±0.21 | 1.23±0.09 | 0.15±0.04 | 0.08±0.03 |
| 净化沼液PBS | 246.00±19.14 | 21.34±0.55 | 35.74±0.92 | 7.65±0.11 | 1.03±0.05 | 0.40±0.17 | 0.13±0.01 | 0.05±0.01 |
表4 沼液基本化学性质
Table 4 Basic chemical properties of biogas slurry
材料 Material | 化学需氧量 COD (mg·L-1) | 氨态氮 NH3-N (mg·L-1) | 固形物 Solid (mg·L-1) | pH | 电导率 EC (ms·cm-1) | 全氮 TN (g·L-1) | 全磷 AP (g·L-1) | 全钾 AK (g·L-1) |
|---|---|---|---|---|---|---|---|---|
| 沼液原液BS | 3860.00±231.26 | 1013.50±64.34 | 20420.00±740.35 | 8.03±0.04 | 7.37±0.21 | 1.23±0.09 | 0.15±0.04 | 0.08±0.03 |
| 净化沼液PBS | 246.00±19.14 | 21.34±0.55 | 35.74±0.92 | 7.65±0.11 | 1.03±0.05 | 0.40±0.17 | 0.13±0.01 | 0.05±0.01 |
| 材料Material | Cu | Zn | Cr | Cd | Pb |
|---|---|---|---|---|---|
| 沼液原液BS | 34.56±1.23 | 24.33±6.64 | 1.46±0.09 | 0.06±0.00 | 4.66±0.06 |
| 净化沼液 PBS | 15.30±0.97 | 11.19±0.11 | 0.82±0.03 | 0.03±0.01 | 2.49±0.15 |
| 国家限量标准National limit standard | - | - | 50.00 | 3.00 | 50.00 |
表5 沼液重金属含量
Table 5 Heavy metal content of biogas slurry (mg·L-1 )
| 材料Material | Cu | Zn | Cr | Cd | Pb |
|---|---|---|---|---|---|
| 沼液原液BS | 34.56±1.23 | 24.33±6.64 | 1.46±0.09 | 0.06±0.00 | 4.66±0.06 |
| 净化沼液 PBS | 15.30±0.97 | 11.19±0.11 | 0.82±0.03 | 0.03±0.01 | 2.49±0.15 |
| 国家限量标准National limit standard | - | - | 50.00 | 3.00 | 50.00 |
处理 Treatment | 实施措施Implementation measures | 滴水次数 Water drip times | 滴沼液次数 Biogas slurry drip times | ||
|---|---|---|---|---|---|
净化沼液PBS (m3·hm-2) | 净化沼液含氮量PBS-N (kg·hm-2) | 水 Water (m3·hm-2) | |||
| S0 | 0 | 0 | 3900 | 12 | 0 |
| S1 | 225 | 90 | 3675 | 12 | 8 |
| S2 | 450 | 180 | 3450 | 12 | 8 |
| S3 | 675 | 270 | 3225 | 12 | 8 |
| S4 | 900 | 360 | 3000 | 12 | 8 |
| S5 | 1125 | 450 | 2775 | 12 | 8 |
| S6 | 1350 | 540 | 2550 | 12 | 8 |
表6 试验设计方案
Table 6 Experimental design scheme
处理 Treatment | 实施措施Implementation measures | 滴水次数 Water drip times | 滴沼液次数 Biogas slurry drip times | ||
|---|---|---|---|---|---|
净化沼液PBS (m3·hm-2) | 净化沼液含氮量PBS-N (kg·hm-2) | 水 Water (m3·hm-2) | |||
| S0 | 0 | 0 | 3900 | 12 | 0 |
| S1 | 225 | 90 | 3675 | 12 | 8 |
| S2 | 450 | 180 | 3450 | 12 | 8 |
| S3 | 675 | 270 | 3225 | 12 | 8 |
| S4 | 900 | 360 | 3000 | 12 | 8 |
| S5 | 1125 | 450 | 2775 | 12 | 8 |
| S6 | 1350 | 540 | 2550 | 12 | 8 |
| 等级Grade | 潜在生态危害指数Ecological risk index |
|---|---|
| 清洁 Cleanly | <100 |
| 轻微 Slight | 100~150 |
| 中等Moderate | 150~300 |
| 重度 Severely | 300~600 |
| 极重 Extremely | >600 |
表7 污染指数与污染程度等级划分
Table 7 Pollution index and classification
| 等级Grade | 潜在生态危害指数Ecological risk index |
|---|---|
| 清洁 Cleanly | <100 |
| 轻微 Slight | 100~150 |
| 中等Moderate | 150~300 |
| 重度 Severely | 300~600 |
| 极重 Extremely | >600 |
图3 净化沼液滴灌对土壤物理性质的影响不同小写字母表示不同施肥处理下差异显著(P<0.05),下同。 Different lowercase letters indicate significant differences among different fertilization treatments (P<0.05), the same below. WSA: 水稳性团聚体Water-stable aggregate; MWD: 平均质量直径Mean weight diameter; GMD: 几何平均直径Geometric mean diameter.
