草业学报 ›› 2021, Vol. 30 ›› Issue (1): 46-58.DOI: 10.11686/cyxb2020268
李聪聪1(), 周亚星1, 谷强2, 杨明新2, 朱传鲁3, 彭子原3, 薛凯4, 赵新全5, 王艳芬3, 纪宝明1, 张静1()
收稿日期:
2020-06-15
修回日期:
2020-07-21
出版日期:
2021-01-20
发布日期:
2021-01-08
通讯作者:
张静
作者简介:
Corresponding author. E-mail: zhangjing_2019@bjfu.edu.cn基金资助:
Cong-cong LI1(), Ya-xing ZHOU1, Qiang GU2, Ming-xin YANG2, Chuan-lu ZHU3, Zi-yuan PENG3, Kai XUE4, Xin-quan ZHAO5, Yan-fen WANG3, Bao-ming JI1, Jing ZHANG1()
Received:
2020-06-15
Revised:
2020-07-21
Online:
2021-01-20
Published:
2021-01-08
Contact:
Jing ZHANG
摘要:
为探究三江源地区典型高寒草地生态系统中丛枝菌根(AM)真菌群落变化的关键驱动过程,以三江源国家公园高寒荒漠、高寒草原、高寒草甸和高寒湿地4种典型草地生态系统为研究对象,基于Illumina-Miseq高通量测序手段,通过分析不同生态系统中AM真菌群落的物种及谱系组成,并结合群落谱系分析方法,探明影响AM真菌群落组成的各种因素,推断出AM真菌群落的构建机制及关键生态过程。结果表明:1)4种草地类型AM真菌多样性和群落结构存在明显差异,高寒荒漠、高寒草甸、高寒湿地的优势属均为球囊霉属(Glomus),高寒草原的优势属则为多样孢囊霉属(Diversispora)。2)高寒湿地AM真菌的OTU丰富度和谱系多样性指数均显著低于其他3种草地类型。3)植物群落组成、土壤含水量和有效N∶P是影响AM真菌群落组成的主要因子,其中土壤含水量是AM真菌群落物种组成的首要决定因素,而植物群落组成是决定AM真菌群落谱系组成的关键因子。4)4种草地类型的AM真菌群落谱系结构均为聚集模式,在高寒荒漠,AM真菌群落构建由随机过程决定,而在高寒草原、高寒草甸和高寒湿地,AM真菌群落受随机过程以及微弱的环境选择作用主导。
李聪聪, 周亚星, 谷强, 杨明新, 朱传鲁, 彭子原, 薛凯, 赵新全, 王艳芬, 纪宝明, 张静. 三江源区典型高寒草地丛枝菌根真菌多样性及构建机制[J]. 草业学报, 2021, 30(1): 46-58.
Cong-cong LI, Ya-xing ZHOU, Qiang GU, Ming-xin YANG, Chuan-lu ZHU, Zi-yuan PENG, Kai XUE, Xin-quan ZHAO, Yan-fen WANG, Bao-ming JI, Jing ZHANG. The species diversity and community assembly of arbuscular mycorrhizal fungi in typical alpine grassland in Sanjiangyuan region[J]. Acta Prataculturae Sinica, 2021, 30(1): 46-58.
变量 Variables | 高寒荒漠 Alpine desert | 高寒草原 Alpine steppe | 高寒草甸 Alpine meadow | 高寒湿地 Alpine wetland | 变异系数 Coefficient of variation (CV, %) |
---|---|---|---|---|---|
植物丰富度Plant richness | 8.54±0.45ab | 7.92±0.21bc | 9.54±0.65a | 6.78±0.78c | 24 |
香农-威纳指数Shannon-Wiener index | 1.93±0.05a | 1.89±0.03a | 2.06±0.09a | 1.65±0.11b | 14 |
土壤含水量SWC (%) | 4.39±0.44d | 14.06±0.38c | 22.60±1.03b | 37.30±2.82a | 68 |
土壤pH Soil pH | 8.88±0.02a | 8.18±0.02b | 8.07±0.05b | 8.19±0.09b | 4 |
土壤有机碳SOC (g·kg-1) | 5.83±0.85c | 27.68±5.10b | 58.75±3.55a | 53.19±5.51a | 73 |
可溶性有机碳DOC (mg·kg-1) | 68.04±1.63c | 119.51±6.46b | 160.34±5.16a | 156.45±4.17a | 33 |
土壤全氮TN (g·kg-1) | 0.75±0.07c | 2.84±0.46b | 5.00±0.35a | 5.28±0.43a | 66 |
土壤全磷TP (g·kg-1) | 0.25±0.01b | 0.51±0.02a | 0.51±0.02a | 0.49±0.03a | 29 |
土壤有效氮AN (mg·kg-1) | 11.48±0.50c | 58.84±2.12b | 78.15±5.22a | 73.57±11.68a | 60 |
土壤有效磷AP (mg·kg-1) | 2.62±0.46c | 6.39±0.44b | 8.80±0.42a | 5.80±0.90b | 49 |
有效氮磷比N∶P | 5.34±0.57b | 9.63±0.59b | 9.04±0.66b | 14.99±3.65a | 63 |
表1 植物和土壤环境因子的变异性
Table 1 Variability of plant and soil environmental factors
变量 Variables | 高寒荒漠 Alpine desert | 高寒草原 Alpine steppe | 高寒草甸 Alpine meadow | 高寒湿地 Alpine wetland | 变异系数 Coefficient of variation (CV, %) |
---|---|---|---|---|---|
植物丰富度Plant richness | 8.54±0.45ab | 7.92±0.21bc | 9.54±0.65a | 6.78±0.78c | 24 |
香农-威纳指数Shannon-Wiener index | 1.93±0.05a | 1.89±0.03a | 2.06±0.09a | 1.65±0.11b | 14 |
土壤含水量SWC (%) | 4.39±0.44d | 14.06±0.38c | 22.60±1.03b | 37.30±2.82a | 68 |
土壤pH Soil pH | 8.88±0.02a | 8.18±0.02b | 8.07±0.05b | 8.19±0.09b | 4 |
