草业学报 ›› 2024, Vol. 33 ›› Issue (6): 175-186.DOI: 10.11686/cyxb2023281
• 研究论文 • 上一篇
收稿日期:
2023-08-09
修回日期:
2023-09-27
出版日期:
2024-06-20
发布日期:
2024-03-20
通讯作者:
何学青
作者简介:
E-mail: hexueqing@nwsuaf.edu.cn基金资助:
Jin-zhu GAO(), Dong-hao ZHAO, Le GAO, Xi-hao SU, Xue-qing HE()
Received:
2023-08-09
Revised:
2023-09-27
Online:
2024-06-20
Published:
2024-03-20
Contact:
Xue-qing HE
摘要:
为研究稀土铈(Ce)与外源脱落酸(ABA)处理对紫花苜蓿种子萌发和幼苗生理特性的影响,采用浓度分别为5、10、20 μmol·L-1的硝酸铈、ABA及硝酸铈和ABA(1∶1)的混合溶液处理苜蓿种子进行发芽试验,探究其对种子的萌发、生长,幼苗的叶绿素含量、抗氧化酶活性和渗透调节物质含量等指标的影响。结果表明:5~10 μmol·L-1硝酸铈处理刺激了紫花苜蓿种子的萌发,并增大了根粗(5~20 μmol·L-1);而ABA(5~20 μmol·L-1)抑制了种子萌发和幼苗生长,且与硝酸铈混合处理解除了硝酸铈对根粗的膨大作用。硝酸铈可以缓解ABA对叶绿素含量的降低,并降低幼苗叶抗氧化酶活性,而Ce与ABA混合处理可显著提高紫花苜蓿幼苗的抗氧化酶活性。因此,硝酸铈处理对紫花苜蓿萌发及生长有一定的积极作用;硝酸铈与 ABA 混合处理时,ABA 在调节紫花苜蓿种子萌发和幼苗生长过程以及生理特性中发挥主导作用,硝酸铈+ABA处理的幼苗高抗氧化活性,表明幼苗受到胁迫。研究结果为稀土铈和ABA对紫花苜蓿萌发期的影响提供了参考。
高金柱, 赵东豪, 高乐, 苏喜浩, 何学青. 硝酸铈与脱落酸处理对紫花苜蓿种子萌发和幼苗生理特性的影响[J]. 草业学报, 2024, 33(6): 175-186.
Jin-zhu GAO, Dong-hao ZHAO, Le GAO, Xi-hao SU, Xue-qing HE. Effects of cerium nitrate and abscisic acid treatment on alfalfa seed germination and seedling physiological characteristics[J]. Acta Prataculturae Sinica, 2024, 33(6): 175-186.
项目Item | 来源Source | 自由度df | 均方MS | F | P |
---|---|---|---|---|---|
发芽势 GE | Ce | 3 | 0.470 | 0.707 | |
ABA | 3 | 0.000 | |||
ABA×Ce | 3 | 0.281 | |||
发芽率 GP | Ce | 3 | 0.737 | ||
ABA | 3 | 0.000 | |||
ABA×Ce | 3 | 0.416 | |||
活力指数 VI | Ce | 3 | 0.181 | ||
ABA | 3 | 0.000 | |||
ABA×Ce | 3 | 0.507 | |||
发芽指数 GI | Ce | 3 | 0.067 | ||
ABA | 3 | 0.000 | |||
ABA×Ce | 3 | 0.123 | |||
芽长 SL | Ce | 3 | |||
ABA | 3 | 0.000 | |||
ABA×Ce | 3 | ||||
根长 RL | Ce | 3 | |||
ABA | 3 | ||||
ABA×Ce | 3 | ||||
根粗 RT | Ce | 3 | 0.007 | ||
ABA | 3 | ||||
ABA×Ce | 3 | ||||
下胚轴长HL | Ce | 3 | |||
ABA | 3 | ||||
ABA×Ce | 3 |
表1 硝酸铈与ABA交互处理对紫花苜蓿种子萌发及幼苗生长影响的双因素方差分析
Table 1 Two-way ANOVA of the effect of cerium nitrate and ABA interactive processing on alfalfa seed germination and seedling growth
项目Item | 来源Source | 自由度df | 均方MS | F | P |
---|---|---|---|---|---|
发芽势 GE | Ce | 3 | 0.470 | 0.707 | |
ABA | 3 | 0.000 | |||
ABA×Ce | 3 | 0.281 | |||
发芽率 GP | Ce | 3 | 0.737 | ||
ABA | 3 | 0.000 | |||
ABA×Ce | 3 | 0.416 | |||
活力指数 VI | Ce | 3 | 0.181 | ||
ABA | 3 | 0.000 | |||
ABA×Ce | 3 | 0.507 | |||
发芽指数 GI | Ce | 3 | 0.067 | ||
ABA | 3 | 0.000 | |||
ABA×Ce | 3 | 0.123 | |||
芽长 SL | Ce | 3 | |||
ABA | 3 | 0.000 | |||
ABA×Ce | 3 | ||||
根长 RL | Ce | 3 | |||
ABA | 3 | ||||
ABA×Ce | 3 | ||||
根粗 RT | Ce | 3 | 0.007 | ||
ABA | 3 | ||||
ABA×Ce | 3 | ||||
下胚轴长HL | Ce | 3 | |||
ABA | 3 | ||||
ABA×Ce | 3 |
图1 20 μmol·L-1的铈与ABA处理对萌发第4 和10天部分苜蓿种子萌发表现的影响CK:对照Control;Ce:铈处理Cerium treatment;ABA:脱落酸处理Abscisic acid treatment;A+C:脱落酸与铈混合处理Mixed treatment with ABA and Ce;下同The same below.
Fig.1 The effect of 20 μmol·L-1 cerium and ABA treatment on the seed germination of alfalfa on the 4th and 10th day