Fig.3 Effect of PBS drip irrigation on soil physical properties
| 处理Treatment | Cu (mg·kg-1) | Zn (mg·kg-1) | Pb (μg·kg-1) | Cd (μg·kg-1) | Cr (μg·kg-1) |
|---|---|---|---|---|---|
| S0 | 1.32±0.01e | 0.42±0.01d | 28.78±1.21d | 20.53±0.23b | 2.12±0.23c |
| S1 | 1.37±0.07e | 0.44±0.01d | 30.09±0.65d | 21.73±0.67b | 2.42±0.33c |
| S2 | 1.52±0.03d | 0.47±0.03d | 35.12±0.21cd | 29.09±3.01b | 3.82±3.39b |
| S3 | 1.66±0.06c | 0.56±0.01c | 35.15±0.43bc | 26.41±2.86b | 3.76±0.67b |
| S4 | 1.69±0.03c | 0.65±0.03b | 40.18±2.32ab | 26.40±2.86b | 3.54±0.88b |
| S5 | 1.91±0.04b | 0.73±0.03a | 41.21±1.32a | 40.79±6.69a | 4.13±0.67a |
| S6 | 2.12±0.03a | 0.73±0.04a | 45.01±5.79a | 44.47±0.67a | 6.47±0.88a |
| 饲料限量值Feed limit value (mg·kg-1) | - | - | 30.00 | 1.00 | 5.00 |
表8 净化沼液滴灌对青贮玉米重金属含量的影响(2022)
Table 8 Effects of PBS drip irrigation on the heavy metal content of silage maize (2022)
| 处理Treatment | Cu (mg·kg-1) | Zn (mg·kg-1) | Pb (μg·kg-1) | Cd (μg·kg-1) | Cr (μg·kg-1) |
|---|---|---|---|---|---|
| S0 | 1.32±0.01e | 0.42±0.01d | 28.78±1.21d | 20.53±0.23b | 2.12±0.23c |
| S1 | 1.37±0.07e | 0.44±0.01d | 30.09±0.65d | 21.73±0.67b | 2.42±0.33c |
| S2 | 1.52±0.03d | 0.47±0.03d | 35.12±0.21cd | 29.09±3.01b | 3.82±3.39b |
| S3 | 1.66±0.06c | 0.56±0.01c | 35.15±0.43bc | 26.41±2.86b | 3.76±0.67b |
| S4 | 1.69±0.03c | 0.65±0.03b | 40.18±2.32ab | 26.40±2.86b | 3.54±0.88b |
| S5 | 1.91±0.04b | 0.73±0.03a | 41.21±1.32a | 40.79±6.69a | 4.13±0.67a |
| S6 | 2.12±0.03a | 0.73±0.04a | 45.01±5.79a | 44.47±0.67a | 6.47±0.88a |
| 饲料限量值Feed limit value (mg·kg-1) | - | - | 30.00 | 1.00 | 5.00 |
指标 Indicator | 2021 | 2022 | ||
|---|---|---|---|---|
| 公因子方差CFV | 权重Weight | 公因子方差CFV | 权重Weight | |
| MWD | 0.901 | 0.066 | 0.901 | 0.062 |
| GMD | 0.857 | 0.062 | 0.857 | 0.059 |
| pH | 0.741 | 0.054 | 0.741 | 0.051 |
| TS | 0.954 | 0.070 | 0.954 | 0.066 |
| AN | 0.992 | 0.072 | 0.992 | 0.069 |
| AP | 0.989 | 0.072 | 0.989 | 0.069 |
| AK | 0.965 | 0.070 | 0.965 | 0.067 |
| OM | 0.892 | 0.065 | 0.892 | 0.062 |
| URE | 0.901 | 0.066 | 0.901 | 0.062 |
| ALP | 0.998 | 0.073 | 0.998 | 0.069 |
| SUC | 0.956 | 0.070 | 0.956 | 0.066 |
| CAT | 0.979 | 0.071 | 0.979 | 0.068 |
| MBC | 0.949 | 0.069 | 0.949 | 0.066 |
| MBN | 0.925 | 0.067 | 0.925 | 0.064 |
| ERI | 0.723 | 0.053 | 0.723 | 0.050 |
表9 土壤质量评价指标公因子方差和权重
Table 9 Common factor variance (CFV) and weight of soil quality evaluation indicators
指标 Indicator | 2021 | 2022 | ||
|---|---|---|---|---|
| 公因子方差CFV | 权重Weight | 公因子方差CFV | 权重Weight | |
| MWD | 0.901 | 0.066 | 0.901 | 0.062 |
| GMD | 0.857 | 0.062 | 0.857 | 0.059 |
| pH | 0.741 | 0.054 | 0.741 | 0.051 |
| TS | 0.954 | 0.070 | 0.954 | 0.066 |
| AN | 0.992 | 0.072 | 0.992 | 0.069 |
| AP | 0.989 | 0.072 | 0.989 | 0.069 |
| AK | 0.965 | 0.070 | 0.965 | 0.067 |
| OM | 0.892 | 0.065 | 0.892 | 0.062 |
| URE | 0.901 | 0.066 | 0.901 | 0.062 |
| ALP | 0.998 | 0.073 | 0.998 | 0.069 |
