草业学报 ›› 2023, Vol. 32 ›› Issue (9): 68-78.DOI: 10.11686/cyxb2022412
收稿日期:
2022-10-17
修回日期:
2022-12-07
出版日期:
2023-09-20
发布日期:
2023-07-12
通讯作者:
刘彬
作者简介:
E-mail: onlinelb@163.com基金资助:
Guo-liang YU(), Zi-jing MA, Zi-li LYU, Bin LIU()
Received:
2022-10-17
Revised:
2022-12-07
Online:
2023-09-20
Published:
2023-07-12
Contact:
Bin LIU
摘要:
探究土壤化学计量的海拔特征,对于深入了解高海拔地区天然草场土壤化学计量分布,改善土壤养分条件具有重要意义。以天山中段南坡巴伦台地区海拔2200~3550 m内土壤及植物群落为研究对象,分析土壤碳、氮、磷、钾化学计量沿海拔分布的变化规律及其影响因素。结果表明:1)土壤有机碳、全氮、有效氮含量、碳磷比、碳钾比、氮磷比和氮钾比均随海拔升高呈逐渐增大趋势,而土壤全磷、全钾、有效磷、速效钾含量、碳氮比和磷钾比没有明显变化趋势。2)土壤有机碳含量与除磷钾比外所有化学计量比之间以及全氮含量与除碳氮比外所有化学计量比之间均具有较强的正相关关系,而全磷、全钾含量与有机碳、全氮含量及化学计量比之间相关性不显著。3)海拔、土壤总盐和灌木层Margalef丰富度指数是影响土壤化学计量特征变化的主要因素,灌木层物种丰富度较低的区域土壤碳、氮、磷、钾元素含量也更高。
郁国梁, 马紫荆, 吕自立, 刘彬. 海拔和植物群落共同调节天山中段南坡巴伦台地区天然草场土壤化学计量特征[J]. 草业学报, 2023, 32(9): 68-78.
Guo-liang YU, Zi-jing MA, Zi-li LYU, Bin LIU. Altitude and plant community jointly regulate soil stoichiometry characteristics of natural grassland in the Baluntai area on the southern slope of the middle Tianshan Mountains, China[J]. Acta Prataculturae Sinica, 2023, 32(9): 68-78.
海拔Altitude (m) | SWC (%) | pH | TS (g·kg-1) | Margalefs | Margalefh | SOC (g·kg-1) |
---|---|---|---|---|---|---|
2200 | 17.87±2.94c | 7.79±0.07a | 3.90±0.07abc | 2.11±0.16a | 12.92±2.26a | 13.49±2.89c |
2350 | 25.23±9.22abc | 7.68±0.14a | 5.38±1.31abc | 1.00±0.00a | 12.89±2.53a | 35.92±6.31ab |
2500 | 35.69±6.34a | 7.78±0.09a | 13.93±2.71a | 2.67±0.47a | 8.67±2.59a | 22.73±6.74bc |
2650 | 16.53±2.33c | 7.86±0.14a | 11.49±3.08ab | 2.44±1.13a | 11.00±2.60a | 21.07±6.28bc |
2800 | 19.03±3.77bc | 7.89±0.11a | 12.17±1.74ab | 1.56±0.42a | 16.33±4.50a | 21.99±7.65bc |
2950 | 31.65±0.99a | 7.95±0.30a | 1.83±0.97c | 0 | 14.42±0.66a | 36.05±9.99ab |
3100 | 20.07±2.11bc | 7.79±0.16a | 1.88±0.32c | 0 | 13.50±2.68a | 48.91±7.52a |
3250 | 32.73±3.77a | 7.86±0.20a | 1.82±0.28c | 0 | 12.17±1.43a | 42.19±6.39a |
3400 | 25.53±2.00b | 7.76±0.09a | 2.69±1.55c | 0 | 13.67±0.47a | 61.75±12.33a |
3550 | 41.18±8.60a | 7.76±0.05a | 2.52±1.55c | 0 | 13.38±3.99a | 32.64±6.69ab |
海拔Altitude (m) | TN (g·kg-1) | TP (g·kg-1) | TK (g·kg-1) | AN (mg·kg-1) | AP (mg·kg-1) | AK (mg·kg-1) |
2200 | 1.46±0.23c | 0.81±0.05ab | 13.81±0.16a | 47.32±10.97c | 6.07±0.77b | 127.33±12.65c |
2350 | 3.99±0.93ab | 0.97±0.08a | 12.99±1.51ab | 149.99±35.56a | 9.17±0.96a | 233.36±25.23ab |
2500 | 2.28±0.76bc | 0.78±0.06ab | 13.08±1.05ab | 79.99±20.09b | 2.47±0.41c | 268.22±21.91a |
2650 | 2.41±1.07bc | 0.64±0.09b | 10.78±1.11b | 63.71±8.93b | 4.85±0.44b | 254.94±34.98ab |
2800 | 2.37±0.71bc | 0.80±0.13ab | 11.91±1.04b | 91.09±30.41b | 2.94±0.58c | 148.66±17.24bc |