土壤有机碳SOC (g·kg-1) | 5.83±0.85c | 27.68±5.10b | 58.75±3.55a | 53.19±5.51a | 73 |
可溶性有机碳DOC (mg·kg-1) | 68.04±1.63c | 119.51±6.46b | 160.34±5.16a | 156.45±4.17a | 33 |
土壤全氮TN (g·kg-1) | 0.75±0.07c | 2.84±0.46b | 5.00±0.35a | 5.28±0.43a | 66 |
土壤全磷TP (g·kg-1) | 0.25±0.01b | 0.51±0.02a | 0.51±0.02a | 0.49±0.03a | 29 |
土壤有效氮AN (mg·kg-1) | 11.48±0.50c | 58.84±2.12b | 78.15±5.22a | 73.57±11.68a | 60 |
土壤有效磷AP (mg·kg-1) | 2.62±0.46c | 6.39±0.44b | 8.80±0.42a | 5.80±0.90b | 49 |
有效氮磷比N∶P | 5.34±0.57b | 9.63±0.59b | 9.04±0.66b | 14.99±3.65a | 63 |
图2 AM真菌属水平上在各草地类型的相对丰度[48]不同小写字母表示不同草地类型间差异显著(P<0.05)。Different lowcase letters show the significant differences among different alpine grassland ecosystems (P<0.05).
Fig.2 Relative abundance of AM fungi in various grassland types at the level of genus
变量 Variables | 高寒荒漠 Alpine desert | 高寒草原 Alpine steppe | 高寒草甸 Alpine meadow | 高寒湿地 Alpine wetland |
---|---|---|---|---|
OTU丰富度OTU richness | 322.54±8.87b | 333.85±9.88b | 343.00±4.84b | 188.78±29.57a |
香农-威纳指数Shannon-Wiener index | 3.23±0.09a | 3.29±0.06a | 3.37±0.10a | 3.09±0.30a |
PD指数Phylogentic diversity index | 6.38±0.14a | 6.47±0.15a | 6.66±0.06a | 4.26±0.47b |
表2 不同草地类型间AM真菌α多样性指数的差异
Table 2 Differences in α diversity index of AM fungi among different grassland types
变量 Variables | 高寒荒漠 Alpine desert | 高寒草原 Alpine steppe | 高寒草甸 Alpine meadow | 高寒湿地 Alpine wetland |
---|---|---|---|---|
OTU丰富度OTU richness | 322.54±8.87b | 333.85±9.88b | 343.00±4.84b | 188.78±29.57a |
香农-威纳指数Shannon-Wiener index | 3.23±0.09a | 3.29±0.06a | 3.37±0.10a | 3.09±0.30a |
PD指数Phylogentic diversity index | 6.38±0.14a | 6.47±0.15a | 6.66±0.06a | 4.26±0.47b |
图3 AM真菌群落(A)物种组成(Bray-Curtis distance)和(B)谱系组成(Weighted-UniFrac)的NMDS排序
Fig.3 NMDS ordination of AM fungal community (A) species composition (Bray-Curtis distance) and (B) phylogenetic composition (Weighted-UniFrac)
类型Type | F | P |
---|---|---|
高寒荒漠/高寒草原Alpine desert/alpine steppe | 4.89 | 0.001 |
高寒荒漠/高寒草甸Alpine desert/alpine meadow | 3.87 | 0.001 |
高寒荒漠/高寒湿地Alpine desert/alpine wetland | 7.03 | 0.001 |
高寒草原/高寒草甸Alpine steppe/alpine meadow | 3.00 | 0.002 |
高寒草原/高寒湿地Alpine steppe/alpine wetland | 8.11 | 0.001 |
高寒草甸/高寒湿地Alpine meadow/alpine wetland | 5.67 | 0.001 |
表3 不同草地类型间AM真菌群落组成的PerMANOVA分析[48]
Table 3 PerMANOVA analysis of AM fungal community composition among different grassland types
类型Type | F | P |
---|---|---|
高寒荒漠/高寒草原Alpine desert/alpine steppe | 4.89 | 0.001 |
高寒荒漠/高寒草甸Alpine desert/alpine meadow | 3.87 | 0.001 |
高寒荒漠/高寒湿地Alpine desert/alpine wetland | 7.03 | 0.001 |
高寒草原/高寒草甸Alpine steppe/alpine meadow | 3.00 | 0.002 |
高寒草原/高寒湿地Alpine steppe/alpine wetland | 8.11 | 0.001 |
高寒草甸/高寒湿地Alpine meadow/alpine wetland | 5.67 | 0.001 |
项目 Item | OTU丰富度 OTU richness | 香农-威纳指数 Shannon-Wiener index | 谱系多样性指数 Faith’s phylogentic diversity index | |||
---|---|---|---|---|---|---|
r | P | r | P | r | P | |
植物丰富度Plant richness | 0.48 | 0.001 | -0.03 | 0.828 | 0.49 | 0.000 |
香农-威纳指数Shannon-Wiener index | 0.47 | 0.001 | -0.15 | 0.309 | 0.47 | 0.001 |