| SUC | 0.956 | 0.070 | 0.956 | 0.066 |
| CAT | 0.979 | 0.071 | 0.979 | 0.068 |
| MBC | 0.949 | 0.069 | 0.949 | 0.066 |
| MBN | 0.925 | 0.067 | 0.925 | 0.064 |
| ERI | 0.723 | 0.053 | 0.723 | 0.050 |
指标 Index | 土壤重金属限量值 SHM limit value (mg·kg-1) | 土壤重金属起始值 SHM background value (mg·kg-1) | 净化沼液重金属含量 PBS heavy metal content (mg·kg-1) | 植株重金属含量 Plant heavy metal content (g·hm-2) | 消纳容量 Digestion capacity (m3·hm-2) | 消纳年限 Digestion years (a) |
|---|---|---|---|---|---|---|
| 铜 Cu | 190 | 15.69±0.04 | 15.30±1.04 | 24.70±1.49 | 37394.00±2732.97 | 41.55±3.04 |
| 锌Zn | 300 | 0.44±0.01 | 11.19±0.03 | 8.73±0.40 | 87004.67±196.96 | 96.67±0.22 |
| 铅Pb | 170 | 13.69±0.54 | 2.49±0.10 | 0.79±0.04 | 204935.67±8299.00 | 227.71±9.22 |
| 镉 Cd | 0.60 | 0.39±0.02 | 0.03±0.01 | 0.37±0.03 | 22786.66±1240.76 | 25.32±0.38 |
| 铬 Cr | 200 | 24.26±0.41 | 0.82±0.02 | 0.48±0.03 | 694694.67±17586.23 | 771.88±19.54 |
表10 沼液消纳容量分析(重金属)
Table 10 PBS absorption capacity (heavy metal)
指标 Index | 土壤重金属限量值 SHM limit value (mg·kg-1) | 土壤重金属起始值 SHM background value (mg·kg-1) | 净化沼液重金属含量 PBS heavy metal content (mg·kg-1) | 植株重金属含量 Plant heavy metal content (g·hm-2) | 消纳容量 Digestion capacity (m3·hm-2) | 消纳年限 Digestion years (a) |
|---|---|---|---|---|---|---|
| 铜 Cu | 190 | 15.69±0.04 | 15.30±1.04 | 24.70±1.49 | 37394.00±2732.97 | 41.55±3.04 |
| 锌Zn | 300 | 0.44±0.01 | 11.19±0.03 | 8.73±0.40 | 87004.67±196.96 | 96.67±0.22 |
| 铅Pb | 170 | 13.69±0.54 | 2.49±0.10 | 0.79±0.04 | 204935.67±8299.00 | 227.71±9.22 |
| 镉 Cd | 0.60 | 0.39±0.02 | 0.03±0.01 | 0.37±0.03 | 22786.66±1240.76 | 25.32±0.38 |
| 铬 Cr | 200 | 24.26±0.41 | 0.82±0.02 | 0.48±0.03 | 694694.67±17586.23 | 771.88±19.54 |
指标 Index | 盐渍化标准值 Salinization standard value (g·kg-1) | 土壤全盐起始值 TS background value (g·kg-1) | 2年积累值 TS accumulate value (g·kg-1) | 全盐年均增加量 TS increase (g·kg-1) | 消纳年限 Digestion years (a) |
|---|---|---|---|---|---|
| 全盐Total salt | 1.00 | 0.23±0.01 | 0.31±0.02 | 0.04±0.00 | 19.25±0.12 |
表11 沼液消纳容量分析(全盐)
Table 11 PBS absorption capacity (total salt)
指标 Index | 盐渍化标准值 Salinization standard value (g·kg-1) | 土壤全盐起始值 TS background value (g·kg-1) | 2年积累值 TS accumulate value (g·kg-1) | 全盐年均增加量 TS increase (g·kg-1) | 消纳年限 Digestion years (a) |
|---|---|---|---|---|---|
| 全盐Total salt | 1.00 | 0.23±0.01 | 0.31±0.02 | 0.04±0.00 | 19.25±0.12 |
| 1 | Kumar S, Malav L C, Malav M K, et al. Biogas slurry: Source of nutrients for eco-friendly agriculture. International Journal of Extensive Research, 2015, 2(2): 42-46. |
| 2 | You L, Yu S Q, Liu H Y, et al. Effects of biogas slurry fertilization on fruit economic traits and soil nutrients of Camellia oleifera Abel. PLoS One, 2019, 14(5): 0208289. |
| 3 | Abdul N, Khan F H, Mahmood R, et al. Comparative study of biogas slurry with farmyard manure as fertilizer on maize crop. Science International, 2010, 22(4): 297-301. |