2950 | 4.03±1.02ab | 0.93±0.00a | 12.29±0.43b | 178.38±69.67a | 5.04±0.27b | 188.14±17.25b |
3100 | 3.81±0.28ab | 0.83±0.06ab | 12.55±0.62ab | 194.19±51.82a | 2.44±0.55c | 190.66±17.41b |
3250 | 4.61±0.33a | 0.76±0.03ab | 13.08±0.76ab | 169.28±27.16a | 2.69±0.56c | 171.57±26.64bc |
3400 | 5.67±0.67a | 0.95±0.08a | 12.87±1.03ab | 269.57±52.86a | 5.28±0.79b | 267.25±26.10a |
3550 | 3.01±0.49ab | 0.82±0.04ab | 13.66±2.56ab | 150.10±48.90a | 4.25±0.48b | 160.70±5.09bc |
表1 土壤理化性质、化学计量与植物群落的海拔特征
Table 1 Altitude characteristics of soil physicochemical properties, stoichiometry and plant community
海拔Altitude (m) | SWC (%) | pH | TS (g·kg-1) | Margalefs | Margalefh | SOC (g·kg-1) |
---|---|---|---|---|---|---|
2200 | 17.87±2.94c | 7.79±0.07a | 3.90±0.07abc | 2.11±0.16a | 12.92±2.26a | 13.49±2.89c |
2350 | 25.23±9.22abc | 7.68±0.14a | 5.38±1.31abc | 1.00±0.00a | 12.89±2.53a | 35.92±6.31ab |
2500 | 35.69±6.34a | 7.78±0.09a | 13.93±2.71a | 2.67±0.47a | 8.67±2.59a | 22.73±6.74bc |
2650 | 16.53±2.33c | 7.86±0.14a | 11.49±3.08ab | 2.44±1.13a | 11.00±2.60a | 21.07±6.28bc |
2800 | 19.03±3.77bc | 7.89±0.11a | 12.17±1.74ab | 1.56±0.42a | 16.33±4.50a | 21.99±7.65bc |
2950 | 31.65±0.99a | 7.95±0.30a | 1.83±0.97c | 0 | 14.42±0.66a | 36.05±9.99ab |
3100 | 20.07±2.11bc | 7.79±0.16a | 1.88±0.32c | 0 | 13.50±2.68a | 48.91±7.52a |
3250 | 32.73±3.77a | 7.86±0.20a | 1.82±0.28c | 0 | 12.17±1.43a | 42.19±6.39a |
3400 | 25.53±2.00b | 7.76±0.09a | 2.69±1.55c | 0 | 13.67±0.47a | 61.75±12.33a |
3550 | 41.18±8.60a | 7.76±0.05a | 2.52±1.55c | 0 | 13.38±3.99a | 32.64±6.69ab |
海拔Altitude (m) | TN (g·kg-1) | TP (g·kg-1) | TK (g·kg-1) | AN (mg·kg-1) | AP (mg·kg-1) | AK (mg·kg-1) |
2200 | 1.46±0.23c | 0.81±0.05ab | 13.81±0.16a | 47.32±10.97c | 6.07±0.77b | 127.33±12.65c |
2350 | 3.99±0.93ab | 0.97±0.08a | 12.99±1.51ab | 149.99±35.56a | 9.17±0.96a | 233.36±25.23ab |
2500 | 2.28±0.76bc | 0.78±0.06ab | 13.08±1.05ab | 79.99±20.09b | 2.47±0.41c | 268.22±21.91a |
2650 | 2.41±1.07bc | 0.64±0.09b | 10.78±1.11b | 63.71±8.93b | 4.85±0.44b | 254.94±34.98ab |
2800 | 2.37±0.71bc | 0.80±0.13ab | 11.91±1.04b | 91.09±30.41b | 2.94±0.58c | 148.66±17.24bc |
2950 | 4.03±1.02ab | 0.93±0.00a | 12.29±0.43b | 178.38±69.67a | 5.04±0.27b | 188.14±17.25b |
3100 | 3.81±0.28ab | 0.83±0.06ab | 12.55±0.62ab | 194.19±51.82a | 2.44±0.55c | 190.66±17.41b |
3250 | 4.61±0.33a | 0.76±0.03ab | 13.08±0.76ab | 169.28±27.16a | 2.69±0.56c | 171.57±26.64bc |
3400 | 5.67±0.67a | 0.95±0.08a | 12.87±1.03ab | 269.57±52.86a | 5.28±0.79b | 267.25±26.10a |
3550 | 3.01±0.49ab | 0.82±0.04ab | 13.66±2.56ab | 150.10±48.90a | 4.25±0.48b | 160.70±5.09bc |
