草业学报 ›› 2023, Vol. 32 ›› Issue (11): 65-80.DOI: 10.11686/cyxb2023005
许代香1,2(), 杨建峰2,3, 苏杭3, 翟建荣3, 綦才3, 赵龙刚2,4, 郭彦军2,4()
收稿日期:
2023-01-05
修回日期:
2023-02-13
出版日期:
2023-11-20
发布日期:
2023-09-27
通讯作者:
郭彦军
作者简介:
E-mail: qhgyj@126.com基金资助:
Dai-xiang XU1,2(), Jian-feng YANG2,3, Hang SU3, Jian-rong ZHAI3, Cai QI3, Long-gang ZHAO2,4, Yan-jun GUO2,4()
Received:
2023-01-05
Revised:
2023-02-13
Online:
2023-11-20
Published:
2023-09-27
Contact:
Yan-jun GUO
摘要:
间作可通过根系互作改变土壤微生物群落结构,影响作物产量。本研究结合Eco-Biolog微平板法和液相色谱-串联质谱法(LC-MS),综合分析了玉米和高粱与大豆两种间作系统中不同年限作物产量、根际土壤理化性状、根际土壤微生物群落变化特征及根际土壤代谢物的差异,旨在探究不同种间互作影响复合作物群体产量的原因。结果表明:间作显著提高作物产量,且较第一年,产量上的间作优势在第二年中表现得更明显。与单作相比,间作能够增加速效养分的积累和吸收;间作玉米根际土壤中速效磷和速效钾、间作高粱根际土壤中碱解氮、速效磷和速效钾、玉米间作大豆中的大豆根际土壤中速效磷和速效钾以及高粱间作大豆中的大豆根际土壤中速效磷和速效钾含量均显著增加。与单作相比,间作条件下玉米、高粱和大豆的微生物量碳氮含量显著升高,根际土壤微生物的活性更强,微生物群落组成更加丰富。通过代谢组分析初步鉴定出不同作物根际土壤中可能影响土壤微生物富集的关键差异代谢组分,其中具有促进作用的差异代谢物在玉米、高粱和大豆中分别鉴定出4、2和1种,具有抑制作用的差异代谢物在玉米、高粱和大豆中各鉴定出1种。综合分析认为,玉米间作大豆和高粱间作大豆可通过种间根系互作改变根际土壤微环境,并重塑其中的微生物群落结构,进而加速根际土壤中速效养分的沉积,促进作物养分的吸收,提高作物产量。
许代香, 杨建峰, 苏杭, 翟建荣, 綦才, 赵龙刚, 郭彦军. 间作模式下作物根际土壤代谢物对微生物群落的影响[J]. 草业学报, 2023, 32(11): 65-80.
Dai-xiang XU, Jian-feng YANG, Hang SU, Jian-rong ZHAI, Cai QI, Long-gang ZHAO, Yan-jun GUO. Effect of the metabolites in rhizosphere soil on microbial communities of crop intercropping system[J]. Acta Prataculturae Sinica, 2023, 32(11): 65-80.
图1 试验地2019和2020年4-8月降水量和日均温度DR: 日降水量Daily rainfall; DMT: 日均温度Daily mean temperature; DAS: 播种后天数Days after sowing.
Fig.1 Daily rainfall and daily average temperature from April to August in 2019 and 2020 of the field
年份 Year | 处理 Treatments | 籽粒产量Grain yield (kg·hm-2) | 千粒重Thousand kernel weight (g) | ||||
---|---|---|---|---|---|---|---|
玉米Maize | 高粱Sorghum | 大豆Soybean | 玉米Maize | 高粱Sorghum | 大豆Soybean | ||
2019 | 单作Monoculture | 7005.33±52.26 | 3208.44±53.46 | 1105.04±80.08 | 257.36±6.84 | 20.87±0.09 | 153.50±6.79 |
间作Intercropping | 7111.84±36.84 | 3374.29±66.76 | 1555.63±42.97**① | 258.63±12.79 | 21.74±0.84 | 170.33±1.01*① | |
1540.77±53.09**② | 162.67±2.62② | ||||||
2020 | 单作Monoculture | 7094.69±38.41 | 3209.20±53.44 | 1101.71±67.06 | 270.91±2.87 | 21.14±0.28 | 155.17±2.19 |
间作Intercropping | 7512.00±39.86** | 3707.99±12.46** | 1688.96±88.13**① | 298.47±1.85* | 21.94±0.28 | 172.00±0.70*① | |
1770.77±56.87**② | 166.00±1.64② | ||||||
变异来源Variation source | |||||||
年份 Year (Y) | ** | ** | * | ns | ns | ns | |
种植模式 Planting pattern (P) | ** | ns | ** | ns | ** | ** | |
年份×种植模式 Y×P | * | ns | * | ns | ns | ns |
表1 不同种植模式对作物产量的影响
Table 1 The effect of crop yield of different plant patterns
年份 Year | 处理 Treatments | 籽粒产量Grain yield (kg·hm-2) | 千粒重Thousand kernel weight (g) | ||||
---|---|---|---|---|---|---|---|
玉米Maize | 高粱Sorghum | 大豆Soybean | 玉米Maize | 高粱Sorghum | 大豆Soybean | ||
2019 | 单作Monoculture | 7005.33±52.26 | 3208.44±53.46 | 1105.04±80.08 | 257.36±6.84 | 20.87±0.09 | 153.50±6.79 |
间作Intercropping | 7111.84±36.84 | 3374.29±66.76 | 1555.63±42.97**① | 258.63±12.79 | 21.74±0.84 | 170.33±1.01*① | |