| 4 | Li C L, Wang Q, Shao S Z, et al. Stable isotope effects of biogas slurry applied as an organic fertilizer to rice, straw, and soil. Journal of Agricultural and Food Chemistry, 2021, 69(29): 8090-8097. |
| 5 | Zheng L. Effects of biogas slurry irrigation on soil structure stability of salinized fluvo-aquic soil in the Huang-Huai-Hai Plain. Beijing: Chinese Academy of Agricultural Sciences, 2020. |
| 郑莉. 沼液施用对黄淮海平原盐化潮土土壤结构稳定性的影响. 北京: 中国农业科学院, 2020. | |
| 6 | Qi Y C, Wang Y Q, Liu J, et al. Comparative study on composition of soil aggregates with different land use patterns and several kinds of soil aggregate stability index. Transactions of the CSAE, 2011, 27(1): 340-347. |
| 祁迎春, 王益权, 刘军, 等. 不同土地利用方式土壤团聚体组成及几种团聚体稳定性指标的比较. 农业工程学报, 2011, 27(1): 340-347. | |
| 7 | Madari B, Machado P, Torres E, et al. No tillage and crop rotation effects on soil aggregation and organic carbon in a Rhodic Ferralsol from southern Brazil. Soil & Tillage Research, 2005, 80(1/2): 185-200. |
| 8 | Desosal L L, Glanville H C, Marshall M R, et al. Stoichiometric constraints on the microbial processing of carbon with soil depth along a riparian hillslope. Biology and Fertility of Soils, 2018, 54: 949-963. |
| 9 | Chen S L, Yu W W, Zhang Z, et al. Soil properties and enzyme activities as affected by biogas slurry irrigation in the Three Gorges Reservoir areas of China. Journal of Environment Biology, 2015, 36(2): 513-520. |
| 10 | Walsh J J, Jones D L, Gareth E J, et al. Replacing inorganic fertilizer with anaerobic digestate may maintain agricultural productivity at less environmental cost. Journal of Plant Nutrition and Soil Science, 2012, 175(6): 840-845. |
| 11 | Tang C L, Jin Z W, Yao G W, et al. Effects of combined application of biochar and biogas slurry on regulating nitrogen cycle function genes and promoting nitrogen efficiency. Environmental Chemistry, 2023, 42(8): 2843-2852. |
| 唐存柳, 靳泽文, 姚光伟, 等. 生物质炭-沼液联合施用对调控氮循环功能基因促进氮素增效的影响. 环境化学, 2023, 42(8): 2843-2852. | |
| 12 | Zheng J, Li X Y, Ma J, et al. Effect of biogas slurry combined with straw biochar on soil organic matter and total nitrogen content. Journal of Agro-Environment Science, 2020, 39(5): 1111-1121. |
| 郑健, 李欣怡, 马静, 等. 秸秆生物炭配施沼液对土壤有机质和全氮含量的影响. 农业环境科学学报, 2020, 39(5): 1111-1121. | |
| 13 | Cai M, Yu X B, Zhou W W, et al. Effect of slurry on soil quality. Journal of Tropical Biology, 2014, 5(1): 52-56. |
| 蔡茂, 余雪标, 周卫卫, 等. 沼液排放对土壤质量的影响.热带生物学报, 2014, 5(1): 52-56. | |
| 14 | Zhao Q Z, Yang Z M, Kong F J, et al. Effect of biogas slurry return to field on heavy metal accumulation in soil-crop system: A meta-analysis. Environmental Science, 2023, 44(7): 4091-4099. |
| 赵奇志, 杨志敏, 孔凡靖, 等. 沼液还田对土壤-作物系统重金属累积的影响: Meta分析. 环境科学, 2023, 44(7): 4091-4099. | |
| 15 | Wan H W. Effects of biogas slurry on corn and wheat physiological characteristics, soil nutrients and yield. Yangling: Northwest A&F University, 2016. |
| 万海文. 沼液对土壤养分和玉米、小麦生理特性及产量的影响. 杨凌: 西北农林科技大学, 2016. | |