图2 土壤化学计量比的海拔特征C/N: 土壤有机碳与总氮比值Ratio of soil organic carbon to total nitrogen; C/P: 土壤有机碳与总磷比值Ratio of soil organic carbon to total phosphorus; C/K: 土壤有机碳与总钾比值Ratio of soil organic carbon to total potassium; N/P: 土壤总氮与总磷比值Ratio of soil total nitrogen to total phosphorus; N/K: 土壤总氮与总钾比值Ratio of soil total nitrogen to total potassium; P/K: 土壤总磷与总钾比值Ratio of soil total phosphorus to total potassium. 不同小写字母表示差异显著(P<0.05)。Different lowercase letters indicate significant difference (P<0.05). 下同The same below.
Fig.2 Altitude characteristics of soil stoichiometric ratio
图3 土壤化学计量之间的相关性*: P<0.05; **: P<0.01; SOC: 土壤有机碳含量Soil organic carbon content; TN: 土壤总氮含量Soil total nitrogen content; TP: 土壤总磷含量Soil total phosphorus content; TK: 土壤总钾含量Soil total potassium content; AN: 土壤有效氮含量Soil available nitrogen content; AP: 土壤有效磷含量Soil available phosphorus content; AK: 土壤速效钾含量Soil available potassium content. 下同The same below.
Fig.3 Correlation between soil stoichiometry
图4 土壤化学计量与其影响因子的RDA排序Altitude: 海拔; SWC: 土壤含水量Soil water content; TS: 土壤总盐含量Total soil salt content; Margalefs: 灌木层Margalef丰富度指数Margalef richness index of shrub layer; Margalefh: 草本层Margalef丰富度指数Margalef richness index of herb layer.
Fig.4 RDA ranking of soil stoichiometric indicators and their impact factors
影响因子Impact factor | 轴Ⅰ得分Axis Ⅰ score | 轴Ⅱ得分Axis Ⅱ score | 拟合系数R2 | P值P value |
---|---|---|---|---|
海拔Altitude | 0.85 | 0.50 | 0.31 | 0.00** |
土壤含水量SWC | 0.27 | 0.18 | 0.06 | 0.75 |
土壤pH值pH | -0.19 | 0.19 | 0.04 | 0.62 |
土壤总盐含量TS | -0.80 | 0.36 | 0.21 | 0.04* |
灌木层Margalef丰富度指数Margalefs | -0.90 | 0.12 | 0.34 | 0.00** |
草本层Margalef丰富度指数Margalefh | 0.45 | -0.38 | 0.06 | 0.71 |
表2 影响因子显著性检验
Table 2 Significance test of impact factor
影响因子Impact factor | 轴Ⅰ得分Axis Ⅰ score | 轴Ⅱ得分Axis Ⅱ score | 拟合系数R2 | P值P value |
---|---|---|---|---|
海拔Altitude | 0.85 | 0.50 | 0.31 | 0.00** |
土壤含水量SWC | 0.27 | 0.18 | 0.06 | 0.75 |
土壤pH值pH | -0.19 | 0.19 | 0.04 | 0.62 |
土壤总盐含量TS | -0.80 | 0.36 | 0.21 | 0.04* |
灌木层Margalef丰富度指数Margalefs | -0.90 | 0.12 | 0.34 | 0.00** |
草本层Margalef丰富度指数Margalefh | 0.45 | -0.38 | 0.06 | 0.71 |
土壤化学计量 Soil stoichiometry | 赤池信息准则 AIC | 拟合系数 R2 | 影响因子 Impact factor | 回归系数估计值 Estimated regression coefficient | 标准误 Standard error | t值 t value |
---|---|---|---|---|---|---|
SOC | 162.09 | 0.37 | 海拔Altitude* | 0.02 | 0.01 | 2.55 |
TS* | -1.03 | 0.54 | -1.92 | |||
TN | 14.42 | 0.25 | Margalefs** | -0.64 | 0.19 | -3.32 |
TP | -141.31 | 0.37 | 海拔Altitude* | -0.00 | 0.00 | -2.62 |
Margalefs*** | -0.04 | 0.01 | -3.77 | |||
Margalefh* | 0.00 | 0.00 | 2.10 | |||
TK | 25.65 | 0.16 | SWC* | 0.07 | 0.03 | 2.34 |
TS* | -0.11 | 0.06 | -1.76 | |||
AN | 254.73 | 0.43 | Margalefs*** | -41.56 | 9.30 | -4.47 |
AP | 39.29 | 0.25 | 海拔Altitude** | -0.00 | 0.00 | -3.35 |
