草业学报 ›› 2025, Vol. 34 ›› Issue (12): 1-15.DOI: 10.11686/cyxb2025034
• 研究论文 •
景煜都1,2,3(
), 刘小伟4, 梁可4, 封俊豪4, 于强5, 郭梁5,6(
)
收稿日期:2025-02-02
修回日期:2025-04-03
出版日期:2025-12-20
发布日期:2025-10-20
通讯作者:
郭梁
作者简介:E-mail: guoliang2014@nwafu.edu.cn基金资助:
Yu-du JING1,2,3(
), Xiao-wei LIU4, Ke LIANG4, Jun-hao FENG4, Qiang YU5, Liang GUO5,6(
)
Received:2025-02-02
Revised:2025-04-03
Online:2025-12-20
Published:2025-10-20
Contact:
Liang GUO
摘要:
灌丛化显著影响全球草地生态系统的碳循环,但其对土壤有机碳组分及稳定性的影响,尤其是微生物在其中的调控机制,仍然缺乏深入研究。本研究以黄土高原半干旱草原为对象,分析了不同类型灌丛化对土壤理化与生物性质、有机碳组分与占比、微生物群落特性的影响,以及其中的微生物调控机制。结果表明,半灌木(白莲蒿)和灌木(矮脚锦鸡儿)扩张的生态影响差异不显著,但两种类型的灌丛化显著提高了土壤含水量(SWC)、土壤总有机碳(SOC)含量、可溶性有机碳(DOC)含量与全量养分,促进了碳循环相关酶活性上升与微生物残体碳积累,并显著提高了矿物结合态有机碳(MAOC)、颗粒态有机碳(POC)的绝对含量与MAOC的相对占比,显著降低了土壤pH与POC的相对占比。此外,灌丛化显著改变了土壤细菌与真菌群落组成,提高了土壤细菌的硝化作用、硫化物氧化与铁呼吸功能,同时增强了真菌的凋落物腐生与木本腐生营养型的丰度。土壤微生物残体碳及细菌的功能均与POC和MAOC的含量和占比显著相关。偏最小二乘路径分析进一步表明,与碳循环相关的胞外酶活性和微生物残体碳分别是调控土壤有机碳组分含量与其相对占比的直接微生物因素,而微生物群落组成通过间接途径影响这些过程。总之,灌丛化不仅显著增加了草地土壤碳库的总量及各有机碳组分的含量,还提高了土壤碳库的稳定性,而土壤微生物分泌的胞外酶与微生物残体碳在该过程中起到重要调控作用。本研究为深入理解灌丛化对草地土壤碳组分的微生物调控机制,并为预测黄土高原灌丛化草地土壤碳库未来变化提供了理论支持。
景煜都, 刘小伟, 梁可, 封俊豪, 于强, 郭梁. 灌丛化对黄土高原草地土壤有机碳组分与稳定性的影响及其微生物调控机制[J]. 草业学报, 2025, 34(12): 1-15.
Yu-du JING, Xiao-wei LIU, Ke LIANG, Jun-hao FENG, Qiang YU, Liang GUO. Impacts of shrub encroachment on the fraction and stability of soil organic carbon of grassland on the Loess Plateau, and the underlying microbial mechanisms[J]. Acta Prataculturae Sinica, 2025, 34(12): 1-15.
