草业学报 ›› 2026, Vol. 35 ›› Issue (1): 119-129.DOI: 10.11686/cyxb2025064
• 研究论文 • 上一篇
收稿日期:2025-03-04
修回日期:2025-04-07
出版日期:2026-01-20
发布日期:2025-11-13
通讯作者:
石凤翎
作者简介:E-mail: shifengling@imau.edu.cn基金资助:
Hao-le QI1(
), Si-ning WANG2, Xiao-xia LI2, Feng-ling SHI1(
)
Received:2025-03-04
Revised:2025-04-07
Online:2026-01-20
Published:2025-11-13
Contact:
Feng-ling SHI
摘要:
本研究采用土培法,以来自美国得克萨斯州、内布拉斯加州等地的15份野牛草种质为材料,在600 mmol·L-1 NaCl溶液胁迫条件下进行培养,测定并综合分析了株高、茎粗等表型特征,叶片相对含水量、过氧化物酶(POD)活性、超氧化物歧化酶(SOD)活性、丙二醛(MDA)含量、脯氨酸(Pro)含量等生理生化指标,葡萄糖、蔗糖、淀粉含量等渗透调节物质及α-淀粉酶、β-淀粉酶、总淀粉酶活性等与碳水化合物代谢相关的酶活性,共计13项指标。研究结果显示,不同种质材料间耐盐性差异显著(P<0.05),采用主成分分析与隶属函数法相结合的方法构建了一种适用于野牛草耐盐性评估的综合评价体系。其中Bd324和Bd769综合指数表现较优,其隶属函数均值分别达到0.85和0.75。野牛草耐盐性评价回归方程为D=0.351+0.266X1-0.211X2-0.191X3+0.121X4+0.144X5+0.093X6。本研究筛选出的优良种质为后续耐盐育种工作提供了重要材料,同时为盐渍化土地生态修复实践提供了理论依据和种质资源储备。
祁浩乐, 王思宁, 李晓霞, 石凤翎. 野牛草种质耐盐性综合评价及评价模型的初步构建[J]. 草业学报, 2026, 35(1): 119-129.
Hao-le QI, Si-ning WANG, Xiao-xia LI, Feng-ling SHI. Multivariate evaluation of the salt tolerance of Buchloe dactyloides germplasm lines and construction of a preliminary evaluation model[J]. Acta Prataculturae Sinica, 2026, 35(1): 119-129.
编号 Number | 品种 Variety | 来源地 Place of origin |
|---|---|---|
| 1 | Bd770 | 中国北京市Beijing, China |
| 2 | Bd769 | 中国北京市Beijing, China |
| 3 | Bd380 | 美国希伯伦市Hebron, USA |
| 4 | Bd415 | 美国麦克弗森市McPherson, USA |
| 5 | Bd324 | 美国皮埃尔堡市Fort Pierre, USA |
| 6 | Bd581 | 美国斯特拉特福市Stratford, USA |
| 7 | Bd631 | 美国达尔哈特市Dalhart, USA |
| 8 | Bd500 | 美国普拉特市Pratt, USA |
| 9 | Bd628 | 美国达尔哈特市Dalhart, USA |
| 10 | Bd358 | 美国布鲁宁市Bruning, USA |
| 11 | Bd540 | 美国沙特克市Shattuck, USA |
| 12 | Bd096 | 美国贝尔菲尔德市Belfield, USA |
| 13 | Bd678 | 美国达尔哈特市Dalhart, USA |
| 14 | Bd261 | 美国基斯通市Keystone, USA |
| 15 | Bd436 | 美国哈钦森市Hutchinson, USA |
表1 野牛草种质资源编号及其地理来源
Table 1 Germplasm resource numbers and geographical origins of B. dactyloides
编号 Number | 品种 Variety | 来源地 Place of origin |
|---|---|---|
| 1 | Bd770 | 中国北京市Beijing, China |
| 2 | Bd769 | 中国北京市Beijing, China |
| 3 | Bd380 | 美国希伯伦市Hebron, USA |
| 4 | Bd415 | 美国麦克弗森市McPherson, USA |
| 5 | Bd324 | 美国皮埃尔堡市Fort Pierre, USA |
| 6 | Bd581 | 美国斯特拉特福市Stratford, USA |
| 7 | Bd631 | 美国达尔哈特市Dalhart, USA |
| 8 | Bd500 | 美国普拉特市Pratt, USA |
| 9 | Bd628 | 美国达尔哈特市Dalhart, USA |
| 10 | Bd358 | 美国布鲁宁市Bruning, USA |
| 11 | Bd540 | 美国沙特克市Shattuck, USA |
| 12 | Bd096 | 美国贝尔菲尔德市Belfield, USA |
| 13 | Bd678 | 美国达尔哈特市Dalhart, USA |
| 14 | Bd261 | 美国基斯通市Keystone, USA |
| 15 | Bd436 | 美国哈钦森市Hutchinson, USA |
图1 盐胁迫下不同野牛草种质幼苗的株高和茎粗变化ns: P>0.05; *: P<0.05; **: P<0.01. 下同The same below.