1540.77±53.09**② | 162.67±2.62② | ||||||
2020 | 单作Monoculture | 7094.69±38.41 | 3209.20±53.44 | 1101.71±67.06 | 270.91±2.87 | 21.14±0.28 | 155.17±2.19 |
间作Intercropping | 7512.00±39.86** | 3707.99±12.46** | 1688.96±88.13**① | 298.47±1.85* | 21.94±0.28 | 172.00±0.70*① | |
1770.77±56.87**② | 166.00±1.64② | ||||||
变异来源Variation source | |||||||
年份 Year (Y) | ** | ** | * | ns | ns | ns | |
种植模式 Planting pattern (P) | ** | ns | ** | ns | ** | ** | |
年份×种植模式 Y×P | * | ns | * | ns | ns | ns |
作物Crops | 处理 Treatments | pH | 碱解氮 Alkaline hydrolyzable nitrogen (mg·kg-1) | 速效磷 Olsen phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) |
---|---|---|---|---|---|
玉米Maize | 单作Monoculture | 8.96±0.03 | 43.40±0.48 | 9.57±0.25 | 41.66±0.71 |
间作Intercropping | 8.95±0.01 | 43.75±0.25 | 18.15±0.24** | 50.50±0.00* | |
高粱 Sorghum | 单作Monoculture | 8.92±0.00 | 43.05±0.74 | 12.41±0.63 | 51.00±0.71 |
间作Intercropping | 8.85±0.06 | 47.25±0.75* | 16.56±0.24* | 56.22±1.06* | |
大豆 Soybean | 单作Monoculture | 8.67±0.05 | 46.20±0.00 | 14.85±0.27 | 65.00±0.35 |
与玉米间作Intercropping with maize | 8.74±0.07 | 48.01±0.49 | 18.68±0.36* | 79.00±0.71** | |
与高粱间作Intercropping with sorghum | 8.71±0.05 | 49.97±0.50 | 18.22±0.10* | 73.06±2.12* |
表2 根际土壤主要理化指标
Table 2 Physical and chemical indexes of rhizosphere soil
作物Crops | 处理 Treatments | pH | 碱解氮 Alkaline hydrolyzable nitrogen (mg·kg-1) | 速效磷 Olsen phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) |
---|---|---|---|---|---|
玉米Maize | 单作Monoculture | 8.96±0.03 | 43.40±0.48 | 9.57±0.25 | 41.66±0.71 |
间作Intercropping | 8.95±0.01 | 43.75±0.25 | 18.15±0.24** | 50.50±0.00* | |
高粱 Sorghum | 单作Monoculture | 8.92±0.00 | 43.05±0.74 | 12.41±0.63 | 51.00±0.71 |
间作Intercropping | 8.85±0.06 | 47.25±0.75* | 16.56±0.24* | 56.22±1.06* | |
大豆 Soybean | 单作Monoculture | 8.67±0.05 | 46.20±0.00 | 14.85±0.27 | 65.00±0.35 |
与玉米间作Intercropping with maize | 8.74±0.07 | 48.01±0.49 | 18.68±0.36* | 79.00±0.71** | |
与高粱间作Intercropping with sorghum | 8.71±0.05 | 49.97±0.50 | 18.22±0.10* | 73.06±2.12* |
图3 不同处理条件下根际土壤微生物量碳氮含量MM: 单作玉米Monoculture maize; IM: 间作玉米Intercropping maize; MS: 单作高粱Monoculture sorghum; IS: 间作高粱Intercropping sorghum; MG: 单作大豆Monoculture soybean; IGM: 与玉米间作的大豆Soybean intercropping with maize; IGS: 与高粱间作的大豆The soybean intercropping with sorghum; MBC: 微生物量碳Microbial biomass carbon; MBN: 微生物量氮Microbial biomass nitrogen. 下同The same below.
Fig.3 The content of soil microbial biomass C and soil microbial biomass N in rhizosphere soil of maize, soybean and sorghum with different plant patterns
图5 根际土壤微生物对6类碳源的利用情况A~C: 依次表示玉米、高粱和大豆根际土壤微生物对6类碳源的利用情况。不同字母表示不同处理在P<0.05水平上存在显著差异。A-C: Utilization of 6 types of carbon sources by soil microorganisms in the rhizosphere of maize, sorghum and soybean, respectively. Different letters indicate that there are significant differences with different treatments at the P<0.05 level.