土壤指标 Soil property | 无灌木扩张 NSE | 半灌木扩张 SSE | 灌木扩张 SE |
|---|---|---|---|
| SWC (%) | 14.80±1.01b | 20.41±0.80a | 21.26±1.18a |
| pH | 8.18±0.01a | 8.05±0.01b | 8.06±0.02b |
SOC (g·kg-1) DOC (mg·kg-1) | 16.74±0.87c 51.99±2.06b | 25.77±0.87b 72.12±4.16a | 28.41±0.69a 74.88±2.70a |
| TN (g·kg-1) | 1.60±0.04b | 2.94±0.17a | 3.14±0.17a |
| TP (g·kg-1) | 0.58±0.01c | 0.67±0.01b | 0.77±0.02a |
| CA (g·kg-1) | 8.07±0.03b | 8.16±0.10b | 8.56±0.05a |
| BG (nmol·g-1·h-1) | 15.22±0.91c | 36.32±3.35a | 29.43±1.28b |
| CBH (nmol·g-1·h-1) | 9.69±0.60a | 9.48±1.51a | 10.38±0.17a |
表1 灌丛化对土壤理化与生物指标的影响
Table 1 Impacts of shrub encroachment on soil physicochemical and biological properties
土壤指标 Soil property | 无灌木扩张 NSE | 半灌木扩张 SSE | 灌木扩张 SE |
|---|---|---|---|
| SWC (%) | 14.80±1.01b | 20.41±0.80a | 21.26±1.18a |
| pH | 8.18±0.01a | 8.05±0.01b | 8.06±0.02b |
SOC (g·kg-1) DOC (mg·kg-1) | 16.74±0.87c 51.99±2.06b | 25.77±0.87b 72.12±4.16a | 28.41±0.69a 74.88±2.70a |
| TN (g·kg-1) | 1.60±0.04b | 2.94±0.17a | 3.14±0.17a |
| TP (g·kg-1) | 0.58±0.01c | 0.67±0.01b | 0.77±0.02a |
| CA (g·kg-1) | 8.07±0.03b | 8.16±0.10b | 8.56±0.05a |
| BG (nmol·g-1·h-1) | 15.22±0.91c | 36.32±3.35a | 29.43±1.28b |
| CBH (nmol·g-1·h-1) | 9.69±0.60a | 9.48±1.51a | 10.38±0.17a |
图1 灌丛化对土壤有机碳组分与相对占比及微生物残体碳的影响POC: Particulate organic carbon; MAOC: Mineral associated organic carbon; BNC: Bacterial necromass carbon; FNC: Fungal necromass carbon; MNC: Microbial necromass carbon; 误差棒代表均值±标准误Error bars represent means±standard errors. 下同The same below.
Fig.1 Impacts of shrub encroachment on the content and relative proportion of soil organic carbon fractions and microbial necromass carbon
图2 灌丛化对土壤细菌与真菌门水平群落结构的影响NMDS1和NMDS2分别为非线性多维度量分析第一轴与第二轴NMDS1 and NMDS2 represent the first and second axis of non-metric multidimensional scaling analysis, respectively.
Fig.2 Impacts of shrub encroachment on phylum-level community structures of soil bacteria and fungi
图3 土壤细菌与真菌ASVs的系统发育树及与土壤基本理化性质的相关性系统发育树中,不同颜色代表ASVs属于不同的细菌或真菌门。相关性热图基于Spearman相关性,其中不同颜色代表土壤微生物ASVs与土壤基础理化性质相关性不同,图中只保留具有统计显著性(P<0.05)的相关关系,红色代表负相关,蓝色代表正相关。In the phylogenetic trees, different colors represent ASVs that belong to different bacterial or fungal phylum. In the correlation heatmaps based on Spearman’s correlation, different colors indicate different correlations between soil microbial ASVs and soil basic physicochemical properties. Only the correlations with statistical significance (P<0.05) were retained in the heatmaps, where red indicates negative correlations, while blue indicates positive correlations.
Fig.3 The phylogenetic trees of soil bacterial and fungal ASVs and the correlation between the ASVs and soil basic physicochemical properties
图5 土壤有机碳组分影响因素及土壤有机碳组分与土壤微生物性质的相关分析(a)土壤理化因子与微生物群落组成对土壤有机碳组分影响的冗余分析,红色箭头所指为对土壤有机碳组分影响显著的解释变量,灰色箭头所指为对其影响不显著的解释变量。NMDS1: 土壤细菌群落组成,以非度量多维尺度分析(NMDS)第一轴坐标表征; F-NMDS1: 土壤真菌群落组成,以NMDS第一轴坐标表征。(b)各个解释变量对土壤有机碳组分总体变化的贡献。(c)土壤有机碳组分及占比与土壤微生物残体碳、细菌功能与真菌营养型的Pearson相关性热图,红色代表负相关,蓝色代表正相关;星号代表相关的显著性。(a) Redundance analysis for the effects of soil physicochemical properties and microbial community composition on soil carbon fraction. Red arrows point to properties that significantly affect soil organic carbon fraction, while gray arrows point to properties with no significant effect. NMDS1: Community composition of soil bacteria indicated with the first axis of non-metric multidimensional scaling; F-NMDS1: Community composition of soil fungi indicated with the first axis of non-metric multidimensional scaling. (b) Contribution of individual properties on the changes of soil organic carbon fraction. (c) Heatmap based on Pearson’s correlation between soil organic carbon fraction as well as the ratio of each fraction to total organic carbon and soil microbial properties including necromass carbon, bacterial functions and fungal trophic types. Red represents negative correlations, while red represents positive correlations. Star marks indicate the significance of correlations.