土壤含水量SWC | -0.59 | 0.000 | -0.07 | 0.657 | -0.60 | 0.000 |
pH | 0.05 | 0.715 | -0.04 | 0.788 | 0.07 | 0.654 |
土壤有机碳SOC | -0.17 | 0.248 | -0.12 | 0.403 | -0.17 | 0.243 |
土壤全氮TN | -0.23 | 0.109 | -0.13 | 0.385 | -0.24 | 0.104 |
土壤全磷TP | -0.06 | 0.697 | 0.04 | 0.777 | -0.08 | 0.594 |
土壤有效磷AP | 0.21 | 0.160 | 0.24 | 0.101 | 0.19 | 0.197 |
可溶性有机碳DOC | -0.23 | 0.124 | -0.04 | 0.809 | -0.23 | 0.112 |
土壤有效氮AN | -0.05 | 0.727 | 0.02 | 0.912 | -0.06 | 0.676 |
有效氮磷比N∶P | -0.33 | 0.024 | -0.40 | 0.005 | -0.32 | 0.027 |
表4 AM真菌α多样性指数与环境因子的相关性
Table 4 Correlation between α diversity index of AM fungi and environmental factors
项目 Item | OTU丰富度 OTU richness | 香农-威纳指数 Shannon-Wiener index | 谱系多样性指数 Faith’s phylogentic diversity index | |||
---|---|---|---|---|---|---|
r | P | r | P | r | P | |
植物丰富度Plant richness | 0.48 | 0.001 | -0.03 | 0.828 | 0.49 | 0.000 |
香农-威纳指数Shannon-Wiener index | 0.47 | 0.001 | -0.15 | 0.309 | 0.47 | 0.001 |
土壤含水量SWC | -0.59 | 0.000 | -0.07 | 0.657 | -0.60 | 0.000 |
pH | 0.05 | 0.715 | -0.04 | 0.788 | 0.07 | 0.654 |
土壤有机碳SOC | -0.17 | 0.248 | -0.12 | 0.403 | -0.17 | 0.243 |
土壤全氮TN | -0.23 | 0.109 | -0.13 | 0.385 | -0.24 | 0.104 |
土壤全磷TP | -0.06 | 0.697 | 0.04 | 0.777 | -0.08 | 0.594 |
土壤有效磷AP | 0.21 | 0.160 | 0.24 | 0.101 | 0.19 | 0.197 |
可溶性有机碳DOC | -0.23 | 0.124 | -0.04 | 0.809 | -0.23 | 0.112 |
土壤有效氮AN | -0.05 | 0.727 | 0.02 | 0.912 | -0.06 | 0.676 |
有效氮磷比N∶P | -0.33 | 0.024 | -0.40 | 0.005 | -0.32 | 0.027 |
项目 Item | 群落物种组成Virtual taxon composition | 谱系组成Phylogenetic composition | ||
---|---|---|---|---|
r | P | r | P | |
植物丰富度Plant richness | 0.24 | 0.007 | 0.11 | 0.099 |
香农-威纳指数Shannon-Wiener index | 0.26 | 0.009 | 0.12 | 0.107 |
土壤含水量SWC | 0.58 | 0.001 | 0.49 | 0.001 |
pH | 0.08 | 0.113 | 0.19 | 0.001 |
土壤有机碳SOC | 0.14 | 0.018 | 0.23 | 0.001 |
土壤全氮TN | 0.17 | 0.009 | 0.28 | 0.002 |
土壤全磷TP | 0.07 | 0.166 | 0.09 | 0.110 |
土壤有效磷AP | 0.02 | 0.347 | 0.15 | 0.013 |
可溶性有机碳DOC | 0.09 | 0.040 | 0.19 | 0.001 |
土壤有效氮AN | 0.18 | 0.011 | 0.23 | 0.004 |
有效氮磷比N∶P | 0.30 | 0.029 | 0.45 | 0.001 |
表5 AM真菌群落组成与环境因子的Mantel test分析
Table 5 Mantel test analysis of AM fungal community composition and environmental factors
项目 Item | 群落物种组成Virtual taxon composition | 谱系组成Phylogenetic composition | ||
---|---|---|---|---|
r | P | r | P | |
植物丰富度Plant richness | 0.24 | 0.007 | 0.11 | 0.099 |
香农-威纳指数Shannon-Wiener index | 0.26 | 0.009 | 0.12 | 0.107 |
土壤含水量SWC | 0.58 | 0.001 | 0.49 | 0.001 |
pH | 0.08 | 0.113 | 0.19 | 0.001 |
土壤有机碳SOC | 0.14 | 0.018 | 0.23 | 0.001 |
土壤全氮TN | 0.17 | 0.009 | 0.28 | 0.002 |
土壤全磷TP | 0.07 | 0.166 | 0.09 | 0.110 |
土壤有效磷AP | 0.02 | 0.347 | 0.15 | 0.013 |
可溶性有机碳DOC | 0.09 | 0.040 | 0.19 | 0.001 |
土壤有效氮AN | 0.18 | 0.011 | 0.23 | 0.004 |
有效氮磷比N∶P | 0.30 | 0.029 | 0.45 | 0.001 |
图5 植物群落组成、土壤含水量和土壤有效N∶P对(A)AM真菌群落物种组成及(B)谱系组成的贡献率
Fig.5 Contribution rate of plant community composition, soil water content and soil available N∶P to (A) AM fungal virtual taxon composition and (B) phylogenetic composition
图6 草地类型、植物群落组成、土壤含水量和土壤有效N∶P对AM真菌群落物种组成和谱系组成影响的因果关系路径,以及每个因子对AM真菌群落影响的标准化总效应系数(直接路径+间接路径)