Fig.5 Utilization of six carbon sources by rhizosphere soil microorganisms
作物 Crops | 处理 Treatments | Shannon指数 Shannon index (H′) | Simpson指数 Simpson index (D) | McIntosh指数 McIntosh index (U) |
---|---|---|---|---|
玉米Maize | 单作Monoculture | 3.27±0.00 | 0.95±4.15 | 7.20±0.00 |
间作Intercropping | 3.22±0.00 | 0.95±0.00 | 7.26±0.34 | |
高粱Sorghum | 单作Monoculture | 3.00±0.13 | 0.95±2.67 | 6.01±0.00 |
间作Intercropping | 3.22±0.00* | 0.94±0.00 | 6.51±0.50* | |
大豆Soybean | 单作Monoculture | 2.98±0.04 | 0.95±0.00 | 5.42±0.07 |
与玉米间作Intercropping with maize | 3.29±0.00* | 0.93±0.00 | 6.97±0.31** | |
与高粱间作Intercropping with sorghum | 3.21±0.04* | 0.96±2.83 | 8.23±0.00** |
表3 不同作物单间作条件对根际土壤微生物多样性指数的影响
Table 3 Functional diversity indices of soil community after 120 h incubation
作物 Crops | 处理 Treatments | Shannon指数 Shannon index (H′) | Simpson指数 Simpson index (D) | McIntosh指数 McIntosh index (U) |
---|---|---|---|---|
玉米Maize | 单作Monoculture | 3.27±0.00 | 0.95±4.15 | 7.20±0.00 |
间作Intercropping | 3.22±0.00 | 0.95±0.00 | 7.26±0.34 | |
高粱Sorghum | 单作Monoculture | 3.00±0.13 | 0.95±2.67 | 6.01±0.00 |
间作Intercropping | 3.22±0.00* | 0.94±0.00 | 6.51±0.50* | |
大豆Soybean | 单作Monoculture | 2.98±0.04 | 0.95±0.00 | 5.42±0.07 |
与玉米间作Intercropping with maize | 3.29±0.00* | 0.93±0.00 | 6.97±0.31** | |
与高粱间作Intercropping with sorghum | 3.21±0.04* | 0.96±2.83 | 8.23±0.00** |
类别 Category | 编号 Code | 组分 Components | 玉米Maize | 高粱Sorghum | 大豆Soybean | ||||
---|---|---|---|---|---|---|---|---|---|
单作 Monoculture | 间作 Intercropping | 单作 Monoculture | 间作 Intercropping | 单作 Monoculture | 与玉米间作Intercropping with maize | 与高粱间作Intercropping with sorghum | |||
有机酸类 Organic acids | OA01 | 吲哚乙酸Indoleacetic acid | Y | Y | Y | Y | Y | Y | Y |
OA02 | 吲哚-3-羧醛Indole-3-carboxylaldehyde | Y | Y | Y | Y | Y | Y | Y | |
OA03 | 1H-吲哚-3-羧酸1H-INDOLE-3-CARBOXYLIC ACID | Y | Y | Y | Y | - | Y | Y | |
OA04 | 1H-吲哚-3-羧酸1H-indole-3-carboxylic acid | Y | Y | Y | Y | Y | Y | Y | |
OA05 | 芥子酰基苹果酸Sinapyl malate | Y | Y | Y | Y | Y | Y | Y | |
OA06 | 芥子酸Sinapic acid | Y | Y | Y | Y | Y | Y | Y | |
OA07 | 咖啡酸Caffeic acid | Y | Y | Y | Y | Y | Y | Y | |
氨基酸类 Amino acids | AA01 | L-谷氨酸L-glutamic acid | Y | Y | Y | Y | Y | Y | Y |
AA02 | L-(-)-苯丙氨酸L-(-)-phenylalanine | Y | Y | Y | Y | Y | Y | Y | |
AA03 | 肌氨酸Creatine | - | - | Y | - | - | - | - | |
AA04 | L-色氨酸L-tryptophan | - | - | - | - | - | Y | - | |
硫苷类 Glucosinolates | GS01 | 4-甲基亚磺酰基硫代葡萄糖苷4-methylsulfinylbutyl glucosinolate | Y | Y | Y | Y | - | Y | Y |
GS02 | 4-甲基亚磺酰基硫代葡萄糖苷4-METHYLSULFINYLBUTYL GLUCOSINOLATE | - | - | - | - | - | Y | - | |
GS03 | R-2-羟基-3-丁烯基硫代葡萄糖苷R-2-hydroxy-3-butenyl glucosinolate | - | Y | - | - | - | - | - | |
GS04 | 异鼠李素-3-O-芥子苷-7-O-葡萄糖苷Isorhamnetin-3-O-sinapoyldiglu-coside-7-O-glucoside | Y | - | - | - | - | - | - | |
GS05 | 3-丁烯基硫代葡萄糖苷3-butenyl glucosinolate | - | - | Y | - | - | Y | - | |
GS06 | 4-甲基硫丁基硫代葡萄糖酸盐4-methylthiobutyl glucoerucine | - | - | - | - | - | Y | - | |
GS07 | 4-羟基吲哚-3-甲基硫代葡萄糖苷4-hydroxyindole-3-methyl glucosinolate | - | - | - | - | - | Y | - | |