Fig.5 Analysis of the potential drivers of soil organic carbon fraction and the correlation between soil organic carbon fraction and soil microbial properties
图6 灌丛化对土壤有机碳组分及其占比调控机制的偏最小二乘路径模型(a): 灌丛化对土壤有机碳组分及矿物结合态有机碳占比调控机制的偏最小二乘路径模型,每个方框代表不同的显变量,方框中括号内的因子为用于计算该显变量的隐变量,箭头代表模型中的路径,其侧数字为该路径标准化路径系数,星号代表路径的统计显著性The partial-least square path modeling for the regulatory mechanisms of shrub encroachment on soil organic carbon fraction and the ratio of soil mineral-associated organic carbon to total organic carbon. Each square represents each of the different observable variables, the properties bracketed represent hidden variables used to calculate the observable variable. Arrows represent paths in the model, the numbers aside represent the standardized pathway index, the star marks indicate statistical significance of the paths; ***: P<0.001; **: P<0.01; *: P<0.05.
Fig.6 The partial-least square path modeling for the regulatory mechanisms of shrub encroachment on soil organic carbon fractions and their ratio to soil total organic carbon
| [1] | Van Auken O W. Causes and consequences of woody plant encroachment into western North American grasslands. Journal of Environmental Management, 2009, 90(10): 2931-2942. |
| [2] | Eldridge D J, Bowker M A, Maestre F T, et al. Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis. Ecology Letters, 2011, 14(7): 709-722. |
| [3] | Li M H, Li Y H, Yan X H, et al. Characteristics of plant diversity and aboveground productivity and their relationship driven by subshrub expansion. Acta Prataculturae Sinica, 2023, 32(5): 27-39. |
| 李美慧, 李玉华, 晏昕辉, 等. 半灌木扩张驱动的草地植物多样性与地上生产力特征及其关系研究. 草业学报, 2023, 32(5): 27-39. | |
| [4] | Guo Q, Wen Z, Ghanizadeh H, et al. Shift in microbial communities mediated by vegetation-soil characteristics following subshrub encroachment in a semi-arid grassland. Ecological Indicators, 2022, 137: 108768. |
| [5] | Li H, Shen H H, Chen L Y, et al. Effects of shrub encroachment on soil organic carbon in global grasslands. Scientific Reports, 2016, 6(1): 28974. |
| [6] | Zhang D, Liu J Q, Ma W M, et al. Effects of shrub encroachment on soil organic carbon components in Qinghai-Tibetan alpine grassland. Acta Pedologica Sinica, 2023, 60(6): 1810-1821. |
| 张东, 刘金秋, 马文明, 等. 灌丛化对高寒草地土壤有机碳组分的分异研究. 土壤学报, 2023, 60(6): 1810-1821. | |
| [7] | Bai Y, Cotrufo M F. Grassland soil carbon sequestration: Current understanding, challenges, and solutions. Science, 2022, 377(6606): 603-608. |
| [8] | Thomas A D, Elliot D R, Dougill A J, et al. The influence of trees, shrubs, and grasses on microclimate, soil carbon, nitrogen, and CO2 efflux: Potential implications of shrub encroachment for Kalahari rangelands. Land Degradation & Development, 2018, 29(5): 1306-1316. |
| [9] | Wei Y Y, Cui L J, Zhang M Y, et al. Research advances in microbial mechanisms underlying priming effect of soil organic carbon mineralization. Chinese Journal of Ecology, 2019, 38(4): 1202-1211. |