Fig.6 The structural equation model shows the causal path of the effects of grassland type, plant community composition, soil water content and soil available N∶P on AM fungal virtual taxon composition and phylogenetic composition, and the standardized total effect coefficient (direct path+indirect path) of each factor on AM fungal community
1 | Webb C O, Ackerly D D, Mcpeek M A, et al. Phylogenies and community ecology. Annual Review of Ecology and Systematics, 2002, 33(1): 475-505. |
2 | Leibold M A, Mcpeek M A. Coexistence of the niche and neutral perspectives in community ecology. Ecology, 2006, 87(6): 1399-1410. |
3 | Mcgill B J, Maurer B A, Weiser M D. Empirical evaluation of neutral theory. Ecology, 2006, 87(6): 1411-1423. |
4 | Chai Y X. The species diversity and community assembly of arbuscular mycorrhizal fungi in Qilianshan Mountains on a northwest- facing slope and a southeast-facing slope. Lanzhou: Lanzhou University, 2018. |
柴宇星. 祁连山阴阳坡丛枝菌根真菌多样性及群落构建机制研究. 兰州: 兰州大学, 2018. | |
5 | Griffiths R I, Thomson B C, James P, et al. The bacterial biogeography of British soils. Environmental Microbiology, 2011, 13(6): 1642-1654. |
6 | Fierer N, Jackson R B. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(3): 626-631. |
7 | Shi Y, Grogan P, Sun H, et al. Multi-scale variability analysis reveals the importance of spatial distance in shaping Arctic soil microbial functional communities. Soil Biology and Biochemistry, 2015, 86: 126-134. |
8 | Valyi K, Mardhiah U, Rillig M C, et al. Community assembly and coexistence in communities of arbuscular mycorrhizal fungi. The ISME Journal, 2016, 10(10): 2341-2351. |
9 | Niu K C, Liu Y N, Shen Z H, et al. Community assembly: The relative importance of neutral theory and niche theory. Biodiversity Science, 2009, 17(6): 579-593. |
牛克昌, 刘怿宁, 沈泽昊, 等. 群落构建的中性理论和生态位理论. 生物多样性, 2009, 17(6): 579-593. | |
10 | Chu H Y, Feng M M, Liu X, et al. Soil microbial biogeography: Recent advances in China and research frontiers in the world. Acta Pedologica Sinica, 2020(3): 515-529. |
褚海燕, 冯毛毛, 柳旭, 等. 土壤微生物生物地理学: 国内进展与国际前沿. 土壤学报, 2020(3): 515-529. | |
11 | Wagg C, Bender S F, Widmer F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(14): 5266-5270. |
12 | Smith S E, Read D J. Mycorrhizal symbiosis. Cambridge: Academic Press, 2008. |
13 | Tedersoo L, Bahram M, Zobel M. How mycorrhizal associations drive plant population and community biology. Science, 2020, 367(6480): 867-878. |
14 | Vázquez E, Benito M, Espejo R, et al. No-tillage and liming increase the root mycorrhizal colonization, plant biomass and N content of a mixed oat and vetch crop. Soil and Tillage Research, 2020, DOI: 10.1016/j.still.2020.104623. |
15 | Wu Q, Srivastava A K, Zou Y. AMF-induced tolerance to drought stress in citrus: A review. Scientia Horticulturae, 2013, 164: 77-87. |
16 | Liu Y J. The mechanisms of anthropogenic disturbances on arbuscular mycorrhizal fungal communities. Lanzhou: Lanzhou University, 2012. |
刘永俊. 扰动对AM真菌群落影响及机制研究. 兰州: 兰州大学, 2012. | |