Fig.1 Changes in plant height and stem diameter of seedlings of different B. dactyloides germplasm lines under salt stress
图2 盐胁迫下野牛草幼苗的叶片相对含水量、过氧化物酶活性、超氧化物歧化酶活性和丙二醛含量的变化
Fig.2 Changes in leaf relative water content, peroxidase activity, superoxide dismutase activity and malondialdehyde content of B. dactyloides seedlings under salt stress
成分 Component | 特征值 Eigenvalues | 方差贡献率 Variance contribution rate (%) | 累积贡献率 Cumulative contribution rate (%) |
|---|---|---|---|
| 初始特征值Initial eigenvalues | |||
| 1 | 3.835 | 29.500 | 29.500 |
| 2 | 2.623 | 20.180 | 49.681 |
| 3 | 1.814 | 13.955 | 63.636 |
| 4 | 1.452 | 11.172 | 74.807 |
| 5 | 0.981 | 7.546 | 82.353 |
| 6 | 0.750 | 5.768 | 88.121 |
| 7 | 0.555 | 4.270 | 92.391 |
| 8 | 0.543 | 4.175 | 96.566 |
| 9 | 0.325 | 2.498 | 99.064 |
| 10 | 0.068 | 0.520 | 99.584 |
| 11 | 0.031 | 0.239 | 99.823 |
| 12 | 0.015 | 0.119 | 99.942 |
| 13 | 0.007 | 0.058 | 100.000 |
| 提取平方和载入Extraction sums of squared loadings | |||
| 1 | 3.835 | 29.500 | 29.500 |
| 2 | 2.623 | 20.180 | 49.681 |
| 3 | 1.814 | 13.955 | 63.636 |
| 4 | 1.452 | 11.172 | 74.807 |
表2 初始特征值和提取的主成分贡献率
Table 2 Initial eigenvalues and extracted principal component contribution rate
成分 Component | 特征值 Eigenvalues | 方差贡献率 Variance contribution rate (%) | 累积贡献率 Cumulative contribution rate (%) |
|---|---|---|---|
| 初始特征值Initial eigenvalues | |||
| 1 | 3.835 | 29.500 | 29.500 |
| 2 | 2.623 | 20.180 | 49.681 |
| 3 | 1.814 | 13.955 | 63.636 |
| 4 | 1.452 | 11.172 | 74.807 |
| 5 | 0.981 | 7.546 | 82.353 |
| 6 | 0.750 | 5.768 | 88.121 |
| 7 | 0.555 | 4.270 | 92.391 |
| 8 | 0.543 | 4.175 | 96.566 |
| 9 | 0.325 | 2.498 | 99.064 |
| 10 | 0.068 | 0.520 | 99.584 |
| 11 | 0.031 | 0.239 | 99.823 |
| 12 | 0.015 | 0.119 | 99.942 |
| 13 | 0.007 | 0.058 | 100.000 |
| 提取平方和载入Extraction sums of squared loadings | |||
| 1 | 3.835 | 29.500 | 29.500 |
| 2 | 2.623 | 20.180 | 49.681 |
| 3 | 1.814 | 13.955 | 63.636 |
| 4 | 1.452 | 11.172 | 74.807 |
性状 Trait | 主成分Principal component | |||
|---|---|---|---|---|
| 1 | 2 | 3 | 4 | |
| 株高Plant height | 0.528 | 0.089 | 0.417 | -0.178 |
| 茎粗Stem diameter | 0.761 | -0.135 | -0.234 | 0.400 |
| 叶片相对含水量Leaf relative water content | 0.076 | 0.366 | 0.763 | -0.035 |
| 丙二醛含量Malondialdehyde (MDA) content | 0.587 | 0.598 | 0.142 | 0.045 |
| 超氧化物歧化酶活性Superoxide dismutase (SOD) activity | 0.460 | 0.437 | 0.145 | -0.641 |
| 过氧化物酶活性Peroxidase (POD) activity | -0.110 | -0.099 | -0.735 | -0.274 |
| 脯氨酸含量Proline (Pro) content | -0.810 | 0.204 | -0.328 | -0.011 |