图2 硝酸铈与ABA处理对紫花苜蓿种子萌发的影响不同字母表示不同处理之间差异显著(P<0.05),误差线表示标准误,下同。Different letters indicate significant differences among different treatments (P<0.05), error bar represents standard error (SE) of the average, the same below.
Fig. 2 Effects of cerium nitrate and ABA treatments on the seed germination of alfalfa
项目 Item | 来源 Source | 叶Shoot | 根Root | ||||||
---|---|---|---|---|---|---|---|---|---|
自由度df | 均方MS | F | P | 自由度df | 均方MS | F | P | ||
叶绿素a和b Chlorophyll a and b | Ce | ||||||||
ABA | |||||||||
ABA×Ce | |||||||||
丙二醛 MDA | Ce | ||||||||
ABA | |||||||||
ABA×Ce | |||||||||
可溶性蛋白 Soluble protein | Ce | ||||||||
ABA | |||||||||
ABA×Ce | |||||||||
超氧化物歧化酶 SOD | Ce | 3 | 215.338 | 5.094 | 0.012 | ||||
ABA | 3 | 1431.685 | 33.868 | 0.000 | |||||
ABA×Ce | 3 | 507.794 | 12.012 | 0.126 | |||||
过氧化物酶 POD | Ce | ||||||||
ABA | |||||||||
ABA×Ce | |||||||||
过氧化氢酶 CAT | Ce | ||||||||
ABA | |||||||||
ABA×Ce | |||||||||
抗坏血酸过氧化物酶APX | Ce | ||||||||
ABA | |||||||||
ABA×Ce |
表2 硝酸铈与ABA处理对苜蓿萌发期幼苗生理特性影响的双因素方差分析
Table 2 Two-way ANOVA of effects of cerium nitrate and ABA treatment on physiological characteristics of alfalfa seedlings at germination stage
项目 Item | 来源 Source | 叶Shoot | 根Root | ||||||
---|---|---|---|---|---|---|---|---|---|
自由度df | 均方MS | F | P | 自由度df | 均方MS | F | P | ||
叶绿素a和b Chlorophyll a and b | Ce | ||||||||
ABA | |||||||||
ABA×Ce | |||||||||
丙二醛 MDA | Ce | ||||||||
ABA | |||||||||
ABA×Ce | |||||||||
可溶性蛋白 Soluble protein | Ce | ||||||||
ABA | |||||||||
ABA×Ce | |||||||||
超氧化物歧化酶 SOD | Ce | 3 | 215.338 | 5.094 | 0.012 | ||||
ABA | 3 | 1431.685 | 33.868 | 0.000 | |||||
ABA×Ce | 3 | 507.794 | 12.012 | 0.126 | |||||
过氧化物酶 POD | Ce | ||||||||
ABA | |||||||||
ABA×Ce | |||||||||
过氧化氢酶 CAT | Ce | ||||||||
ABA | |||||||||
ABA×Ce | |||||||||
抗坏血酸过氧化物酶APX | Ce | ||||||||
ABA | |||||||||
ABA×Ce |
1 | Adeel M, Lee J Y, Zain M, et al. Cryptic footprints of rare earth elements on natural resources and living organisms. Environment International, 2019, 127: 785-800. |
2 | Liang X D, Ye M, Yang L, et al. Evaluation and policy research on the sustainable development of China’s rare earth resources. Sustainability, 2018, 10(10): 1-16. |
3 | Zhu W, Kennedy M, De Leer E W B, et al. Distribution and modeling of rare earth elements in Chinese river sediments. Science of the Total Environment, 1997, 204(3): 233-243. |
4 | Ma Y H, Kuang L L, He X, et al. Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere, 2020, 78(3): 273-279. |
5 | Hong F S, Qu C X, Wang L. Cerium improves growth of maize seedlings via alleviating morphological structure and oxidative damages of leaf under different stresses. Journal of Agricultural and Food Chemistry, 2017, 65(41): 9022-9030. |