GS08 | 吲哚甲基硫代葡萄糖苷Indolyl methyl glucosinolate | - | - | - | - | - | Y | - | |
GS09 | 2-苯乙基硫代葡萄糖苷2-phenylethyl glucosinolate | - | - | - | - | - | Y | - | |
GS10 | 5-甲基硫喷妥钠硫代葡萄糖苷5-methylthiopental glucosinolate | - | - | - | - | - | Y | - | |
黄酮类 Flavonoids | FS01 | 柚皮素Naringenin | Y | Y | Y | Y | - | Y | - |
FS02 | 山柰酚Kaempferol | - | - | Y | Y | - | - | Y | |
FS03 | 山柰酚-3-O-槐苷-7-O-葡萄糖苷Kaempferol-3-O-sophoroside-7-O-glucoside | - | - | - | - | - | Y | - |
表4 不同处理中根际土壤代谢组分
Table 4 The metabolic components of the rhizosphere soil in different treatments
类别 Category | 编号 Code | 组分 Components | 玉米Maize | 高粱Sorghum | 大豆Soybean | ||||
---|---|---|---|---|---|---|---|---|---|
单作 Monoculture | 间作 Intercropping | 单作 Monoculture | 间作 Intercropping | 单作 Monoculture | 与玉米间作Intercropping with maize | 与高粱间作Intercropping with sorghum | |||
有机酸类 Organic acids | OA01 | 吲哚乙酸Indoleacetic acid | Y | Y | Y | Y | Y | Y | Y |
OA02 | 吲哚-3-羧醛Indole-3-carboxylaldehyde | Y | Y | Y | Y | Y | Y | Y | |
OA03 | 1H-吲哚-3-羧酸1H-INDOLE-3-CARBOXYLIC ACID | Y | Y | Y | Y | - | Y | Y | |
OA04 | 1H-吲哚-3-羧酸1H-indole-3-carboxylic acid | Y | Y | Y | Y | Y | Y | Y | |
OA05 | 芥子酰基苹果酸Sinapyl malate | Y | Y | Y | Y | Y | Y | Y | |
OA06 | 芥子酸Sinapic acid | Y | Y | Y | Y | Y | Y | Y | |
OA07 | 咖啡酸Caffeic acid | Y | Y | Y | Y | Y | Y | Y | |
氨基酸类 Amino acids | AA01 | L-谷氨酸L-glutamic acid | Y | Y | Y | Y | Y | Y | Y |
AA02 | L-(-)-苯丙氨酸L-(-)-phenylalanine | Y | Y | Y | Y | Y | Y | Y | |
AA03 | 肌氨酸Creatine | - | - | Y | - | - | - | - | |
AA04 | L-色氨酸L-tryptophan | - | - | - | - | - | Y | - | |
硫苷类 Glucosinolates | GS01 | 4-甲基亚磺酰基硫代葡萄糖苷4-methylsulfinylbutyl glucosinolate | Y | Y | Y | Y | - | Y | Y |
GS02 | 4-甲基亚磺酰基硫代葡萄糖苷4-METHYLSULFINYLBUTYL GLUCOSINOLATE | - | - | - | - | - | Y | - | |
GS03 | R-2-羟基-3-丁烯基硫代葡萄糖苷R-2-hydroxy-3-butenyl glucosinolate | - | Y | - | - | - | - | - | |
GS04 | 异鼠李素-3-O-芥子苷-7-O-葡萄糖苷Isorhamnetin-3-O-sinapoyldiglu-coside-7-O-glucoside | Y | - | - | - | - | - | - | |
GS05 | 3-丁烯基硫代葡萄糖苷3-butenyl glucosinolate | - | - | Y | - | - | Y | - | |
GS06 | 4-甲基硫丁基硫代葡萄糖酸盐4-methylthiobutyl glucoerucine | - | - | - | - | - | Y | - | |
GS07 | 4-羟基吲哚-3-甲基硫代葡萄糖苷4-hydroxyindole-3-methyl glucosinolate | - | - | - | - | - | Y | - | |
GS08 | 吲哚甲基硫代葡萄糖苷Indolyl methyl glucosinolate | - | - | - | - | - | Y | - | |
GS09 | 2-苯乙基硫代葡萄糖苷2-phenylethyl glucosinolate | - | - | - | - | - | Y | - | |
GS10 | 5-甲基硫喷妥钠硫代葡萄糖苷5-methylthiopental glucosinolate | - | - | - | - | - | Y | - | |
黄酮类 Flavonoids | FS01 | 柚皮素Naringenin | Y | Y | Y | Y | - | Y | - |
FS02 | 山柰酚Kaempferol | - | - | Y | Y | - | - | Y | |
FS03 | 山柰酚-3-O-槐苷-7-O-葡萄糖苷Kaempferol-3-O-sophoroside-7-O-glucoside | - | - | - | - | - | Y | - |
图7 不同作物根际土壤代谢物分析A、C和E依次为玉米、高粱和大豆根际土壤代谢物主成分分析;B、D和F依次为玉米、高粱和大豆根际土壤代谢物PLS-DA得分图。A, C and E represent principal component analysis (PCA) of rhizosphere soil metabolites in maize, sorghum and soybean, respectively. B, D and F represent partial least squares discriminant analysis (PLS-DA) of rhizosphere soil metabolites in maize, sorghum and soybean, respectively.