| 蔗糖含量Sucrose content | 0.057 | -0.072 | 0.861 | -0.257 |
| 葡萄糖含量Glucose content | 0.338 | 0.137 | 0.001 | 0.873 |
| 淀粉含量Starch content | -0.847 | -0.104 | -0.018 | -0.063 |
| α-淀粉酶活性α-amylase activity | -0.019 | -0.643 | 0.204 | 0.368 |
| 总淀粉酶活性Total amylase activity | -0.141 | 0.795 | 0.268 | 0.133 |
| β-淀粉酶活性β-amylase activity | 0.013 | 0.947 | 0.157 | 0.018 |
表3 因子载荷矩阵
Table 3 Factor loading matrix
性状 Trait | 主成分Principal component | |||
|---|---|---|---|---|
| 1 | 2 | 3 | 4 | |
| 株高Plant height | 0.528 | 0.089 | 0.417 | -0.178 |
| 茎粗Stem diameter | 0.761 | -0.135 | -0.234 | 0.400 |
| 叶片相对含水量Leaf relative water content | 0.076 | 0.366 | 0.763 | -0.035 |
| 丙二醛含量Malondialdehyde (MDA) content | 0.587 | 0.598 | 0.142 | 0.045 |
| 超氧化物歧化酶活性Superoxide dismutase (SOD) activity | 0.460 | 0.437 | 0.145 | -0.641 |
| 过氧化物酶活性Peroxidase (POD) activity | -0.110 | -0.099 | -0.735 | -0.274 |
| 脯氨酸含量Proline (Pro) content | -0.810 | 0.204 | -0.328 | -0.011 |
| 蔗糖含量Sucrose content | 0.057 | -0.072 | 0.861 | -0.257 |
| 葡萄糖含量Glucose content | 0.338 | 0.137 | 0.001 | 0.873 |
| 淀粉含量Starch content | -0.847 | -0.104 | -0.018 | -0.063 |
| α-淀粉酶活性α-amylase activity | -0.019 | -0.643 | 0.204 | 0.368 |
| 总淀粉酶活性Total amylase activity | -0.141 | 0.795 | 0.268 | 0.133 |
| β-淀粉酶活性β-amylase activity | 0.013 | 0.947 | 0.157 | 0.018 |
编号 Number | 主成分Principal component | 隶属函数Membership function | D值 D value | 评价排序 Rank | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| F1 | F2 | F3 | F4 | U1 | U2 | U3 | U4 | |||
| 1 | 0.72 | 0.53 | 0.68 | 0.04 | 0.64 | 0.28 | 0.45 | 0.21 | 0.44 | 9 |
| 2 | 1.88 | 1.51 | 0.80 | 0.81 | 0.98 | 0.60 | 0.48 | 0.75 | 0.75 | 2 |
| 3 | 0.83 | 1.31 | 0.72 | 0.84 | 0.67 | 0.53 | 0.46 | 0.76 | 0.61 | 5 |
| 4 | 1.04 | 1.78 | 0.69 | 0.50 | 0.73 | 0.68 | 0.45 | 0.55 | 0.64 | 4 |
| 5 | 1.94 | 2.75 | 2.46 | 0.34 | 1.00 | 1.00 | 1.00 | 0.02 | 0.85 | 1 |
| 6 | 0.49 | 1.17 | 0.32 | 0.37 | 0.57 | 0.49 | 0.14 | 0.00 | 0.38 | 12 |
| 7 | 0.28 | 0.17 | 0.25 | 0.49 | 0.51 | 0.16 | 0.31 | 0.54 | 0.38 | 11 |
| 8 | 0.08 | 0.74 | 0.75 | 0.37 | 0.45 | 0.35 | 0.00 | 0.47 | 0.34 | 14 |
| 9 | 1.36 | 1.42 | 1.40 | 0.75 | 0.83 | 0.57 | 0.67 | 0.71 | 0.71 | 3 |
| 10 | 0.92 | 0.33 | 0.43 | 1.16 | 0.70 | 0.00 | 0.37 | 0.97 | 0.49 | 7 |
| 11 | 0.67 | 1.89 | 0.45 | 0.70 | 0.22 | 0.72 | 0.38 | 0.68 | 0.45 | 8 |
| 12 | 1.42 | 0.87 | 0.54 | 0.04 | 0.00 | 0.39 | 0.40 | 0.26 | 0.22 | 15 |
| 13 | 0.13 | 0.17 | 0.63 | 0.33 | 0.46 | 0.05 | 0.43 | 0.44 | 0.34 | 13 |