17 | Hodge A, Fitter A H. Microbial mediation of plant competition and community structure. Functional Ecology, 2013, 27(4): 865-875. |
18 | Koziol L, Bever J D. The missing link in grassland restoration: Arbuscular mycorrhizal fungi inoculation increases plant diversity and accelerates succession. Journal of Applied Ecology, 2017, 54(5): 1301-1309. |
19 | Leifheit E F, Veresoglou S D, Lehmann A, et al. Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—A meta-analysis. Plant and Soil, 2014, 374(1/2): 523-537. |
20 | Cheng L, Booker F L, Tu C, et al. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science, 2012, 337(6098): 1084-1087. |
21 | Powell J R, Rillig M C. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytologist, 2018, 220(4): 1059-1075. |
22 | van der Heijden M G A, Martin F M, Selosse M, et al. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytologist, 2015, 205(4): 1406-1423. |
23 | Jiang S, Liu Y, Luo J, et al. Dynamics of arbuscular mycorrhizal fungal community structure and functioning along a nitrogen enrichment gradient in an alpine meadow ecosystem. New Phytologist, 2018, 220(4): 1222-1235. |
24 | Shi G, Liu Y, Johnson N C, et al. Interactive influence of light intensity and soil fertility on root-associated arbuscular mycorrhizal fungi. Plant and Soil, 2014, 378(1/2): 173-188. |
25 | Zhang J, Wang F, Che R, et al. Corrigendum: Precipitation shapes communities of arbuscular mycorrhizal fungi in Tibetan Alpine Steppe. Scientific Reports, 2016, 6: 23488. |
26 | Dumbrell A J, Nelson M, Helgason T, et al. Relative roles of niche and neutral processes in structuring a soil microbial community. The ISME Journal, 2010, 4(3): 337-345. |
27 | Neuenkamp L, Moora M, öpik M, et al. The role of plant mycorrhizal type and status in modulating the relationship between plant and arbuscular mycorrhizal fungal communities. New Phytologist, 2018, 220(4): 1236-1247. |
28 | Lekberg Y, Koide R T, Rohr J R, et al. Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. Journal of Ecology, 2007, 95(1): 95-105. |
29 | Hao A H, Xue X, Peng F, et al. Different vegetation and soil degradation characteristics of a typical grassland in the Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 2020, 40(3): 964-975. |
郝爱华, 薛娴, 彭飞, 等. 青藏高原典型草地植被退化与土壤退化研究. 生态学报, 2020, 40(3): 964-975. | |
30 | Zhang L, Zhou G S, Ji Y H, et al. Spatiotemporal dynamic simulation of grassland carbon storage in China. Scientia Sinica (Terrae), 2016, 46(10): 1392-1405. |
张利, 周广胜, 汲玉河, 等. 中国草地碳储量时空动态模拟研究. 中国科学: 地球科学, 2016, 46(10): 1392-1405. | |
31 | Chen J J. Research on change of fractional vegetation cover of alpine grassland and its environmental impact factors on the Qinghai-Tibetan Plateau. Acta Geodaetica et Cartographica Sinica, 2020, 49(4): 533. |
陈建军. 青藏高原高寒草地植被覆盖度变化及其环境影响因子研究. 测绘学报, 2020, 49(4): 533. | |
32 | Xue K, Zhang B, Zhou S T, et al. Soil microbial communities in alpine grasslands on the Tibetan Plateau and their influencing factors. Chinese Science Bulletin. 2019, 64(27): 2915-2927. |
薛凯, 张彪, 周姝彤, 等. 青藏高原高寒草地土壤微生物群落及影响因子. 科学通报, 2019, 64(27): 2915-2927. | |