TS* | -0.19 | 0.08 | -2.46 | |||
AK | 246.62 | 0.11 | TS* | 3.66 | 1.92 | 1.91 |
C/N | 30.18 | 0.10 | 海拔Altitude* | 0.00 | 0.00 | 1.87 |
C/P | 167.92 | 0.32 | 海拔Altitude*** | 0.02 | 0.01 | 3.88 |
C/K | 8.86 | 0.28 | 海拔Altitude* | 0.00 | 0.00 | 2.37 |
N/P | 25.36 | 0.20 | 海拔Altitude** | 0.00 | 0.00 | 2.91 |
N/K | -134.27 | 0.16 | 海拔Altitude* | 0.00 | 0.00 | 2.57 |
P/K | -277.71 | 0.12 | Margalefh* | 0.00 | 0.00 | 2.23 |
表3 土壤化学计量影响因子的逐步回归分析
Table 3 Stepwise regression of main factors affecting soil stoichiometry
土壤化学计量 Soil stoichiometry | 赤池信息准则 AIC | 拟合系数 R2 | 影响因子 Impact factor | 回归系数估计值 Estimated regression coefficient | 标准误 Standard error | t值 t value |
---|---|---|---|---|---|---|
SOC | 162.09 | 0.37 | 海拔Altitude* | 0.02 | 0.01 | 2.55 |
TS* | -1.03 | 0.54 | -1.92 | |||
TN | 14.42 | 0.25 | Margalefs** | -0.64 | 0.19 | -3.32 |
TP | -141.31 | 0.37 | 海拔Altitude* | -0.00 | 0.00 | -2.62 |
Margalefs*** | -0.04 | 0.01 | -3.77 | |||
Margalefh* | 0.00 | 0.00 | 2.10 | |||
TK | 25.65 | 0.16 | SWC* | 0.07 | 0.03 | 2.34 |
TS* | -0.11 | 0.06 | -1.76 | |||
AN | 254.73 | 0.43 | Margalefs*** | -41.56 | 9.30 | -4.47 |
AP | 39.29 | 0.25 | 海拔Altitude** | -0.00 | 0.00 | -3.35 |
TS* | -0.19 | 0.08 | -2.46 | |||
AK | 246.62 | 0.11 | TS* | 3.66 | 1.92 | 1.91 |
C/N | 30.18 | 0.10 | 海拔Altitude* | 0.00 | 0.00 | 1.87 |
C/P | 167.92 | 0.32 | 海拔Altitude*** | 0.02 | 0.01 | 3.88 |
C/K | 8.86 | 0.28 | 海拔Altitude* | 0.00 | 0.00 | 2.37 |
N/P | 25.36 | 0.20 | 海拔Altitude** | 0.00 | 0.00 | 2.91 |
N/K | -134.27 | 0.16 | 海拔Altitude* | 0.00 | 0.00 | 2.57 |
P/K | -277.71 | 0.12 | Margalefh* | 0.00 | 0.00 | 2.23 |
1 | Ning Q, Chen L, Zhang C Z, et al. Saprotrophic fungal communities in arable soils are strongly associated with soil fertility and stoichiometry. Applied Soil Ecology, 2020, 159: 103843. |
2 | Li Y, Ma J, Xiao C, et al. Effects of climate factors and soil properties on soil nutrients and elemental stoichiometry across the Huang-Huai-Hai River Basin, China. Journal of Soils and Sediments, 2020, 20(17): 1970-1982. |
3 | Tian L, Lin Z, Wu X, et al. Soil moisture and texture primarily control the soil nutrient stoichiometry across the Tibetan grassland. Science of the Total Environment, 2017, 622: 184-191. |
4 | Jiang L, He Z S, Liu J F, et al. Elevation gradient altered soil C, N, and P stoichiometry of Pinus taiwanensis forest on Daiyun Mountain. Forests, 2019, 10(12): 1089. |
5 | Liu L, Wang M H, Yang W, et al. Soil stoichiometric characteristics of alpine meadow in northwest Yunnan under different disturbance types. Pratacultural Science, 2022, 39(4): 634-644. |
刘莉, 王明浩, 杨蔚, 等. 不同干扰类型下滇西北高寒草甸土壤化学计量特征. 草业科学, 2022, 39(4): 634-644. | |