| 14 | 0.20 | 0.56 | 0.10 | 0.80 | 0.48 | 0.29 | 0.27 | 0.74 | 0.43 | 10 |
| 15 | 0.89 | 1.14 | 0.00 | 1.21 | 0.69 | 0.48 | 0.24 | 1.00 | 0.59 | 6 |
表4 野牛草各品种的主成分值、隶属函数值和综合评价值(D值)
Table 4 The principal component value, membership function value and comprehensive evaluation value (D value) of different varieties of B. dactyloides
编号 Number | 主成分Principal component | 隶属函数Membership function | D值 D value | 评价排序 Rank | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| F1 | F2 | F3 | F4 | U1 | U2 | U3 | U4 | |||
| 1 | 0.72 | 0.53 | 0.68 | 0.04 | 0.64 | 0.28 | 0.45 | 0.21 | 0.44 | 9 |
| 2 | 1.88 | 1.51 | 0.80 | 0.81 | 0.98 | 0.60 | 0.48 | 0.75 | 0.75 | 2 |
| 3 | 0.83 | 1.31 | 0.72 | 0.84 | 0.67 | 0.53 | 0.46 | 0.76 | 0.61 | 5 |
| 4 | 1.04 | 1.78 | 0.69 | 0.50 | 0.73 | 0.68 | 0.45 | 0.55 | 0.64 | 4 |
| 5 | 1.94 | 2.75 | 2.46 | 0.34 | 1.00 | 1.00 | 1.00 | 0.02 | 0.85 | 1 |
| 6 | 0.49 | 1.17 | 0.32 | 0.37 | 0.57 | 0.49 | 0.14 | 0.00 | 0.38 | 12 |
| 7 | 0.28 | 0.17 | 0.25 | 0.49 | 0.51 | 0.16 | 0.31 | 0.54 | 0.38 | 11 |
| 8 | 0.08 | 0.74 | 0.75 | 0.37 | 0.45 | 0.35 | 0.00 | 0.47 | 0.34 | 14 |
| 9 | 1.36 | 1.42 | 1.40 | 0.75 | 0.83 | 0.57 | 0.67 | 0.71 | 0.71 | 3 |
| 10 | 0.92 | 0.33 | 0.43 | 1.16 | 0.70 | 0.00 | 0.37 | 0.97 | 0.49 | 7 |
| 11 | 0.67 | 1.89 | 0.45 | 0.70 | 0.22 | 0.72 | 0.38 | 0.68 | 0.45 | 8 |
| 12 | 1.42 | 0.87 | 0.54 | 0.04 | 0.00 | 0.39 | 0.40 | 0.26 | 0.22 | 15 |
| 13 | 0.13 | 0.17 | 0.63 | 0.33 | 0.46 | 0.05 | 0.43 | 0.44 | 0.34 | 13 |
| 14 | 0.20 | 0.56 | 0.10 | 0.80 | 0.48 | 0.29 | 0.27 | 0.74 | 0.43 | 10 |
| 15 | 0.89 | 1.14 | 0.00 | 1.21 | 0.69 | 0.48 | 0.24 | 1.00 | 0.59 | 6 |
编号 Number | D值 D value | 预测值Prediction value | 差值Difference value | 估计精度Evaluation accuracy (%) | 编号 Number | D值 D value | 预测值Prediction value | 差值Difference value | 估计精度Evaluation accuracy (%) |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 0.441 | 0.466 | 0.025 | 94.65 | 9 | 0.710 | 0.708 | 0.002 | 99.74 |
| 2 | 0.750 | 0.738 | 0.012 | 98.40 | 10 | 0.488 | 0.463 | 0.025 | 94.81 |
| 3 | 0.607 | 0.613 | 0.006 | 99.04 | 11 | 0.454 | 0.458 | 0.004 | 99.07 |
| 4 | 0.639 | 0.642 | 0.003 | 99.53 | 12 | 0.219 | 0.210 | 0.008 | 96.18 |
| 5 | 0.854 | 0.846 | 0.007 | 99.13 | 13 | 0.342 | 0.347 | 0.005 | 98.66 |
| 6 | 0.380 | 0.383 | 0.003 | 99.29 | 14 | 0.428 | 0.432 | 0.004 | 99.08 |
| 7 | 0.384 | 0.370 | 0.013 | 96.49 | 15 | 0.593 | 0.610 | 0.017 | 97.21 |
| 8 | 0.340 | 0.341 | 0.001 | 99.78 |
表5 回归方程的估计精度分析
Table 5 Analysis of estimation precision of regression equation