| 16 | Liu Q P. Effect of siogas slurry on soil fertility, heavy metal content and corn yields in black soil. Harbin: Northeast Agricultural University, 2020. |
| 刘庆平. 沼液农用对黑土土壤肥力、重金属含量和玉米产量的影响. 哈尔滨: 东北农业大学, 2020. | |
| 17 | Cao Y F. Effects of biogas slurry application on annual silage crops yield, quality and soil nutrients. Yangzhou: Yangzhou University, 2022. |
| 曹易繁. 沼液施用对周年青贮作物产量、品质和土壤养分的影响. 扬州: 扬州大学, 2022. | |
| 18 | Li X T. Soil environmental quality risk control standard for soil contamination of agricultural land, GB 15618-2018. Beijing: Ministry of Ecology and Environment of the People’s Republic of China, State Administration for Market Regulation, 2018. |
| 李晓弢. 土壤环境质量农用地土壤污染风险管控标准, GB 15618-2018. 北京: 中华人民共和国生态环境部, 国家市场监督管理总局, 2018. | |
| 19 | Xiong W, Sun X F, Li J M, et al. Biogas slurry for agricultural use, GB/T 40750-2021. Beijing: State Administration for Market Regulation, Standardization Administration, 2021. |
| 熊伟, 孙宪法, 李景明, 等. 农用沼液, GB/T 40750-2021. 北京: 国家市场监督管理总局, 国家标准化管理委员会, 2021. | |
| 20 | Bao S D. Soil agrochemical analysis. Beijing: China Agriculture Press, 2000. |
| 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. | |
| 21 | Fan L Q, Yang J G, Xu X, et al. Salinity characteristics of soil and correlation of saline-alkali soil in Ningxia irrigation district. Chinese Agricultural Science Bulletin, 2012, 28(35): 221-225. |
| 樊丽琴, 杨建国, 许兴, 等. 宁夏引黄灌区盐碱地土壤盐分特征及相关性.中国农学通报, 2012, 28(35): 221-225. | |
| 22 | Li H S. Plant physiological and biochemical experiment principle and technology. Beijing: Higher Education Press, 2001. |
| 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2001. | |
| 23 | Lu R K. Soil agrochemical analysis method. Beijing: China Agricultural Science and Technology Press, 2002. |
| 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2002. | |
| 24 | Chen Q Y, Liu Z J, Zhou J B, et al. Long-term straw mulching with nitrogen fertilization increases nutrient and microbial determinants of soil quality in a maize-wheat rotation on China’s Loess Plateau. Science of the Total Environment, 2021, 775: 145930. |
| 25 | Liu B Y, Wang Y P, Yao Z F, et al. Risk assessment and safe consumption analysis of heavy metals under different planting patterns of biogas slurry. Ecology and Environmental Sciences, 2023, 32(8): 1507-1515. |
| 刘炳妤, 王一佩, 姚作芳, 等. 沼液还田下不同种植模式的重金属风险评价及安全消纳量分析. 生态环境学报, 2023, 32(8): 1507-1515. | |
| 26 | Xu Z Q, Ni S J, Tuo X G, et al. Calculation of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index. Environmental Science &Technology, 2008, 31(2): 112-115. |
| 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算. 环境科学与技术, 2008, 31(2): 112-115. | |
| 27 | Sha Y S, Wang L W, Wu Y B, et al. Hygienical standard for feeds, GB 13078-2017. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization administration, 2017. |
| 沙玉圣, 王黎文, 武玉波, 等. 饲料卫生标准, GB 13078-2017. 北京: 中华人民共和国国家质量监督检验检疫总局, 国家标准化管理委员会, 2017. | |