6 | Hu C, Li F, Xie Y H, et al. Spatial distribution and stoichiometry of soil carbon, nitrogen and phosphorus along an elevation gradient in a wetland in China. European Journal of Soil Science, 2019, 70: 1128-1140. |
7 | Sardans J, Peuelas J. Potassium: A neglected nutrient in global change. Global Ecology and Biogeography, 2015, 24(3): 261-275. |
8 | Kerkhoff A J, Enquist B J, Elser J J, et al. Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Global Ecology and Biogeography, 2005, 14(6): 585-598. |
9 | Wang Y, Ren Z, Ma P, et al. Effects of grassland degradation on ecological stoichiometry of soil ecosystems on the Qinghai-Tibet Plateau. Science of the Total Environment, 2020, 722: 137910. |
10 | Li Y G, Zhou X B, Zhang Y M. Shrub modulates the stoichiometry of moss and soil in desert ecosystems, China. Journal of Arid Land, 2019, 11(4): 579-594. |
11 | Guo J P, Li N P, Tohuti Y. The grand ceremony of the People’s Republic of China, Xinjiang Uygur Autonomous Region volume. Beijing: China Social Press, 2016. |
郭景平, 李宁平, 托乎提·亚克夫. 中华人民共和国政区大典·新疆维吾尔自治区卷. 北京: 中国社会出版社, 2016. | |
12 | Ma Z J, Zhang Y L, Liu B. Relationship between species diversity of plant communities and soil factors at different elevations in Baluntai area, the southern slope of Mid-Tianshan Mountains. Guihaia, 2022, 42(7): 1116-1125. |
马紫荆, 张云玲, 刘彬. 天山中段南坡巴伦台地区不同海拔植物群落物种多样性与土壤因子的关系. 广西植物, 2022, 42(7): 1116-1125. | |
13 | Bao S D. Soil and agricultural chemistry analysis. Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. | |
14 | Fanelli G, Lestini M, Saulia S. Floristic gradients of herbaceous vegetation and P/N ratio in soil in a Mediterranean area. Plant Ecology, 2007, 194(2): 231-242. |
15 | Tian H, Chen G, Zhang C, et al. Pattern and variation of C∶N∶P ratios in China’s soils: A synthesis of observational data. Biogeochemistry, 2010, 98(1/2/3): 139-151. |
16 | Hobbie S E, Gough L. Foliar and soil nutrients in tundra on glacial landscapes of contrasting ages in northern Alaska. Oecologia, 2016, 131(3): 453-462. |
17 | Aponte C, Maraón T, García L. Microbial C, N and P in soils of Mediterranean oak forests: Influence of season, canopy cover and soil depth. Biogeochemistry, 2010, 101(1): 77-92. |
18 | Su Y, Wu Z, Xie P, et al. Warming effects on topsoil organic carbon and C∶N∶P stoichiometry in a subtropical forested landscape. Forests, 2020, 11(1): 66. |
19 | Prathibha P, Kothai P, Saradhi I V, et al. Chemical characterization of precipitation at a coastal site in Trombay, Mumbai, India. Environmental Monitoring and Assessment, 2010, 168(1/2/3/4): 45-53. |