编号 Number | D值 D value | 预测值Prediction value | 差值Difference value | 估计精度Evaluation accuracy (%) | 编号 Number | D值 D value | 预测值Prediction value | 差值Difference value | 估计精度Evaluation accuracy (%) |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 0.441 | 0.466 | 0.025 | 94.65 | 9 | 0.710 | 0.708 | 0.002 | 99.74 |
| 2 | 0.750 | 0.738 | 0.012 | 98.40 | 10 | 0.488 | 0.463 | 0.025 | 94.81 |
| 3 | 0.607 | 0.613 | 0.006 | 99.04 | 11 | 0.454 | 0.458 | 0.004 | 99.07 |
| 4 | 0.639 | 0.642 | 0.003 | 99.53 | 12 | 0.219 | 0.210 | 0.008 | 96.18 |
| 5 | 0.854 | 0.846 | 0.007 | 99.13 | 13 | 0.342 | 0.347 | 0.005 | 98.66 |
| 6 | 0.380 | 0.383 | 0.003 | 99.29 | 14 | 0.428 | 0.432 | 0.004 | 99.08 |
| 7 | 0.384 | 0.370 | 0.013 | 96.49 | 15 | 0.593 | 0.610 | 0.017 | 97.21 |
| 8 | 0.340 | 0.341 | 0.001 | 99.78 |
| [1] | Trejo-Téllez L I. Salinity stress tolerance in plants. Plants, 2023, 12(20): 3520. |
| [2] | Food and Agriculture Organization of the United Nations. The key report of the first global assessment of saline and sodic soils in the past 50 years. (2024-12-11)[2025-01-13]. https://www.fao.org/newsroom/detail/fao-launches-first-major-global-assessment-of-salt-affected-soils-in-50-years/zh?continueFlag=4abf1b7994dcaaee427c557d85985fad. |
| 联合国粮食及农业组织. 50年来首份盐渍土壤全球评估关键报告. (2024-12-11)[2025-01-13]. https://www.fao.org/newsroom/detail/fao-launches-first-major-global-assessment-of-salt-affected-soils-in-50-years/zh?continueFlag=4abf1b79 94dcaaee427c557d85985fad. | |
| [3] | Li Y, Li Y L, Zhai C Y, et al. Research advances in salt resistance of turfgrasses. Plant Physiology Journal, 2023, 59(5): 839-851. |
| 李岩, 李永龙, 翟晨元, 等. 草坪草耐盐性研究进展. 植物生理学报, 2023, 59(5): 839-851. | |
| [4] | Guo H, Cui Y N, Li Z, et al. Photosynthesis, water status and K/Na homeostasis of Buchoe dactyloides responding to salinity. Plants, 2023, 12(13): 2459. |
| [5] | Guo L Z, Meng H Z, Teng K, et al. Effects of nitrogen forms on the growth and nitrogen accumulation in Buchloe dactyloides seedlings. Plants, 2022, 11(16): 2086. |
| [6] | Sun J, Xiong J B, Liu Y Z, et al. Analysis on factors causing the seed dormancy of Buchloe dactyloides (Nutt.) Engelm. Acta Agrestia Sinica, 2009, 17(5): 665-669. |
| 孙杰, 熊军波, 刘永志, 等. 野牛草种子休眠原因分析. 草地学报, 2009, 17(5): 665-669. | |
| [7] | Wu F, Chen J, Wang J, et al. Intra-population genetic diversity of Buchloe dactyloides (Nutt.) Engelm (buffalograss) determined using morphological traits and sequence-related amplified polymorphism markers. 3 Biotech, 2019, 9(3): 97. |