| 魏圆云, 崔丽娟, 张曼胤, 等. 土壤有机碳矿化激发效应的微生物机制研究进展. 生态学杂志, 2019, 38(4): 1202-1211. | |
| [10] | Collins C G, Spasojevic M J, Alados C L, et al. Belowground impacts of alpine woody encroachment are determined by plant traits, local climate, and soil conditions. Global Change Biology, 2020, 26(12): 7112-7127. |
| [11] | Zhou Y, Li Y Y, Li N, et al. Contribution of soil microbial necromass carbon to soil organic carbon in grassland under precipitation change and its influencing factors in loess hilly region, Northwest China. Chinese Journal of Applied Ecology, 2024, 35(9): 2592-2598. |
| 周玥, 李娅芸, 李娜, 等. 黄土丘陵区降水变化下草地土壤微生物残体碳对土壤有机碳组分的贡献及其影响因素. 应用生态学报, 2024, 35(9): 2592-2598. | |
| [12] | Zhang G, Cao Z P, Hu C J. Soil organic carbon fraction methods and their applications in farmland ecosystem research: A review. Chinese Journal of Applied Ecology, 2011, 22(7): 1921-1930. |
| 张国, 曹志平, 胡婵娟. 土壤有机碳分组方法及其在农田生态系统研究中的应用. 应用生态学报, 2011, 22(7): 1921-1930. | |
| [13] | Zhang R B, Wang J S, Wang Q C, et al. Responses of soil particulate and mineral-associated organic carbon to climate warming: A review. Progress in Geography, 2023, 42(12): 2471-2484. |
| 张睿博, 汪金松, 王全成, 等. 土壤颗粒态有机碳与矿物结合态有机碳对气候变暖响应的研究进展. 地理科学进展, 2023, 42(12): 2471-2484. | |
| [14] | Lugato E, Lavallee J M, Haddix M L, et al. Different climate sensitivity of particulate and mineral-associated soil organic matter. Nature Geoscience, 2021, 14(5): 295-300. |
| [15] | Liu F, Qin S, Fang K, et al. Divergent changes in particulate and mineral-associated organic carbon upon permafrost thaw. Nature Communications, 2022, 13(1): 5073. |
| [16] | Ramesh T, Bolan N S, Kirkham M B, et al. Soil organic carbon dynamics: Impact of land use changes and management practices: A review. Advances in Agronomy, 2019, 156: 1-107. |
| [17] | Li X, Geng H, Gao Y H, et al. Effects of Caragana erinacea shrub expansion on soil organic carbon mineralization in alpine grassland. Acta Ecologica Sinica, 2024, 44(16): 7150-7159. |
| 黎萱, 耿行, 高永恒, 等. 川西锦鸡儿灌木扩张对高寒草地土壤有机碳矿化的影响. 生态学报, 2024, 44(16): 7150-7159. | |
| [18] | Abrigo M, Lezama F, Grela I, et al. Grazing exclusion effects on vegetation structure and soil organic matter in savannas of Río de la Plata grasslands. Journal of Vegetation Science, 2024, 35(5): e13304. |
| [19] | Li X, Chen D Y, Li L A, et al. Response of soil organic carbon active components to shrub encroachment in alpine meadows. Bulletin of Soil and Water Conservation, 2024, 44(3): 317-325, 334. |
| 黎萱, 陈东毅, 李良安, 等. 高寒草甸土壤有机碳活性组分对灌丛化的响应. 水土保持通报, 2024, 44(3): 317-325, 334. | |
| [20] | Su Y, He Z, Yang Y, et al. Linking soil microbial community dynamics to straw-carbon distribution in soil organic carbon. Scientific Reports, 2020, 10(1): 5526. |