6 | García-Jiménez A, Gómez-Merino F C, Tejeda-Sartorius O, et al. Lanthanum affects bell pepper seedling quality depending on the genotype and time of exposure by differentially modifying plant height, stem diameter and concentrations of chlorophylls, sugars, amino acids, and proteins. Frontiers in Plant Science, 2017, 8(308): 1-14. |
7 | Ramírez-Olvera S M, Trejo-Téllez L I, García-Morales S, et al. Cerium enhances germination and shoot growth, and alters mineral nutrient concentration in rice. PLoS One, 2018, 13: e0194691. |
8 | Liu D W, Wang X, Chen Z W. Effects of rare earth elements and REE-binding proteins on physiological responses in plants. Protein and Peptide Letters, 2012, 19(2): 198-202. |
9 | Pourkhorsandi H, Debaille V, De Jong J, et al. Cerium stable isotope analysis of synthetic and terrestrial rock reference materials by MC-ICPMS. Talanta, 2021, 224(121877): 1-8. |
10 | Kostova I, Manolov I, Momekov G, et al. Cytotoxic activity of new cerium (Ⅲ) complexes of bis-coumarins. European Journal of Medicinal Chemistry, 2005, 40(12): 1246-1254. |
11 | Redlin K. Rare earth elements in agriculture with emphasis on animal husbandry. Munich, Germany, Ludwig-Maximilians-Universität München, 2006. |
12 | Kovaříková M, Tomášková I, Soudek P. Rare earth elements in plants. Biologia Plantarum, 2019, 63: 20-32. |
13 | Orlando S B, Fernando C G M, Gabriel A G, et al. Biostimulant effects of cerium on seed germination and initial growth of tomato seedlings. Agronomy, 2021, 11(8): 1-13. |
14 | Wang L H, He J F, Yang Q, et al. Abnormal pinocytosis and valence-variable behaviors of cerium suggested a cellular mechanism for plant yield reduction induced by environmental cerium. Environmental Pollution, 2017, 230(2017): 902-910. |
15 | Cutler S R, Rodriguez P L, Finkelstein R R, et al. Abscisic acid: Emergence of a core signaling network. Annual Review of Plant Biology, 2010, 61(1): 651-679. |
16 | Negin B, Moshelion M. The evolution of the role of ABA in the regulation of water-use efficiency: From biochemical mechanisms to stomatal conductance. Plant Science, 2016, 251: 82-89. |
17 | Hong E J, Lim C W, Han S W, et al. Functional analysis of the pepper ethylene-responsive transcription factor, caAIEF1, in enhanced ABA sensitivity and drought tolerance. Frontiers in Plant Science, 2017, 8(1407): 1-13. |
18 | Chen K, Li G J, Bressan R A, et al. Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology, 2020, 62(1): 25-54. |
19 | Gianinetti A. In dormant red rice seeds, the inhibition of early seedling growth, but not of germination, requires extracellular ABA. Plants, 2022, 11: 1023. |
20 | Lopez-Molina L, Mongrand S, Chua N H. A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(8): 4782-4787. |
21 | Wang J R, Wang L, Hu T, et al. Effects of lanthanum on abscisic acid regulation of root growth in Arabidopsis. Journal of Rare Earths, 2014, 32(1): 78-82. |