Fig.7 Analysis of metabolites in rhizosphere soil of the crops
因子Factors | 微生物量氮MBN | H′ | D | U | OA02 | OA03 | OA04 | OA06 | AA01 |
---|---|---|---|---|---|---|---|---|---|
微生物量碳MBC | 0.76 | -0.32 | -0.15 | -0.01 | 0.71 | 0.97** | 0.96** | -0.90* | 0.98** |
微生物量氮MBN | -0.02 | 0.37 | 0.31 | 0.85* | 0.84* | 0.89* | -0.91* | 0.85* | |
H′ | 0.77 | 0.68 | -0.24 | -0.39 | -0.20 | 0.12 | -0.30 | ||
D | 0.85* | -0.01 | -0.11 | 0.04 | -0.23 | -0.07 | |||
U | -0.20 | 0.04 | 0.17 | -0.26 | 0.08 | ||||
OA02 | 0.76 | 0.78 | -0.74 | 0.77 | |||||
OA03 | 0.98** | -0.91* | 0.99** | ||||||
OA04 | -0.94** | 0.99** | |||||||
OA06 | -0.92* |
表5 玉米根际土壤微生物指标与关键代谢物相关性分析
Table 5 Correlation analysis of microbial indexes and key metabolites of rhizosphere soil in maize
因子Factors | 微生物量氮MBN | H′ | D | U | OA02 | OA03 | OA04 | OA06 | AA01 |
---|---|---|---|---|---|---|---|---|---|
微生物量碳MBC | 0.76 | -0.32 | -0.15 | -0.01 | 0.71 | 0.97** | 0.96** | -0.90* | 0.98** |
微生物量氮MBN | -0.02 | 0.37 | 0.31 | 0.85* | 0.84* | 0.89* | -0.91* | 0.85* | |
H′ | 0.77 | 0.68 | -0.24 | -0.39 | -0.20 | 0.12 | -0.30 | ||
D | 0.85* | -0.01 | -0.11 | 0.04 | -0.23 | -0.07 | |||
U | -0.20 | 0.04 | 0.17 | -0.26 | 0.08 | ||||
OA02 | 0.76 | 0.78 | -0.74 | 0.77 | |||||
OA03 | 0.98** | -0.91* | 0.99** | ||||||
OA04 | -0.94** | 0.99** | |||||||
OA06 | -0.92* |
因子Factors | 微生物量氮MBN | H′ | D | U | OA02 | OA04 | OA05 | FS02 |
---|---|---|---|---|---|---|---|---|
微生物量碳MBC | 0.95** | 0.82* | -0.44 | 0.68 | -0.97** | 0.96** | -0.81 | -0.73 |
微生物量氮MBN | 0.78 | -0.48 | 0.59 | -0.86* | 0.88* | -0.74 | -0.71 | |
H′ | -0.06 | 0.60 | -0.86* | 0.78 | -0.65 | -0.37 | ||
D | 0.10 | 0.31 | -0.26 | -0.02 | 0.92* | |||
U | -0.78 | 0.86* | -0.72 | -0.14 | ||||
OA02 | -0.97** | 0.80 | 0.62 | |||||
OA04 | -0.87* | -0.56 | ||||||
OA05 | 0.33 |
表6 高粱根际土壤微生物指标与关键代谢物相关性分析
Table 6 Correlation analysis of microbial indexes and key metabolites of rhizosphere soil in sorghum
因子Factors | 微生物量氮MBN | H′ | D | U | OA02 | OA04 | OA05 | FS02 |
---|---|---|---|---|---|---|---|---|
微生物量碳MBC | 0.95** | 0.82* | -0.44 | 0.68 | -0.97** | 0.96** | -0.81 | -0.73 |
微生物量氮MBN | 0.78 | -0.48 | 0.59 | -0.86* | 0.88* | -0.74 | -0.71 | |
H′ | -0.06 | 0.60 | -0.86* | 0.78 | -0.65 | -0.37 | ||
D | 0.10 | 0.31 | -0.26 | -0.02 | 0.92* | |||
U | -0.78 | 0.86* | -0.72 | -0.14 | ||||
OA02 | -0.97** | 0.80 | 0.62 | |||||
OA04 | -0.87* | -0.56 | ||||||
OA05 | 0.33 |
因子Factors | 微生物量氮MBN | H′ | D | U | OA03 | AA01 |
---|---|---|---|---|---|---|
微生物量碳MBC | 0.81** | 0.86* | 0.03 | 0.86** | 0.57 | -0.94** |
微生物量氮MBN | 0.85** | -0.18 | 0.59 | 0.22 | -0.87** | |
H′ | -0.27 | 0.72* | 0.30 | -0.85** | ||
D | 0.09 | 0.44 | 0.17 | |||
U | 0.85** | -0.85** | ||||
OA03 | -0.52 |
表7 大豆根际土壤微生物指标与关键代谢物相关性分析
Table 7 Correlation analysis of microbial indexes and key metabolites of rhizosphere soil in soybean
因子Factors | 微生物量氮MBN | H′ | D | U | OA03 | AA01 |
---|---|---|---|---|---|---|
微生物量碳MBC | 0.81** | 0.86* | 0.03 | 0.86** | 0.57 | -0.94** |
微生物量氮MBN | 0.85** | -0.18 | 0.59 | 0.22 | -0.87** | |
H′ | -0.27 | 0.72* | 0.30 | -0.85** | ||
D | 0.09 | 0.44 | 0.17 | |||
U | 0.85** | -0.85** | ||||
OA03 | -0.52 |
1 | Gou F, Martin K I, Elisabeth S, et al. Intercropping wheat and maize increases total radiation interception and wheat RUE but lowers maize RUE. European Journal of Agronomy, 2017, 84: 125-139. |
2 | Lithourgidis A S, Dordas C A, Damalas C A, et al. Annual intercrops: An alternative pathway for sustainable agriculture. Australian Journal of Crop Science, 2011, 5(4): 396-410. |
3 | Dhima K V, Lithourgidis A S, Vasilakoglou I B, et al. Competition indices of common vetch and cereal intercrops in two seeding ratio. Field Crops Research, 2007, 100(2/3): 249-256. |
4 | van Oort P A J, Gou F, Stomph T J, et al. Effects of strip width on yields in relay-strip intercropping: A simulation study. European Journal of Agronomy, 2020, 112: 125936. |