| 28 | Guhra T, Stolze K, Totsche K U. Pathways of biogenically excreted organic matter into soil aggregates. Soil Biology and Biochemistry, 2022, 164: 108483. |
| 29 | Liao H, Hao X L, Zhang Y C, et al. Soil aggregate modulates microbial ecological adaptations and community assemblies in agricultural soils. Soil Biology and Biochemistry, 2022, 172: 108769. |
| 30 | Tang X, Qiu J C, Xu Y Q, et al. Responses of soil aggregate stability to organic C and total N as controlled by land-use type in a region of south China affected by sheet erosion. Catena, 2022, 218: 106543. |
| 31 | Zhu R W. Effects of biogas slurry and biochar on soil aggregate organic carbon and microbial community diversity. Nanjing: Nanjing Forestry University, 2019. |
| 朱荣玮. 施用沼液和生物炭对土壤团聚体有机碳及其微生物多样性的影响. 南京: 南京林业大学, 2019. | |
| 32 | Wang W, Tang J, Yin J Z, et al. Aggregates and associated organic carbon in lime concretion black soil in response to combined full-rate straw incorporation and biogas slurry application.Soil, 2023, 55(1): 53-61. |
| 王威, 唐蛟, 殷金忠, 等. 秸秆全量还田配施沼液对砂姜黑土水稳性团聚体及结合有机碳的影响.土壤, 2023, 55(1): 53-61. | |
| 33 | Tang J, Wang W, Pan F F, et al. The effects of biogas slurry irrigation on aggregation and stability of fluvo-aquic soil in Huang-Huai-Hai plain. Journal of Irrigation and Drainage, 2022, 41(2): 10-17. |
| 唐蛟, 王威, 潘飞飞, 等. 沼液灌施对潮土土壤团聚体组成及稳定性的影响. 灌溉排水学报, 2022, 41(2): 10-17. | |
| 34 | Chen H, Lou M H, Xu X, et al. Effects of digested dairy slurry application on soil aggregates and their organic carbon composition in wheat and maize rotation system. Journal of Nanjing University of Information Science & Technology ( Natural Science Edition), 2022, 14(1): 50-61. |
| 陈皓, 娄梦函, 徐轩, 等. 奶牛粪沼液对小麦-玉米轮作土壤团聚体有机碳组分的影响.南京信息工程大学学报(自然科学版), 2022, 14(1): 50-61. | |
| 35 | Liao H, Hao X, Li Y T, et al. Protists regulate microbially mediated organic carbon turnover in soil aggregates. Global Change Biology, 2024, 30(1): 17102. |
| 36 | Li G R, Yu C Y, Shen P F, et al. Crop diversification promotes soil aggregation and carbon accumulation in global agroecosystems: A meta-analysis. Journal of Environmental Management, 2024, 350: 119661. |
| 37 | Yang J H, Liu M Y, Zhang J, et al. Spatial variability of soil nutrients and its affecting factors at small watershed in gully region of the Loess Plateau. Journal of Natural Resources, 2020, 35(3): 743-754. |
| 杨静涵, 刘梦云, 张杰, 等. 黄土高原沟壑区小流域土壤养分空间变异特征及其影响因素. 自然资源学报, 2020, 35(3): 743-754. | |
| 38 | Xu M, Xian Y, Wu J, et al. Effect of biogas slurry addition on soil properties, yields, and bacterial composition in the rice-rape rotation ecosystem over 3 years. Journal of Soils and Sediments, 2019, 19(5): 2534-2542. |
| 39 | Amlinger F, GÖTZ B, Dreher P, et al. Nitrogen in biowaste and yard waste compost: Dynamics of mobilisation and availability: A review. European Journal of Soil Biology, 2003, 39(3): 107-116. |