20 | Dong T F. Soil nutrients and their ecological stoichiometry of Pinus yunnanensis forest along an elevation gradient. Chinese Journal of Ecology, 2021, 40(3): 672-679. |
董廷发. 不同海拔云南松林土壤养分及其生态化学计量特征. 生态学杂志, 2021, 40(3): 672-679. | |
21 | Mcgroddy M E, Daufresne T, Hedin L O. Scaling of C∶N∶P stoichiometry in forest worldwide: Implications of terrestrial redfield-type ratios. Ecology, 2004, 85(9): 2390-2401. |
22 | Houlton B Z, Wang Y P, Vitousek P M, et al. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature, 2008, 454(7202): 327-330. |
23 | Hedin L O, Vitousek P M, Matson P A. Nutrient losses over four million years of tropical forest development. Ecology, 2003, 84(9): 2231-2255. |
24 | Zhang Y, Li C, Wang M L. Linkages of C∶N∶P stoichiometry between soil and leaf and their response to climatic factors along altitudinal gradients. Journal of Soils and Sediments, 2018, 19(6): 1820-1829. |
25 | Yang Y H, Luo Y Q. Carbon∶nitrogen stoichiometry in forest ecosystems during stand development. Global Ecology and Biogeography, 2011, 20(2): 354-361. |
26 | Li L, Chang Y P, Xu Z L. Stoichiometric characteristics of Picea schrenkiana forests with a hydrothermal gradient and their correlation with soil physicochemical factors on Tianshan Mountain. Acta Ecologica Sinica, 2018, 38(22): 8139-8148. |
李路, 常亚鹏, 许仲林. 天山雪岭云杉林土壤CNP化学计量特征随水热梯度的变化. 生态学报, 2018, 38(22): 8139-8148. | |
27 | Olander L P, Vitousek P M. Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry, 2000, 49(2): 175-190. |
28 | Cleveland C C, Liptzin D. C∶N∶P stoichiometry in soil: Is there a “redfield ratio” for the microbial biomass? Biogeochemistry, 2007, 85(3): 235-252. |
29 | Cheng M, An S S. Responses of soil nitrogen, phosphorous and organic matter to vegetation succession on the Loess Plateau of China. Journal of Arid Land, 2015, 7(2): 216-223. |
30 | Zhang M, Zhang X K, Liang W J, et al. Distribution of soil organic carbon fractions along the altitudinal gradient in Changbai Mountain, China. Pedosphere, 2011, 21(5): 615-620. |
31 | Muller M, Yvonne O, Schickhoff U, et al. Himalayan tree line soil and foliar C∶N∶P stoichiometry indicate nutrient shortage with elevation. Geoderma, 2017, 291(2): 21-32. |
32 | Wang H, Liu S R, Wang J X, et al. Differential effects of conifer and broadleaf litter inputs on soil organic carbon chemical composition through altered soil microbial community composition. Scientific Reports, 2016, 6(1): 27097. |
33 | Zechmeister-Boltenstern S, Keiblinger K M, Mooshammer M, et al. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecological Monographs, 2015, 85(2): 133-155. |