5 | Duchene O, Vian J F, Celette F. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms: A review. Agriculture Ecosystems and Environment, 2017, 240: 148-161. |
6 | Bedoussac L, Journet E P, Hauggaard N H, et al. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming: A review. Agronomy for Sustainable Development, 2015, 35(3): 911-935. |
7 | Zhang F, Li L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant and Soil, 2003, 248(1): 305-312. |
8 | Iqbal N, Hussain S, Ahmed Z, et al. Comparative analysis of maize-soybean strip intercropping systems: A review. Plant Production Science, 2018, 22(2): 131-142. |
9 | Wang G, Duan B H, Shi S B. Crop intercropping. Beijing: China Agricultural Science and Technology Press, 2013. |
王恭, 段碧华, 石书兵. 作物间作. 北京: 中国农业科学技术出版社, 2013. | |
10 | Hinsinger P, Bengough A G, Vetterlein D, et al. Rhizosphere: Biophysics, biogeochemistry and ecological relevance. Plant and Soil, 2009, 321(1): 117-152. |
11 | Li L C, Wang W Q, Dan S B, et al. Analysis on ecological effects and economic benefits of sorghum-soybean hybrid planting model. Journal of Soybean Science and Technology, 2019, 162(5): 24-25. |
李霖超, 王武全, 但松柏, 等. 高粱-大豆复合种植模式的生态效应和经济效益分析. 大豆科技, 2019, 162(5): 24-25. | |
12 | Chen P, Du Q, Pang T, et al. Effects of root interaction intensity on crop roots distribution above-ground growth in a maize/soybean relay intercropping system. Journal of Sichuan Agricultural University, 2018, 36(1): 28-37, 59. |
陈平, 杜青, 庞婷, 等. 根系互作强度对玉米/大豆套作系统下作物根系分布及地上部生长的影响. 四川农业大学学报, 2018, 36(1): 28-37, 59. | |
13 | Bargaz A, Isaac M E, Jensen E S, et al. Intercropping of faba bean with wheat under low water availability promotes faba bean nodulation and root growth in deeper soil layers. Procedia Environmental Sciences, 2015, 29: 111-112. |
14 | Malezieux E, Crozat Y, Dupraz C, et al. Mixing plant species in cropping systems concepts, tools and models: A review. Agronomy for Sustainable Development, 2009, 29(1): 329-353. |
15 | Hauggaard N H, Gooding M, Ambus P, et al. Pea-barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems. Field Crops Research, 2009, 113(1): 64-71. |
16 | Ehrmann J, Ritz K. Plant: Soil interactions in temperate multi-cropping production systems. Plant and Soil, 2013, 376(1/2): 1-29. |
17 | Li S, Wu F. Diversity and co-occurrence patterns of soil bacterial and fungal communities in seven intercropping systems. Frontiers in Microbiology, 2018, 9: 1521. |
18 | Zaeem M, Nadeem M, Pham T H, et al. The potential of corn-soybean intercropping to improve the soil health status and biomass production in cool climate boreal ecosystems. Scientific Reports, 2019, 9(1): 1-17. |
19 | Berendsen R L, Pieterse C M J, Bakker P A H M. The rhizosphere microbiome and plant health. Trends in Plant Science, 2012, 17(8): 478-486. |
20 | Qiao Y J, Guo L C, Ge J Y, et al. Effect of oat-legume intercropping on soil enzyme activities and abundance of soil microbe. Journal of Gansu Agricultural University, 2020, 55(3): 54-61. |
乔月静, 郭来春, 葛军勇, 等. 燕麦与豆科作物间作对土壤酶活和微生物量的影响. 甘肃农业大学学报, 2020, 55(3): 54-61. | |
21 | Chaudhry V, Runge P, Sengupta P, et al. Shaping the leaf microbiota: Plant-microbe-microbe interactions. Journal of Experimental Botany, 2021, 72(1): 36-56. |
22 | Baxendale C, Orwin K H, Poly F, et al. Are plant-soil feedback responses explained by plant traits? New Phytologist, 2014, 204(2): 408-423. |
23 | Tkacz A, Bestion E, Bo Z, et al. Influence of plant fraction, soil, and plant species on microbiota: A multikingdom comparison. mBio, 2020, 11(1): e02785-02719. |
24 | Li Q L, Xiao Z, Ren M B, et al. Effect of Gardenia jasmidoides Ellis with different intercropping crops on soil microecology. Microbiology China, 2021, 48(10): 3588-3602. |
李巧玲, 肖忠, 任明波, 等. 间作不同作物对栀子根际土壤微生态的影响. 微生物学通报, 2021, 48(10): 3588-3602. | |
25 | Arafat Y, Ud Din I, Tayyab M, et al. Soil sickness in aged tea plantation is associated with a shift in microbial communities as a result of plant polyphenol accumulation in the tea gardens. Frontiers in Plant Science, 2020, 11: 601-614. |