| [21] | Tang X, Lyu S, Wang T, et al. Microbial traits affect soil organic carbon stability in degraded Moso bamboo forests. Plant and Soil, 2024: 1-21. DOI: 10.1007/s11104-024-06908-z. |
| [22] | Yuan X, Chen Y, Qin W, et al. Plant and microbial regulations of soil carbon dynamics under warming in two alpine swamp meadow ecosystems on the Tibetan Plateau. Science of the Total Environment, 2021, 790: 148072. |
| [23] | Li Z S, Yang L, Wang G L, et al. The management of soil and water conservation in the Loess Plateau of China: Present situations, problems, and counter-solutions. Acta Ecologica Sinica, 2019, 39(20): 7398-7409. |
| 李宗善, 杨磊, 王国梁, 等. 黄土高原水土流失治理现状、问题及对策. 生态学报, 2019, 39(20): 7398-7409. | |
| [24] | Dong L B, Hai X Y, Wang X Z, et al. Effects of plant community dynamics on ecosystem carbon stocks since returning farmlands to grasslands on the Loess Plateau. Acta Ecologica Sinica, 2020, 40(23): 8559-8569. |
| 董凌勃, 海旭莹, 汪晓珍, 等. 黄土高原退耕还草地植物群落动态对生态系统碳储量的影响. 生态学报, 2020, 40(23): 8559-8569. | |
| [25] | Guo L, Cheng J, Luedeling E, et al. Critical climate periods for grassland productivity on China’s Loess Plateau. Agricultural and Forest Meteorology, 2017, 233: 101-109. |
| [26] | Zhang Y W, Chang X F, Zhang Y W. Spatial pattern of shrub patches in a grassland fenced for a long term in Yunwu Mountain on the Loess Plateau. Acta Agrestia Sinica, 2023, 31(12): 3802-3808. |
| 张译文, 常小峰, 张玉薇. 黄土高原云雾山长期封育草地灌丛化空间分布格局. 草地学报, 2023, 31(12): 3802-3808. | |
| [27] | Liang C, Amelung W, Lehmann J, et al. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology, 2019, 25(11): 3578-3590. |
| [28] | Shi Y P, Qiao L, Chen L X, et al. Spatiotemporal heterogeneity of soil particulate and mineral-associated organic carbon of forest gaps in Pinus koraiensis coniferous and broad-leaved mixed forest. Scientia Silvae Sinicae, 2014, 50(6): 18-27. |
| 石亚攀, 乔璐, 陈立新, 等. 红松针阔混交林林隙土壤颗粒有机碳和矿物结合有机碳的时空异质性. 林业科学, 2014, 50(6): 18-27. | |
| [29] | Zhang Y H, Li Y, Zhou Y, et al. Changes of soil nutrients and organic carbon fractions in Caragana korshinskii forests with different restoration years in mountainous areas of southern Ningxia, China. Chinese Journal of Applied Ecology, 2024, 35(3): 639-647. |
| 张羽涵, 李瑶, 周玥, 等. 宁南山区不同恢复年限柠条林土壤养分及有机碳组分变化特征. 应用生态学报, 2024, 35(3): 639-647. | |
| [30] | Liu Y, Chen L, Ma T, et al. EasyAmplicon: An easy-to-use, open-source, reproducible, and community-based pipeline for amplicon data analysis in microbiome research. iMeta, 2023, 2(1): e83. |
| [31] | Cole J R, Wang Q, Fish J A, et al. Ribosomal database project: Data and tools for high throughput rRNA analysis. Nucleic Acids Research, 2014, 42(D1): D633-D642. |
| [32] | Abarenkov K, Nilsson R H, Larsson K H, et al. The UNITE database for molecular identification and taxonomic communication of fungi and other eukaryotes: Sequences, taxa and classifications reconsidered. Nucleic Acids Research, 2024, 52(D1): D791-D797. |