22 | Yu C, Wang Y M, Ma L, et al. An annual rotation model of alfalfa and corn in Yangtze River area. Pratacultural Science, 2022, 39(5): 996-1005. |
于晨, 王仪明, 马力, 等. 长江中下游地区紫花苜蓿与玉米周年轮作栽培模式. 草业科学, 2022, 39(5): 996-1005. | |
23 | Miao Y, Zhang H Y, Zhang L J, et al. Effects of small amounts of NaCl on alleviating damage caused to the photosynthetic activity of alfalfa seedling roots and leaves by KCl stress. Pratacultural Science, 2022, 39(5): 930-939. |
苗宇, 张浩阳, 张丽佳, 等. 少量NaCl缓解KCl胁迫对紫花苜蓿幼苗根系和叶片光合活性的影响. 草业科学, 2022, 39(5): 930-939. | |
24 | Song K X, Gao J Z, Li S, et al. Experimental and theoretical study of the effects of rare earth elements on growth and chlorophyll of alfalfa (Medicago sativa L.) seedling. Frontiers in Plant Science, 2021, 12(731838): 1-11. |
25 | He X Q, You P, Sun Y F. Lanthanum and abscisic acid coregulate chlorophyll production of seedling in switchgrass. PLoS One, 2020, 15(5): e0232750. |
26 | Li Y F, Chu X H, Li J Y, et al. Allelopathic effects of Euphorbia jolkinii on seed germination and seedling growth of alfalfa. Acta Agrestia Sinica, 2022, 30(2): 394-402. |
李彦飞, 初晓辉, 李嘉懿, 等. 大狼毒对紫花苜蓿种子萌发及幼苗生长的化感效应研究. 草地学报, 2022, 30(2): 394-402. | |
27 | Ma T Y, Li Y Z. Effects of exogenous betaine on alfalfa seed germination and seedling resistance under NaCl stress. Pratacultural Science, 2019, 36(12): 3100-3110. |
马婷燕, 李彦忠. 外源甜菜碱对NaCl胁迫下紫花苜蓿种子萌发及幼苗抗性的影响. 草业科学, 2019, 36(12): 3100-3110. | |
28 | Nie Y Y, Xu L J, Xin X P, et al. Effects of different concentrations of gibberellin on seed germination of alfalfa. Animal Husbandry and Feed Science, 2020, 41(6): 72-77. |
聂莹莹, 徐丽君, 辛晓平, 等.赤霉素浓度对苜蓿种子萌发的影响. 畜牧与饲料科学, 2020, 41(6): 72-77. | |
29 | Lian H N, Li C J. Effects of soaking seeds in salicylic acid on seed germination and seedling growth of Achnatherum inebrians under salt stress. Pratacultural Science, 2022, 39(8): 1540-1549. |
连鹤娜, 李春杰. 水杨酸浸种对盐胁迫下醉马草种子萌发和幼苗生长的影响. 草业科学, 2022, 39(8): 1540-1549. | |
30 | Rowan K S. Photosynthetic pigments of algae. New York: Cambridge University Press,1989. |
31 | Aebi H. Catalase in vitro. Methods in Enzymology, 1984, 105: 121-126. |
32 | Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 1981, 22(5): 867-880. |
33 | Hemeda H M, Klein B P. Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. Journal of Food Science, 1990, 55(1): 184-185. |
34 | Beauchamp C, Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 1971, 44(1): 276-287. |
35 | Angelini R, Cona A, Federico R, et al. Plant amine oxidases “on the move”: An update. Plant Physiology and Biochemistry, 2010, 48(7): 560-564. |
36 | Xiong Q E. Experimental course of plant physiology. Chengdu: Sichuan Publishing Group, 2003. |
熊庆娥. 植物生理学实验教程. 成都: 四川出版集团, 2003. | |
37 | Hong F S, Fang N H, Zhao G W. Physiological effects of Ce(NO3)3 on promoting germination of rice seed. Acta Agronomica Sinica, 2000, 26(1): 77-82. |
洪法水, 方能虎, 赵贵文. 硝酸铈促进水稻种子萌发的生理效应. 作物学报, 2000, 26(1): 77-82. | |