33 | Qiu Y, Wu P F, Wei X. Differences among three artificial grasslands in dynamics and community diversity of soil microarthropods. Acta Prataculturae Sinica, 2020, 29(5): 21-32. |
邱月, 吴鹏飞, 魏雪. 三种人工草地小型土壤节肢动物群落多样性动态及其差异. 草业学报, 2020, 29(5): 21-32. | |
34 | Yao T D, Zhu L P. The response of environmental changes on Tibetan Plateau to global changes and adaptation strategy. Advances in Earth Science, 2006(5): 459-464. |
姚檀栋, 朱立平. 青藏高原环境变化对全球变化的响应及其适应对策. 地球科学进展, 2006, 25(5): 459-464. | |
35 | Yao T D, Thompson L G, Mosbrugger V, et al. Third pole environment (TPE). Environmental Development, 2012, 3: 52-64. |
36 | Zhang L, Wang X J, Wang Q, et al. Advances in the study of arbuscular mycorrhizal fungi in high altitude and cold habitats on Tibetan Plateau. Journal of Fungal Research, 2017, 15(1): 58-69. |
张亮, 王晓娟, 王强, 等. 青藏高原高寒生境中丛枝菌根真菌研究进展. 菌物研究, 2017, 15(1): 58-69. | |
37 | Liu A R, Yang T, Xu W, et al. Status, issues and prospects of belowground biodiversity on the Tibetan alpine grassland. Biodiversity Science, 2018, 26(9): 972-987. |
刘安榕, 杨腾, 徐炜, 等. 青藏高原高寒草地地下生物多样性: 进展、问题与展望. 生物多样性, 2018, 26(9): 972-987. | |
38 | Li X, Gai J, Cai X, et al. Molecular diversity of arbuscular mycorrhizal fungi associated with two co-occurring perennial plant species on a Tibetan altitudinal gradient. Mycorrhiza, 2014, 24(2): 95-107. |
39 | Peng Y L, Cai X B. Changes of arbuscular mycorrhizal fungal community in an alpine grassland altitudinal gradient. Acta Ecologica Sinica, 2015, 35(22): 7475-7484. |
彭岳林, 蔡晓布. 丛枝菌根真菌群落沿高寒草原海拔梯度的变化特征. 生态学报, 2015, 35(22): 7475-7484. | |
40 | Lu R K. Analytical methods of soil agricultural chemistry. Beijing: China Agricultural Science Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000: 12-193. | |
41 | Nelson D W, Sommers L E. Total carbon, organic carbon, and organic matter//In: Sparks D L, Page A L, Helmke P A, et al. Methods of soil analysis. Part 3: Chemical methods. Madison, Wisconsin, USA: Soil Science Society of America, 1996: 961-1010. |
42 | Bremner J M, Mulvaney C S. Nitrogen-total//In: Page A L, Miller R H, Keeney D R, et al. Methods of soil analysis. Part 2: Chemical and microbiological properties (2nd Edition). Madison: American Society of Agronomy, 1982: 595-624. |
43 | Olsen S R. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture, 1954, 939: 1-19. |
44 | Kembel S W, Cowan P D, Helmus M R, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 2010, 26(11): 1463-1464. |
45 | Jia X, Dini-Andreote F, Salles J F. Community assembly processes of the microbial rare biosphere. Trends in Microbiology, 2018, 26(9): 738-747. |
46 | Hooper D, Coughlan J, Mullen M R. Structural equation modeling: Guidelines for determining model fit. The Electronic Journal of Business Research Methods, 2008, 6: 53-60. |
47 | Wang Y S, Liu R J. A checklist of arbuscular mycorrhizal fungi in the recent taxonomic system of Glomeromycota. Mycosystema, 2017, 36(7): 820-850. |
王幼珊, 刘润进. 球囊菌门丛枝菌根真菌最新分类系统菌种名录. 菌物学报, 2017, 36(7): 820-850. | |