| 40 | Luo W. Effects of biogas slurry on potato yield, quality and soil environmental quality.Ya’an: Sichuan Agricultural University, 2020. |
| 罗伟. 沼液对马铃薯产量、品质及土壤环境质量的影响研究. 雅安: 四川农业大学, 2020. | |
| 41 | Li X Y. Effect of the location-based application of biogas slurry for three consecutive years on rice production and soil environmental quality.Ya’an: Sichuan Agricultural University, 2013. |
| 李小宇. 连续三年定位施用沼液对水稻生产及土壤环境质量的影响研究. 雅安: 四川农业大学, 2013. | |
| 42 | Li N, Xi H, Zhou Y, et al. Effect of water-salt regulation of drip irrigation using digested effluent of food waste on soil environment and broccoli yield. Water Saving Irrigation, 2024(5): 10-17. |
| 李娜, 奚辉, 周扬, 等. 餐厨沼液滴灌水盐调控对土壤环境和西兰花产量的影响.节水灌溉, 2024(5): 10-17. | |
| 43 | Li L, Wang J, Zhu Z M, et al. Effects of nitrogen fertilizer reduction combined with organic fertilizer/straw application on soil fertility index and maize yield in saline-alkali soil.Soil Bulletin, 2020, 51(4): 928-935. |
| 李磊, 王晶, 朱志明, 等. 氮肥减施与有机肥/秸秆配施对盐碱地土壤肥力指标及玉米产量的影响.土壤通报, 2020, 51(4): 928-935. | |
| 44 | Yang X, Zhu Y M, Xu Y J, et al. Simulated warming and low O2 promote N2O and N2 emissions in subtropical montane forest soil. Journal of Soils and Sediments, 2022, 22(10): 2706-2719. |
| 45 | Chen S Y, Li Q, Kong F J, et al. Integrated analysis of effects of livestock and poultry manure biogas slurry returning to fields on soil NO3--N accumulation. China Environmental Science, 2023, 43(S1):179-185. |
| 陈思扬, 李晴, 孔凡靖, 等. 沼液还田对土壤NO3-N累积影响的整合分析. 中国环境科学, 2023, 43(S1): 179-185. | |
| 46 | Zeng W S, Qiu J R, Wang D H, et al. Ultrafiltration concentrated biogas slurry can reduce the organic pollution of groundwater in fertigation. Science of the Total Environment, 2022, 810: 151294. |
| 47 | Pettit N M, Smith A R J, Freedman R B, et al. Soil urease: Activity, stability and kinetic properties. Soil Biology and Biochemistry, 1976, 8(6): 479-484. |
| 48 | Dick W A, Cheng L, Wang P. Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biology and Biochemistry, 2000, 32(13): 1915-1919. |
| 49 | Du Y N. Effects of biogas slurry and biochar applications on soil nitrogen and phosphorus in the poplar plantation in a costal area,China. Nanjing: Nanjing Forestry University, 2018. |
| 杜妍宁. 施用沼液和生物炭对杨树人工林土壤氮、磷的影响. 南京: 南京林业大学, 2018. | |
| 50 | Huang Q Y, Yan H B, Liu Y H, et al. Effects of microalgae-bacteria inoculation ratio on biogas slurry treatment and microorganism interactions in the symbiosis system. Journal of Cleaner Production, 2022, 362: 132271. |
| 51 | Peng J Y, Zhang S A, Han Y Y, et al. Soil heavy metal pollution of industrial legacies in China and health risk assessment. Science of the Total Environment, 2022, 816: 151632. |
| 52 | Lai X, Wu J, Wang J W, et al. The long-term effects of biogas slurry on soil properties and potential risks of heavy metals in soils. Journal of Soil and Water Conservation, 2018, 32(6): 359-364, 370. |