| [8] | Zhao C F. The correlation analysis of different ploidy and phenotype characteristics of buffalo grass. Beijing: Chinese Academy of Forestry, 2014. |
| 赵成芳. 野牛草(Buchloe dactyloides)不同倍性与表型特征相关性分析. 北京: 中国林业科学研究院, 2014. | |
| [9] | Liu M Y, Guo L Z, Teng K, et al. Differences in the physiological responses of female and male Buchloe dactyloides plants to drought stress. Pratacultural Science, 2024, 41(6): 1397-1406. |
| 刘牧野, 郭丽珠, 滕珂, 等. 野牛草雌、雄株对干旱胁迫的生理响应差异. 草业科学, 2024, 41(6): 1397-1406. | |
| [10] | Li Z L, Huang K X, Sun Y. Salt-tolerance evaluation and analysis on buffalo grass germplasm resources. Grassland and Prataculture, 2022, 34(2): 27-34. |
| 李智林, 黄可心, 孙彦. 野牛草种质资源耐盐性评价与筛选. 草原与草业, 2022, 34(2): 27-34. | |
| [11] | Ren Y C, Liu J, Li M, et al. Effects of shading stress on antioxidant system of two buffalograss varieties. Acta Agrestia Sinica, 2017, 25(6): 1345-1351. |
| 任艺慈, 刘洁, 李茂, 等. 遮阴胁迫对两种野牛草抗氧化系统的影响. 草地学报, 2017, 25(6): 1345-1351. | |
| [12] | Li W, Qian Y Q, Han L, et al. The response of enzymatic active oxygen scavenging system in leaves of Buchloe dactyloides to differences photoperiod. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(7): 1428-1436. |
| 李伟, 钱永强, 韩蕾, 等. 野牛草克隆分株酶促活性氧清除系统对差异光周期的响应. 西北植物学报, 2015, 35(7): 1428-1436. | |
| [13] | Ding C S, Xu C S, Lu B, et al. Comprehensive evaluation of rice qualities under different nitrogen levels in South China. Foods, 2023, 12(4): 697. |
| [14] | Fu J P, Liu F C, Yan B Q, et al. Comprehensive evaluation and screening of adaptability of different sorghum varieties. Journal of Northwest A & F University (Natural Science Edition), 2025(5): 1-13. |
| 付江鹏, 柳发财, 闫宝琴, 等. 不同高粱品种适应性综合评价与筛选. 西北农林科技大学学报(自然科学版), 2025(5): 1-13. | |
| [15] | Feng Y X, Chen Z, Chen L Y, et al. Comprehensive evaluation of physio-morphological traits of alfalfa (Medicago sativa L.) varieties under salt stress. Plant Physiology, 2025, 177(1): e70044. |
| [16] | Shi Y H, Wan L Q, Liu J N, et al. Analysis of the principal components and the subordinate function of Lolium perenne drought resistance. Acta Agrestia Sinica, 2010, 18(5): 669-672. |
| 石永红, 万里强, 刘建宁, 等. 多年生黑麦草抗旱性主成分及隶属函数分析. 草地学报, 2010, 18(5): 669-672. | |
| [17] | Xia H M, Cao Z J, Yu M Y, et al. Tolerance of 30 Kentucky bluegrass varieties to NaCl stress during the seedling stage. Pratacultural Science, 2023, 40(12): 3124-3137. |
| 夏华美, 曹志坚, 于铭玥, 等. 30份草地早熟禾苗期耐盐性综合评价. 草业科学, 2023, 40(12): 3124-3137. | |