26 | Bao S D. Soil analysis of chemical and agronomic trait. Beijing: China Agriculture Press, 2005. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2005. | |
27 | Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Applied and Environmental Microbiology, 1991, 57(8): 2351-2359. |
28 | Mcrae G, Monreal C M. LC-MS/MS quantitative analysis of reducing carbohydrates in soil solutions extracted from crop rhizospheres. Analytical and Bioanalytical Chemistry, 2011, 400(7): 2205-2215. |
29 | Ghosh P K, Manna M C, Bandyopadhyay K K, et al. Interspecific interaction and nutrient use in soybean/sorghum intercropping system. Agronomy Journal, 2006, 98(4): 1097-1108. |
30 | Ghaffarzadeh M, Préchac F G, Cruse R M. Grain yield response of corn, soybean, and oat grown in a strip intercropping system. American Journal of Alternative Agriculture, 2009, 9(4): 171-177. |
31 | Chen P, Du Q, Liu X, et al. Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maize-soybean relay strip intercropping system. PLoS One, 2017, 12(9): e0184503. |
32 | Wang J X, Zhu K, Zhang Z P, et al. Effect of sorghum-peanut intercropping on root traits and soil microorganisms of single-row crops. Agricultural Research in the Arid Areas, 2022, 40(4): 51-59. |
王佳旭, 朱凯, 张志鹏, 等. 高粱花生间作对不同单行作物根系性状及土壤微生物的影响. 干旱地区农业研究, 2022, 40(4): 51-59. | |
33 | Fujita K, Ogata S, Matsumoto K, et al. Nitrogen transfer and dry matter production in soybean and sorghum mixed cropping system at different population densities. Soil Science and Plant Nutrition, 1990, 36(2): 233-241. |
34 | Wang S, Wang L B, Li Y X, et al. Effects of corn monoculture and intercropped with Medicago sativa L. on corn yield and nutrient contents of albic soil under different N levels. Journal of Henan Agricultural Sciences, 2018, 47(2): 22-28. |
王帅, 王立波, 李玉玺, 等. 不同施氮水平下玉米单作及间作紫花苜蓿对玉米产量及白浆土养分含量的影响. 河南农业科学, 2018, 47(2): 22-28. | |
35 | Mafham J P, Boddy L, Randerson P F. Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles-A critique. FEMS Microbiology Ecology, 2002, 42(1): 1-14. |
36 | Bell L, Wagstaff C. Glucosinolates, myrosinase hydrolysis products, and flavonols found in rocket (Eruca sativa and Diplotaxis tenuifolia). Journal of Agriculture and Food Chemistry, 2014, 62(20): 4481-4492. |
37 | Idrees N, Tabassum B, Sarah R, et al. Natural compound from genus Brassica and their therapeutic activities//Akhtar M, Swamy M, Sinniah U. Natural bio-active compounds. Singapore: Springer, 2019. |
38 | Tagele S B, Kim R H, Shin J H. Interactions between Brassica biofumigants and soil microbiota: Causes and impacts. Journal of Agriculture and Food Chemistry, 2021, 69(39): 11538-11553. |
39 | Badri D V, Chaparro J M, Zhang R, et al. Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. Journal of Biological Chemistry, 2013, 288(7): 4502-4512. |
40 | Zhalnina K, Louie K B, Hao Z, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology, 2018, 3(4): 470-480. |
41 | Kim D R, Jeon C W, Cho G, et al. Glutamic acid reshapes the plant microbiota to protect plants against pathogens. Microbiome, 2021, 9(1): 244. |
42 | Zhang W, Ma W, Ji Y, et al. Efficiency, economics, and environmental implications of phosphorus resource use and the fertilizer industry in China. Nutrient Cycling in Agroecosystems, 2007, 80(2): 131-144. |
43 | Song Y N, Petra M, Zhang F S, et al. Effect of intercropping on bacterial community composition in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.) and faba bean (Vicia faba L.). Acta Ecologica Sinica, 2006, 26(7): 2268-2274. |
宋亚娜, Marschner Petra, 张福锁, 等. 小麦/蚕豆,玉米/蚕豆和小麦/玉米间作对根际细菌群落结构的影响. 生态学报, 2006, 26(7): 2268-2274. | |
44 | Qiao Y J, Li Z H, Wang X, et al. Effect of legume-cereal mixtures on the diversity of bacterial communities in the rhizosphere. Plant Soil Environment, 2012, 58(4): 174-180. |