| [33] | Xu S, Li L, Luo X, et al. ggtree: A serialized data object for visualization of a phylogenetic tree and annotation data. iMeta, 2022, 1(4): e56. |
| [34] | Lai J, Zou Y, Zhang J, et al. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods in Ecology and Evolution, 2022, 13(4): 782-788. |
| [35] | Li H, Zhang J, Hu H, et al. Shift in soil microbial communities with shrub encroachment in Inner Mongolia grasslands, China. European Journal of Soil Biology, 2017, 79: 40-47. |
| [36] | Zhang Z H, Li X Y, Yang X, et al. Changes in soil properties following shrub encroachment in the semiarid Inner Mongolian grasslands of China. Soil Science and Plant Nutrition, 2020, 66(2): 369-378. |
| [37] | Pan J, An C P, Wu X D, et al. Distribution pattern of nutrients in the thicketization of 2 types of Caragana in desert steppe. Journal of Water and Soil Conservation, 2015, 29(6): 131-136. |
| 潘军, 安超平, 吴旭东, 等. 荒漠草原2种锦鸡儿灌丛化过程中土壤养分分布规律. 水土保持学报, 2015, 29(6): 131-136. | |
| [38] | Liu X L, Hu J, Zhou Q P, et al. Effects of typical shrub-encroached grassland on vegetation characteristics and soil nutrients in the Zoige Plateau. Acta Agretia Sinica, 2022, 30(4): 901-908. |
| 刘小龙, 胡健, 周青平, 等. 若尔盖高原典型草地灌丛化对植被特征和土壤养分的影响. 草地学报, 2022, 30(4): 901-908. | |
| [39] | Malik A A, Swenson T, Weihe C, et al. Drought and plant litter chemistry alter microbial gene expression and metabolite production. The ISME Journal, 2020, 14(9): 2236-2247. |
| [40] | Wei X R, Shao M A. Distribution characteristics of soil pH, CEC, and organic matter in a small watershed of the Loess Plateau. Chinese Journal of Applied Ecology, 2009, 20(11): 2710-2715. |
| 魏孝荣, 邵明安. 黄土高原小流域土壤pH、阳离子交换量和有机质分布特征. 应用生态学报, 2009, 20(11): 2710-2715. | |
| [41] | Sinsabaugh R L, Lauber C L, Weintraub M N, et al. Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 2008, 11(11): 1252-1264. |
| [42] | Zhang S, Zhang Q, Li Y, et al. Shrubs have a greater influence on the nonstructural carbohydrates of desert mosses along precipitation decreased. Environmental and Experimental Botany, 2023, 216: 105530. |
| [43] | Zhang Y Y, Mo F, Han J, et al. Research progress on the native soil carbon priming after straw addition. Acta Pedologica Sinica, 2021, 58(6): 1381-1392. |
| 张叶叶, 莫非, 韩娟, 等. 秸秆还田下土壤有机质激发效应研究进展. 土壤学报, 2021, 58(6): 1381-1392. | |
| [44] | Xiang X, Gibbons S M, Li H, et al. Shrub encroachment is associated with changes in soil bacterial community composition in a temperate grassland ecosystem. Plant and Soil, 2018, 425(1/2): 539-551. |
| [45] | Hu X, Li X Y, Zhao Y, et al. Changes in soil microbial community during shrub encroachment process in the Inner Mongolia grassland of northern China. Catena, 2021, 202: 105230. |