48 | The second Qinghai-Tibet Plateau comprehensive scientific expedition team. The second Qinghai-Tibet Plateau comprehensive scientific expedition and research series: The status, changes and management of the ecosystem of Sanjiangyuan National Park. Beijing: Science Press, 2020. |
第二次青藏高原综合科学考察研究队. 第二次青藏高原综合科学考察研究丛书: 三江源国家公园生态系统现状、变化及管理(印刷中). 北京: 科学出版社, 2020. | |
49 | Bauer C R, Kellogg C H, Bridgham S D, et al. Mycorrhizal colonization across hydrologic gradients in restored and reference freshwater wetlands. Wetlands, 2003, 23(4): 961-968. |
50 | Cai X B, Peng Y L. Change of arbuscular mycorrhizal fungi community in response to elevational gradients on the Tibetan Plateau, China. Chinese Journal of Applied Ecology, 2015, 26(9): 2803-2810. |
蔡晓布, 彭岳林. 西藏高原不同海拔区域丛枝菌根真菌群落的变化. 应用生态学报, 2015, 26(9): 2803-2810. | |
51 | García L B M, Richardson S J, Tylianakis J M, et al. Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development. New Phytologist, 2015, 205(4): 1565-1576. |
52 | Verbruggen E, Van der Heijden M G A, Weedon J T, et al. Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils. Molecular Ecology, 2012, 21(10): 2341-2353. |
53 | Börstler B, Renker C, Kahmen A, et al. Species composition of arbuscular mycorrhizal fungi in two mountain meadows with differing management types and levels of plant biodiversity. Biology and Fertility of Soils, 2006, 42(4): 286-298. |
54 | Hiiesalu I, Paertel M, Davison J, et al. Species richness of arbuscular mycorrhizal fungi: Associations with grassland plant richness and biomass. New Phytologist, 2014, 203(1): 233-244. |
55 | Johnson D, Ijdo M, Genney D R, et al. How do plants regulate the function, community structure, and diversity of mycorrhizal fungi? Journal of Experimental Botany, 2005, 56(417): 1751-1760. |
56 | Bever J D, Richardson S C, Lawrence B M, et al. Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecology Letters, 2009, 12(1): 13-21. |
57 | öpik M, Metsis M, Daniell T J, et al. Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytologist, 2009, 184(2): 424-437. |
58 | Vályi K, Rillig M C, Hempel S. Land-use intensity and host plant identity interactively shape communities of arbuscular mycorrhizal fungi in roots of grassland plants. New Phytologist, 2015, 205(4): 1577-1586. |
59 | Wagg C, Jansa J, Stadler M, et al. Mycorrhizal fungal identity and diversity relaxes plant-plant competition. Ecology, 2011, 92(6): 1303-1313. |
60 | Werner G D A, Kiers E T. Partner selection in the mycorrhizal mutualism. New Phytologist, 2015, 205(4): 1437-1442. |
61 | Lekberg Y, Schnoor T, Kjoller R, et al. 454-sequencing reveals stochastic local reassembly and high disturbance tolerance within arbuscular mycorrhizal fungal communities. Journal of Ecology, 2012, 100(1): 151-160. |
62 | de Vries F T, van Groenigen J W, Hoffland E, et al. Nitrogen losses from two grassland soils with different fungal biomass. Soil Biology and Biochemistry, 2011, 43(5): 997-1005. |
63 | Clark N M, Rillig M C, Nowak R S. Arbuscular mycorrhizal fungal abundance in the Mojave Desert: Seasonal dynamics and impacts of elevated CO2. Journal of Arid Environments, 2009, 73(9): 834-843. |