| 赖星, 伍钧, 王静雯, 等. 连续施用沼液对土壤性质的影响及重金属污染风险评价. 水土保持学报, 2018, 32(6): 359-364, 370. | |
| 53 | Chen Z M, Wang Q, Ma J W, et al. Fungal community composition change and heavy metal accumulation in response to the long-term application of an aerobically digested slurry in a paddy soil. Ecotoxicology and Environmental Safety, 2020, 196: 110453. |
| 54 | Bian B, Wu H S, Zhou L J. Contamination and risk assessment of heavy metals in soils irrigated with biogas slurry: a case study of Taihu basin. Environmental Monitoring and Assessment, 2015, 187(4): 1-15. |
| 55 | Jiang S J. Analysis of the effect of biogas slurry on rice yield and quality. Sichuan Agricultural Science and Technology, 2018(11): 16-19. |
| 蒋胜军. 沼液对水稻产量和品质的影响分析. 四川农业科技, 2018(11): 16-19. | |
| 56 | Xu Z M, Wang Z, Gao Q, et al. Influence of irrigation with microalgae-treated biogas slurry on agronomic trait, nutritional quality, oxidation resistance, and nitrate and heavy metal residues in Chinese cabbage. Journal of Environmental Management, 2019, 244: 453-461. |
| 57 | Ghimire K, Gautam D M, Mishra K, et al. Influence of biogas slurry and urea on yield and quality of okra (Abelmoschus esculentus L.) fruits. Journal of Agriculture and Environment, 2015, 16: 161-169. |
| 58 | Hartemink A E, Barrow N J. Soil pH-nutrient relationships: The diagram. Plant and Soil, 2023, 486(1): 209-215. |
| [1] | 冯雅琪, 陈嘉慧, 张静妮, 隋超, 陈基伟, 刘志鹏, 周强, 刘文献. 基于重测序紫花苜蓿高蛋白、高产关联InDel分子标记开发[J]. 草业学报, 2025, 34(4): 137-149. |
| [2] | 王腾飞, 马霞, 刘金龙, 王斌, 张译尹, 李佳旺, 马江萍, 王小兵, 兰剑. 引黄灌区复种饲用燕麦种植模式产量、品质及经济效益分析[J]. 草业学报, 2025, 34(4): 27-37. |
| [3] | 王新友, 王小兰, 张万昌, 李颖, 马永玲, 王晓寅, 王建刚, 王海青, 岳贝凡, 刘永福, 王永宏, 刘珊, 白美婷. 陇东南部林缘山区青贮玉米品种筛选及其高效栽培研究[J]. 草业学报, 2025, 34(1): 191-202. |
| [4] | 徐寿霞. 基于meta分析的丛枝菌根对小麦产量和品质的影响[J]. 草业学报, 2024, 33(7): 192-204. |
| [5] | 岳海旺, 魏建伟, 王广才, 刘朋程, 陈淑萍, 卜俊周. 基于环境型鉴定技术划分生态区综合评价黄淮海青贮玉米品种[J]. 草业学报, 2024, 33(3): 120-138. |
| [6] | 孟超楠, 赵玉洁, 陈佳欣, 张旖璐, 王彦佳, 冯丽荣, 孙玉刚, 郭长虹. 2株青贮玉米根际固氮菌的筛选鉴定及促生作用研究[J]. 草业学报, 2024, 33(3): 174-185. |
| [7] | 张永亮, 滕泽, 郝凤, 于铁峰, 张玉霞. 苜蓿混播方式及比例对混播草地生产力和稳定性的影响[J]. 草业学报, 2024, 33(2): 185-197. |
| [8] | 白宇飞, 尹航, 杨海波, 冯振华, 李斐. 无人机多光谱和RGB影像融合的苜蓿产量估测[J]. 草业学报, 2024, 33(12): 45-58. |
| [9] | 曹秭琦, 赵小庆, 张向前, 伍建辉, 张帆, 刘丹, 路战远, 任永峰. 施钾水平对北方风沙区油莎豆生长、块茎品质及产量的影响[J]. 草业学报, 2024, 33(12): 73-83. |
| [10] | 吕帅磊, 常单娜, 周国朋, 刘蕊, 赵鑫, 刘佳, 徐昌旭, 曹卫东. 江西红壤绿肥季施用磷矿粉的磷素效应[J]. 草业学报, 2024, 33(11): 149-160. |
| [11] | 侯铭辉, 孙延亮, 杨开鑫, 齐军仓, 张前兵. 基于响应曲面法确定水培大麦饲草高产优质的氮磷钾养分投入量[J]. 草业学报, 2024, 33(11): 172-185. |
| [12] | 王凤宇, 梁国玲, 胡泽龙, 刘文辉. 地理因子对青藏高原野生垂穗披碱草表型及种子产量的影响[J]. 草业学报, 2024, 33(11): 198-214. |
| [13] | 张仲鹃, 郝曦煜, 王雪, 李峰, 李文龙. 齐齐哈尔地区适宜青贮玉米品种的筛选及综合评价[J]. 草业学报, 2024, 33(11): 228-240. |
| [14] | 赵文军, 刘蕊, 王正旭, 冯瑜, 薛开政, 刘魁, 徐梓荷, 曹卫东, 付利波, 尹梅, 陈华. 烤烟-绿肥轮作对云南烟田土壤质量与微生物养分限制的影响[J]. 草业学报, 2024, 33(10): 147-158. |
| [15] | 张睿, 韩重阳, 蔡家邦, 汪阳, 黄琳凯, 张新全, 聂刚. 6个苇状羊茅(型)品种在成都平原区的生产性能评价[J]. 草业学报, 2024, 33(1): 138-148. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||