34 | Nottingham A T, Turner B L, Whitaker J, et al. Soil microbial nutrient constraints along a tropical forest elevation gradient: A belowground test of a biogeochemical paradigm. Biogeosciences, 2015, 12(20): 6071-6083. |
35 | Tipping E, Somerville C J, Luster J. The C∶N∶P∶S stoichiometry of soil organic matter. Biogeochemistry, 2016, 130(1): 117-131. |
36 | Armengaud P, Sulpice R, Miller A J, et al. Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen assimilation in Arabidopsis roots. Plant Physiology, 2009, 150(2): 772-785. |
37 | Zhao D, Oosterhuis D M, Bednarz C W. Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica, 2001, 39(1): 103-109. |
38 | Teixeira P C, Gonçalves J L M, Arthur J C, et al. Eucalyptus sp. seedling response to potassium fertilization and soil water. Ciencia Forestal, 2008, 18(1): 47-63. |
39 | ElMesbahi M N, Azcón R, Ruiz-Lozano J M, et al. Plant potassium content modifies the effects of arbuscular mycorrhizal symbiosis on root hydraulic properties in maize plants. Mycorrhiza, 2012, 22(7): 555-564. |
40 | Oddo E, Inzerillo S, La Bella F, et al. Short-term effects of potassium fertilization on the hydraulic conductance of Laurus nobilis L. Tree Physiology, 2011, 31(2): 131-138. |
[1] | 李林芝, 张德罡, 马源, 罗珠珠, 林栋, 海龙, 白兰鸽. 不同退化程度高寒草甸土壤团聚体养分及生态化学计量特征研究[J]. 草业学报, 2023, 32(8): 48-60. |
[2] | 路欣, 祁娟, 师尚礼, 车美美, 李霞, 独双双, 赛宁刚, 贾燕伟. 阔叶类草抑制剂与氮素配施对高寒草甸土壤特性的影响[J]. 草业学报, 2023, 32(7): 38-48. |
[3] | 刘彩凤, 段媛媛, 王玲玲, 王乙茉, 郭正刚. 高原鼠兔干扰对高寒草甸植物物种多样性与土壤生态化学计量比间关系的影响[J]. 草业学报, 2023, 32(6): 157-166. |
[4] | 刘欢, 董凯, 仁增旺堆, 王敬龙, 刘云飞, 赵桂琴. 藏沙蒿与多年生禾草混播对西藏沙化草地植被及土壤真菌群落特征的影响[J]. 草业学报, 2023, 32(6): 45-57. |
[5] | 史正军, 潘松, 冯世秀, 袁峰均. 园林废弃物地表覆盖处理对植物生长及土壤细菌群落的影响[J]. 草业学报, 2023, 32(4): 153-160. |
[6] | 游郭虹, 刘丹, 王艳丽, 王长庭. 高寒草甸植物叶片生态化学计量特征对长期氮肥添加的响应[J]. 草业学报, 2022, 31(9): 50-62. |
[7] | 彭艳, 孙晶远, 马素洁, 王向涛, 魏学红, 孙磊. 藏北不同退化阶段高寒草甸植物群落特征与土壤养分特性[J]. 草业学报, 2022, 31(8): 49-60. |
[8] | 赵朋波, 邱开阳, 谢应忠, 刘王锁, 李小伟, 陈林, 王继飞, 孟文芬, 黄业芸, 李小聪, 杨浩楠. 海拔梯度对贺兰山岩羊主要活动区植物群落特征的影响[J]. 草业学报, 2022, 31(6): 79-90. |
[9] | 倪芳芳, 吕世杰, 屈志强, 白璐, 孟彪, 张博涵, 李治国. 不同载畜率下荒漠草原非生长季植物群落特征对近地面风沙通量的影响[J]. 草业学报, 2022, 31(3): 26-33. |
[10] | 杨克彤, 陈国鹏, 鲜骏仁, 俞筱押, 张金武, 王立. 甘肃省扎尕梁北坡头花杜鹃枝叶性状特征[J]. 草业学报, 2022, 31(2): 111-120. |
[11] | 潘占东, 马倩倩, 陈晓龙, 蔡立群, 蔡雪梅, 董博, 武均, 张仁陟. 添加生物质炭对黄土高原旱作农田土壤养分、腐殖质及其组分的影响[J]. 草业学报, 2022, 31(2): 14-24. |
[12] | 赵桂琴, 琚泽亮, 柴继宽. 海拔和品种对燕麦营养品质及表面附着微生物的影响[J]. 草业学报, 2022, 31(11): 147-157. |
[13] | 靳旭妹, 王莹莹, 刘崇义, 陈新义, 龙明秀, 何树斌. 生草对关中地区有机猕猴桃园土壤养分及细菌群落的影响[J]. 草业学报, 2022, 31(10): 53-63. |
[14] | 张永超, 梁国玲, 秦燕, 刘文辉, 贾志锋, 刘勇, 马祥. 老芒麦衰老过程中叶片叶绿素和光合作用变化特征及对养分的响应[J]. 草业学报, 2022, 31(1): 229-237. |
[15] | 马文明, 刘超文, 周青平, 邓增卓玛, 唐思洪, 迪力亚尔·莫合塔尔null, 侯晨. 高寒草地灌丛化对土壤团聚体生态化学计量学及酶活性的影响[J]. 草业学报, 2022, 31(1): 57-68. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||