64 | Staddon P L, Gregersen R, Jakobsen I. The response of two Glomus mycorrhizal fungi and a fine endophyte to elevated atmospheric CO2, soil warming and drought. Global Change Biology, 2004, 10(11): 1909-1921. |
65 | Miller S P, Sharitz R R. Manipulation of flooding and arbuscular mycorrhiza formation influences growth and nutrition of two semiaquatic grass species. Functional Ecology, 2000, 14(6): 738-748. |
66 | Johnson D, Vandenkoornhuyse P J, Leake J R, et al. Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytologist, 2004, 161(2): 503-515. |
67 | Yang H, Yuan Y, Zhang Q, et al. Changes in soil organic carbon, total nitrogen, and abundance of arbuscular mycorrhizal fungi along a large-scale aridity gradient. Catena, 2011, 87(1): 70-77. |
68 | Johnson N C. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist, 2010, 185(3): 631-647. |
69 | Werner G D, Strassmann J E, Ivens A B, et al. Evolution of microbial markets. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(4): 1237-1244. |
70 | Treseder K K, Allen M F. Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: A model and field test. New Phytologist, 2002, 155(3): 507-515. |
71 | Liu Y, Mao L, Li J, et al. Resource availability differentially drives community assemblages of plants and their root-associated arbuscular mycorrhizal fungi. Plant and Soil, 2015, 386(1): 341-355. |
72 | Horn S, Caruso T, Verbruggen E, et al. Arbuscular mycorrhizal fungal communities are phylogenetically clustered at small scales. The ISME Journal, 2014, 8(11): 2231-2242. |
[1] | 邢易梅, 蕫理, 战力峰, 才华, 杨圣秋, 孙娜. 混合接种摩西球囊霉和根瘤菌对紫花苜蓿耐碱能力的影响[J]. 草业学报, 2020, 29(9): 136-145. |
[2] | 贾红梅, 方千, 张秫华, 严铸云, 柳敏. AM真菌对丹参生长及根际土壤酶活性的影响[J]. 草业学报, 2020, 29(6): 83-92. |
[3] | 赵昕, 吴子龙, 张浩, 杨旭钊, 韩超, 高杰. 峰峰矿区煤矸石山周边植物丛枝菌根真菌的侵染及Cd含量研究[J]. 草业学报, 2020, 29(5): 78-87. |
[4] | 王英逵, 杨玉荣, 王德利. 盐碱胁迫下AMF对羊草的离子吸收和分配作用[J]. 草业学报, 2020, 29(12): 95-104. |
[5] | 高亚敏, 罗慧琴, 姚拓, 张建贵, 李海云, 杨琰珊, 兰晓君. 高寒退化草地委陵菜根围丛枝菌根菌(AMF)分离鉴定及促生效应[J]. 草业学报, 2020, 29(1): 145-154. |
[6] | 李文彬, 宁楚涵, 李伟, 李峰, 郭绍霞. 菲和芘胁迫下AMF和PGPR对高羊茅生理生态的响应[J]. 草业学报, 2019, 28(8): 84-94. |
[7] | 李继伟, 悦飞雪, 王艳芳, 张亚梅, 倪瑞景, 王发园, 付国占, 刘领. 施用生物炭和AM真菌对镉胁迫下玉米生长和生理生化指标的影响[J]. 草业学报, 2018, 27(5): 120-129. |
[8] | 亓琳, 杨莹博, 张博, 赵威, 王晓凌, 刘玉华. 丛枝菌根真菌强化高粱幼苗修复锶污染土壤的研究[J]. 草业学报, 2018, 27(12): 103-112. |
[9] | 李文彬, 宁楚涵, 徐孟, 刘润进, 郭绍霞. 丛枝菌根真菌和高羊茅对压实土壤的改良效应[J]. 草业学报, 2018, 27(11): 131-141. |
[10] | 刘兆娜, 郭绍霞, 李伟. AM真菌对百合生长和生理特性的影响[J]. 草业学报, 2017, 26(11): 85-93. |
[11] | 何树斌, 郭理想, 李菁, 王燚, 刘泽民, 程宇阳, 呼天明, 龙明秀. 丛枝菌根真菌与豆科植物共生体研究进展[J]. 草业学报, 2017, 26(1): 187-194. |
[12] | 张义飞,毕琪,杨允菲,张忠辉,胡长群,杨雨春,赵珊珊,王相刚. 松嫩平原盐碱化羊草群落中AM真菌物种资源及侵染率研究[J]. 草业学报, 2015, 24(9): 80-88. |
[13] | 杨高文, 刘楠, 杨鑫, 张英俊. 丛枝菌根真菌与个体植物的关系及其对群落生产力和物种多样性的影响[J]. 草业学报, 2015, 24(6): 188-203. |
[14] | 谭红妍,闫瑞瑞,闫玉春,陈宝瑞,辛晓平. 不同放牧强度下温性草甸草原土壤微生物群落结构PLFAs分析[J]. 草业学报, 2015, 24(3): 115-121. |
[15] | 杨海霞,刘润进,郭绍霞. AM真菌摩西球囊霉对盐胁迫条件下高羊茅生长特性的影响[J]. 草业学报, 2014, 23(4): 195-203. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||