| [18] | Gao J F. Experimental guide of plant physiology. Beijing: Higher Education Press, 2006. |
| 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006. | |
| [19] | Xu Z C, Lu X L, Wei Y C, et al. Salt tolerance identification and evaluation of a population of wild soybean SP1 mutants at the seedling stage. Acta Prataculturae Sinica, 2023, 32(11): 168-178. |
| 徐宗昌, 鲁雪莉, 魏云冲, 等. 航天诱变野大豆SP1群体苗期耐盐性鉴定与评价. 草业学报, 2023, 32(11): 168-178. | |
| [20] | Webb, John J. The life history of buffalo grass. Transactions of the Kansas Academy of Science, 1941, 44: 58-75. |
| [21] | Wang N, Wan C, Gao S, et al. Screening and evaluation of salt tolerance of 80 alfalfa varieties at the seedling stage. Pratacultural Science, 2024, 41(3): 684-699. |
| 王宁, 万畅, 高山, 等. 80份紫花苜蓿品种苗期耐盐性筛选与评价. 草业科学, 2024, 41(3): 684-699. | |
| [22] | Xu M, Wang Q, Wang Y X, et al. Effects of different salt stress on seed germination and seedling growth of Elytrigia elongate. Chinese Journal of Grassland, 2020, 42(1): 15-20. |
| 徐曼, 王茜, 王奕骁, 等. 不同盐胁迫对长穗偃麦草种子萌发及幼苗生长的影响. 中国草地学报, 2020, 42(1): 15-20. | |
| [23] | Wang M, Lu X L, Wang J Y, et al. Evaluation and screening of the salt tolerance of triticale germplasm at the germination and seedling stages. Acta Prataculturae Sinica, 2024, 33(5): 58-68. |
| 王萌, 鲁雪莉, 王菊英, 等. 小黑麦种质萌发期苗期耐盐资源评价与筛选. 草业学报, 2024, 33(5): 58-68. | |
| [24] | Yuan Y T, Zhang X Y, Wu G F, et al. Comprehensive evaluation of salt tolerance of soybean germplasm resources based on principal component and membership function analysis. Soybean Science, 2025, 44(1): 22-32. |
| 袁宇婷, 张晓燕, 吴谷丰, 等. 基于主成分和隶属函数分析的大豆种质资源耐盐性综合评价. 大豆科学, 2025, 44(1): 22-32. | |
| [25] | Tian H, Liu H, Zhang D, et al. Screening of salt tolerance of maize (Zea mays L.) lines using membership function value and GGE biplot analysis. PeerJ, 2024, 29(12): e16838. |
| [26] | Panda S K, Khan M H. Salt stress influences lipid peroxidation and antioxidants in the leaf of an indica rice (Oryza saliva L.). Physiology and Molecular Biology of Plants, 2003, 9(2): 273-278. |
| [27] | Miao H, Wei L, Yang Y P, et al. Comprehensive screening of Agropyron cultivars for tolerance to salt stress at the seedling stage. Acta Prataculturae Sinica, 2023, 32(3): 200-211. |
| 苗涵, 魏莱, 杨燕萍, 等. 海水胁迫下冰草幼苗期耐盐性指标筛选. 草业学报, 2023, 32(3): 200-211. | |
| [28] | Liu Y, Yang W, Ma H L, et al. Effects of salt stress on seedling physiological characteristics of six Kentucky bluegrass. Journal of Gansu Agricultural University, 2019, 54(5): 140-150, 162. |