| [46] | Voragen A G J, Coenen G J, Verhoef R P, et al. Pectin, a versatile polysaccharide present in plant cell walls. Structural Chemistry, 2009, 20(2): 263-275. |
| [47] | Zhang X, Zhao W, Kou Y, et al. Secondary forest succession drives differential responses of bacterial communities and interactions rather than bacterial functional groups in the rhizosphere and bulk soils in a subalpine region. Plant and Soil, 2023, 484(1/2): 293-312. |
| [48] | Zhang Y C, Jia B, Chen J, et al. Shrub expansion increases nitrification and denitrification in alpine meadow soils. Applied Soil Ecology, 2024, 201: 105524. |
| [49] | Hou J W, Xing C F, Yang L L, et al. Differences in soil fertility and bacterial community structure between carbon inputs such as biochar and organic fertilizer and their relationship. Environmental Science, 2024, 45(7): 4212-4227. |
| 侯建伟, 邢存芳, 杨莉琳, 等. 生物炭与有机肥等碳量投入土壤肥力与细菌群落结构差异及关系. 环境科学, 2024, 45(7): 4212-4227. | |
| [50] | Shu Q, Gao S H, Liu X M, et al. Soil enzyme activities and microbial carbon pump promote carbon storage by influencing bacterial communities under nitrogen-rich conditions in tea plantation. Agriculture, 2025, 15(3): 238. |
| [51] | Peltzer D A, Kochy M. Competitive effects of grasses and woody plants in mixed-grass prairie. Journal of Ecology, 2001, 89(4): 519-527. |
| [52] | Lal R. Soil carbon management and climate change. Carbon Management, 2013, 4(4): 439-462. |
| [1] | 马红钰, 周小国, 王宝, 宋渝川, 艾克热木·阿不拉提江null, 蒋邵丽, 闵九洲, 赵红梅, 程军回. 准噶尔荒漠梭梭和柽柳根际土壤微生物功能基因丰度变化特征[J]. 草业学报, 2025, 34(8): 109-122. |
| [2] | 王玉琴, 宋梅玲, 周睿, 王宏生. 黄帚橐吾密度对土壤微生物群落特征的影响[J]. 草业学报, 2025, 34(6): 99-109. |
| [3] | 王守兴, 周华坤, 欧立鹏, 李成先, 王雁鹤, 宁晓春, 谷强, 魏代军, 杨明新. 三江源不同草地类型植被及土壤微生物多样性与土壤因子特征的研究[J]. 草业学报, 2025, 34(4): 16-26. |
| [4] | 马学喜, 高英志. 灌丛化对草地土壤水文过程影响的研究进展[J]. 草业学报, 2025, 34(4): 212-222. |
| [5] | 刘泽华, 陈林, 张雅琪, 龙进潇, 李学斌, 庞丹波. 灌丛化对荒漠草原猪毛蒿群落物种生态位和种间联结性的影响[J]. 草业学报, 2025, 34(10): 1-15. |
| [6] | 马远飞, 宋彦涛, 乌云娜, 方乘风. 施肥和刈割5年对呼伦贝尔草甸草原土壤微生物特征的影响[J]. 草业学报, 2024, 33(9): 242-251. |
| [7] | 赵亚楠, 王红梅, 李志丽, 张振杰, 陈彦硕, 苏荣霞. 荒漠草原灌丛转变过程土壤水分亏缺空间特征及影响因素[J]. 草业学报, 2024, 33(4): 22-34. |
| [8] | 李俊瑶, 蒋星驰, 胡晋瑜, 魏栋光, 赵学勇, 王少昆. 生物有机肥施加对荒漠草原植被-土壤-微生物的影响[J]. 草业学报, 2024, 33(3): 34-45. |
| [9] | 段鹏, 韦鎔宜, 王芳萍, 姚步青, 赵之重, 胡碧霞, 宋词, 杨萍, 王婷. 不同养分添加对黄河源区退化高寒湿地土壤微生物碳源利用的影响[J]. 草业学报, 2024, 33(2): 138-153. |
| [10] | 张晨阳, 金梦军, 许永锋, 杨成德. 基于宏基因组分析玉米连作对土壤微生物群落结构的影响[J]. 草业学报, 2024, 33(12): 160-174. |
| [11] | 张东, 侯晨, 马文明, 王长庭, 邓增卓玛, 张婷. 高寒草地不同灌丛化梯度下土壤酶活性研究[J]. 草业学报, 2023, 32(9): 79-92. |
| [12] | 李思媛, 崔雨萱, 孙宗玖, 刘慧霞, 冶华薇. 封育对蒿类荒漠草地土壤有机碳及土壤微生物生物量生态化学计量特征的影响[J]. 草业学报, 2023, 32(6): 58-70. |
| [13] | 江奥, 敬路淮, 泽让东科, 田黎明. 放牧影响草地凋落物分解研究进展[J]. 草业学报, 2023, 32(4): 208-220. |
| [14] | 许政勇, 孙斌, 张王菲, 李毅夫, 闫紫钰, 岳巍, 滕思翰. 基于优化三角形植被指数(TVI)的灌丛化草原植被地上生物量遥感估测方法研究[J]. 草业学报, 2023, 32(10): 1-14. |
| [15] | 李洋, 王毅, 韩国栋, 孙建, 汪亚峰. 青藏高原高寒草地土壤微生物量碳氮含量特征及其控制要素[J]. 草业学报, 2022, 31(6): 50-60. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||