45 | Li D M. Soil microbial diversity and interspecific facilitation in intercropping between wheat and alfalfa. Harbin: Northeast Forestry University, 2015. |
李冬梅. 小麦/苜蓿间作的土壤微生物多样性和种间促进作用研究. 哈尔滨: 东北林业大学, 2015. | |
46 | Chen F, He H, Zhao S M, et al. Analysis of microbial community succession during methane production from Baiyinhua Lignite. Energy Fuels, 2018, 32(10): 10311-10320. |
47 | Wang Y Y, Ren J B, Zhang Y, et al. Effect of wheat and faba bean intercropping on improving rhizosphere microflora and reducing Fusarium wilt of faba bean. Chinese Journal of Soil Science, 2020, 51(5): 1127-1133. |
王宇蕴, 任家兵, 张莹, 等. 小麦蚕豆间作改善蚕豆根际微生物区系与减轻蚕豆枯萎病的作用. 土壤通报, 2020, 51(5): 1127-1133. | |
48 | Li X F, Wang C B, Zhang W P, et al. The role of complementarity and selection effects in P acquisition of intercropping systems. Plant and Soil, 2017, 422(1/2): 479-493. |
49 | Lin W W, Li N, Chen L S, et al. Effects of interspecific maize and soybean interactions on the community structure and diversity of rhizospheric bacteria. Chinese Journal of Eco-Agriculture, 2022, 30(1): 26-37. |
林伟伟, 李娜, 陈丽珊, 等. 玉米与大豆种间互作对根际细菌群落结构及多样性的影响. 中国生态农业学报, 2022, 30(1): 26-37. | |
50 | Morris R, Garrity D. Resource capture and utilization in intercropping; non-nitrogen nutrients. Field Crops Research, 1993, 34(3/4): 319-334. |
51 | Agboola A, Fayemi A. Fixation and excretion of nitrogen by tropical Legumes. Agronomy Journal, 1972, 64(4): 409-412. |
52 | Burten J W, Brim C A, Rowlings J O. Performance of nodulating and non-nodulating soybean isolines in mixed culture with nodulating cultivars. Crop Science, 1983, 23: 469-473. |
53 | Song R, Mu Y, Wang Y L, et al. Effects of intercropping of maize and soybean on the morphological character of roots. Journal of Northeast Normal University (Natural Science Edition), 2002, 34(3): 83-86. |
宋日, 牟瑛, 王玉兰, 等. 玉米、大豆间作对两种作物根系形态特征的影响. 东北师大学报(自然科学版), 2002, 34(3): 83-86. | |
54 | Wang X, Deng X, Pu T, et al. Contribution of interspecific interactions and phosphorus application to increasing soil phosphorus availability in relay intercropping systems. Field Crops Research, 2017, 204: 12-22. |
55 | Dan C F, Wang J H, Huang L J, et al. Effects of corn/alfalfa intercropping on soil chemical properties. Heilongjiang Animal Husbandry and Veterinary Medicine, 2020, 14: 97-102. |
但春凤, 王家豪, 黄莉娟, 等. 紫花苜蓿间作对土壤化学性质的影响. 黑龙江畜牧兽医, 2020, 14: 97-102. |
[1] | 姜瑛, 张辉红, 魏畅, 徐正阳, 赵颖, 刘芳, 李鸽子, 张雪海, 柳海涛. 外源褪黑素对干旱胁迫下玉米幼苗根系发育及生理生化特性的影响[J]. 草业学报, 2023, 32(9): 143-159. |
[2] | 赵杰, 尹雪敬, 王思然, 董志浩, 李君风, 贾玉山, 邵涛. 贮藏时间对甜高粱青贮发酵品质、微生物群落组成和功能的影响[J]. 草业学报, 2023, 32(8): 164-175. |
[3] | 梁佳, 胡朝阳, 谢志明, 马刘峰, 陈芸, 方志刚. 外源褪黑素缓解甜高粱幼苗干旱胁迫的生理效应[J]. 草业学报, 2023, 32(7): 206-215. |
[4] | 蒋丛泽, 受娜, 高玮, 马仁诗, 沈禹颖, 杨宪龙. 陇东旱塬区不同青贮玉米品种生产性能和营养品质综合评价[J]. 草业学报, 2023, 32(7): 216-228. |
[5] | 朱丽丽, 张业猛, 李万才, 赵亚利, 李想, 陈志国. 39个我国不同生态区培育的青贮玉米品种在青海高原适应性研究[J]. 草业学报, 2023, 32(4): 68-78. |
[6] | 郑甲成, 余婕, 李凡, 黄小奕, 李杰勤, 陈海州, 王歆, 詹秋文, 徐兆师. SbER10_X1调控饲用高粱光合作用和生物产量的功能特性分析[J]. 草业学报, 2023, 32(4): 91-100. |
[7] | 周力, 侯生珍, 王志有, 杨葆春, 韩丽娟, 桂林生. 棕榈粕替代部分玉米对藏羊母羊小肠形态发育、消化酶活性及抗氧化功能的影响[J]. 草业学报, 2023, 32(3): 118-127. |
[8] | 王茂鉴, 石薇, 常生华, 张程, 贾倩民, 侯扶江. 灌溉模式对河西灌区禾-豆间作系统饲草产量、品质和水分利用的影响[J]. 草业学报, 2023, 32(3): 13-29. |
[9] | 王腾飞, 王斌, 邓建强, 李满有, 倪旺, 冯琴, 妥昀昀, 兰剑. 宁夏干旱区滴灌条件下拉巴豆不同播种量与甜高粱混播饲草生产性能研究[J]. 草业学报, 2023, 32(3): 30-40. |
[10] | 徐宗昌, 鲁雪莉, 魏云冲, 孟晨, 张梦超, 张缘杨, 王萌, 王菊英, 张成省, 李义强. 航天诱变野大豆SP1群体苗期耐盐性鉴定与评价[J]. 草业学报, 2023, 32(11): 168-178. |
[11] | 马仁诗, 蒋丛泽, 高玮, 李中利, 沈禹颖, 杨宪龙. 不同水分条件下缓释氮肥对饲用甜高粱生长和水氮利用效率的影响[J]. 草业学报, 2023, 32(10): 71-81. |
[12] | 姜瑛, 魏畅, 焦秋娟, 申凤敏, 李鸽子, 张雪海, 杨芳, 柳海涛. 外源硅对镉胁迫下玉米生理参数及根系构型分级的影响[J]. 草业学报, 2022, 31(9): 139-154. |
[13] | 高玮, 受娜, 蒋丛泽, 马仁诗, 沈禹颖, 杨宪龙. 施氮量对饲用高粱干物质积累、分配及水分利用效率的影响[J]. 草业学报, 2022, 31(9): 26-35. |
[14] | 付东青, 贾春英, 张力, 张凡凡, 马春晖. 南疆干旱灌溉区青贮玉米农艺性状和发酵品质动态分析及评价[J]. 草业学报, 2022, 31(8): 111-125. |
[15] | 李影正, 程榆林, 徐璐璐, 李万松, 严旭, 李晓锋, 何如钰, 周阳, 郑军军, 汪星宇, 张德龙, 程明军, 夏运红, 何建美, 唐祈林. 不同玉米品种(系)的全株、果穗与秸秆青贮特性比较[J]. 草业学报, 2022, 31(8): 144-156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||