| 刘燕, 杨伟, 马晖玲, 等. 盐胁迫对6种草地早熟禾幼苗生理特性的影响. 甘肃农业大学学报, 2019, 54(5): 140-150, 162. | |
| [29] | Guo X, Ahmad N, Zhao S, et al. Effect of salt stress on growth and physiological properties of Asparagus seedlings. Plants, 2022, 11(21): 2836. |
| [30] | Yan F, Zhang J, Li W, et al. Exogenous melatonin alleviates salt stress by improving leaf photosynthesis in rice seedlings. Plant Physiology and Biochemistry, 2021, 163(3): 367-375. |
| [31] | Yao Y H, Kang Y C, Yang X Y, et al. Effects of NaCl stress on physiological and biochemical characteristics, yield and quality of potato. Gansu Agricultural Science and Technology, 2020(4): 36-42. |
| 姚彦红, 康益晨, 杨昕宇, 等. NaCl胁迫对马铃薯生理生化特性产量及品质的影响. 甘肃农业科技, 2020(4): 36-42. | |
| [32] | Li Y, Chu Y, Yao K, et al. Response of sugar metabolism in the cotyledons and roots of Ricinus communis subjected to salt stress. BMC Plant Biology, 2023, 25(1): 62-71. |
| [1] | 郭楠, 杜鹉辰, 纪守坤, 刘建, 崔素倩, 袁辉, 韩旭, 刘计双, 高立杰. 施肥和补播对山地草甸牧草营养及瘤胃发酵的影响[J]. 草业学报, 2025, 34(4): 150-163. |
| [2] | 高守舆, 刘文静, 李钰莹, 向清源, 许佳俊, 舒蕾淇, 李肇中. 苗期白羊草对盐胁迫的生理生化响应及其耐盐阈值的界定[J]. 草业学报, 2025, 34(3): 164-174. |
| [3] | 李永龙, 周生辉, 薛梦瑶, 高远, 巨乐, 陈奕冰, 付松林, 郝建昊, 李恒, 张昆, 左志芳. 结缕草ZjWRKY63基因的克隆及转基因拟南芥的耐盐性分析[J]. 草业学报, 2025, 34(12): 157-169. |
| [4] | 孙诗炫, 王群森, 杨志民, 范宁丽, 郝田, 刘南清, 于景金. 自主选育苇状羊茅新品种耐热及热后恢复能力评价[J]. 草业学报, 2025, 34(11): 184-194. |
| [5] | 郭常英, 杜文华. 小黑麦及其近缘种花序及穗部特征差异[J]. 草业学报, 2025, 34(11): 205-216. |
| [6] | 关皓, 许多, 李海萍, 贾志锋, 马祥, 刘文辉, 陈有军, 李欣洋, 黄艳玲, 周青平, 陈仕勇. 高寒地区17个燕麦品种营养品质及瘤胃降解特性研究[J]. 草业学报, 2024, 33(9): 185-198. |
| [7] | 陆姣云, 田宏, 熊军波, 吴新江, 刘洋, 张鹤山. 14份乡土狼尾草材料幼苗的耐冷性综合评价[J]. 草业学报, 2024, 33(8): 98-111. |
| [8] | 孟晨, 鲁雪莉, 宋亦汝, 张成省, 李义强, 项海芹, 徐宗昌. 11份益母草种质材料苗期耐盐性评价与鉴定[J]. 草业学报, 2024, 33(5): 196-203. |
| [9] | 王萌, 鲁雪莉, 王菊英, 张梦超, 宋奕汝, 孟晨, 张莉, 徐宗昌. 小黑麦种质萌发期苗期耐盐资源评价与筛选[J]. 草业学报, 2024, 33(5): 58-68. |
| [10] | 张译尹, 李雪颖, 王斌, 宋珂辰, 兰剑, 胡海英. 盐胁迫对不同种质小黑麦幼苗水分利用效率和渗透调节的影响[J]. 草业学报, 2024, 33(4): 87-98. |
| [11] | 周昕越, 蒋庆雪, 贾会丽, 马琳, 樊璐, 王学敏. 紫花苜蓿MsBBX20基因克隆及耐盐功能分析[J]. 草业学报, 2024, 33(10): 55-73. |
| [12] | 张珈敏, 关皓, 李海萍, 贾志锋, 马祥, 刘文辉, 陈有军, 陈仕勇, 蒋永梅, 甘丽, 周青平, 杨丽雪. 混播比例及乳酸菌剂对燕麦-饲用豌豆发酵TMR品质及瘤胃降解特性的影响[J]. 草业学报, 2024, 33(1): 169-181. |
| [13] | 张适阳, 刘凤民, 崔均涛, 何磊, 冯月燕, 张伟丽. 三种外源物质对低温胁迫下柱花草生理与荧光特性的影响[J]. 草业学报, 2023, 32(6): 85-99. |
| [14] | 杨小涵, 伍国强, 魏明, 王北辰. HKT在植物离子稳态和响应非生物逆境胁迫中的作用[J]. 草业学报, 2023, 32(5): 190-202. |
| [15] | 曹玉莹, 苏雪萌, 周正朝, 郑群威, 岳佳辉. 黄土高原典型草本植物根-土复合体抗剪性能的空间差异性及其影响因素研究[J]. 草业学报, 2023, 32(5): 94-105. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||