38 | Hong F S. Study on the mechanism of cerium nitrate effects on germination of aged rice seed. Biological Trace Element Research, 2002, 87(1/2/3): 191-200. |
39 | Gianinetti A, Vernieri P. On the role of abscisic acid in seed dormancy of red rice. Journal of Experimental Botany, 2007, 58(12): 3449-3462. |
40 | Cao J, Li X R, Wang C, et al. Effects of exogenous abscisic acid on heteromorphic seed germination of Suaeda aralocaspica, a typical halophyte of Xinjiang desert region. Acta Ecologica Sinica, 2015, 35(20): 6666-6677. |
曹婧, 李晓荣, 王翠, 等. 外源激素ABA影响新疆荒漠盐生植物异子蓬异型种子萌发机制. 生态学报, 2015, 35(20): 6666-6677. | |
41 | He X Q, Shaya H, Zhang Y F, et al. Effect of plant exogenous growth substances on seed germination of switchgrass. Acta Agrestia Sinica, 2018, 26(3): 684-690. |
何学青, 沙亚·海拉提, 张依凡, 等. 不同外源植物生长物质对柳枝稷种子萌发特性的影响. 草地学报, 2018, 26(3): 684-690. | |
42 | Li Y, Yu X J, Zhao Y S, et al. Effects of seed soaking with salicylic acid and abscisic acid on seed germination and seedling growth of Medicago ruthenica at low temperature. Acta Agrestia Sinica, 2021, 29(1): 174-181. |
李颖, 鱼小军, 赵一珊, 等. 水杨酸和脱落酸浸种对低温下扁蓿豆种子萌发和幼苗生长的影响. 草地学报, 2021, 29(1): 174-181. | |
43 | Huang Y H, Tang R S, Ye X Q, et al. Effect of ABA on the germination of white-grain wheat seeds and growth of its seedlings. Journal of Triticeae Crops, 2009, 29(3): 503-507. |
黄益洪, 汤日圣, 叶晓青, 等. 脱落酸(ABA)对白粒小麦种子萌发及幼苗生长的影响. 麦类作物学报, 2009, 29(3): 503-507. | |
44 | Hayashi Y, Takahashi K, Inoue S, et al. Abscisic acid suppresses hypocotyl elongation by dphosphorylating plasma membrane H+-ATPase in Arabidopsis thaliana. Plant Cell Physiology, 2014, 55(4): 845-853. |
45 | Li D, Zhao S L, Duo L A. Effects of rare earths and water-retaining agent added in municipal solid waste compost medium on initial growth of Festuca arundinacea L. Chinese Journal of Grassland, 2012, 34(3): 88-93. |
李丹, 赵树兰, 多立安. 施加稀土和保水剂对高羊茅初期生长的影响. 中国草地学报, 2012, 34(3): 88-93. | |
46 | Shyam R, Aery N C. Effect of cerium on growth, dry matter production, biochemical constituents and enzymatic activities of cowpea plants [Vigna unguiculata (L.) Walp.]. Journal of Soil Science and Plant Nutrition, 2012, 12(1): 1-14. |
47 | Hong F S, Wang L, Meng X X, et al. The effect of cerium (Ⅲ) on the chlorophyll formation in spinach. Biological Trace Element Research, 2002, 89(3): 263-276. |
48 | Chen G J, Zheng D F, Feng N J, et al. Effects of ABA on growth and physiological metabolism of rice at germinating stage and booting stage under salt stress. Hybrid Rice, 2022, 37(2): 100-108. |
陈观杰, 郑殿峰, 冯乃杰, 等. 盐胁迫下ABA对水稻萌芽期及孕穗期生长、生理代谢的影响. 杂交水稻, 2022, 37(2): 100-108. | |
49 | Chang Y C, Walling L L. Abscisic acid negatively regulates expression of chlorophyll a/b binding protein genes during soybean embryogeny. Plant Physiology, 1991, 97(3): 1260-1264. |
50 | Qian Q Q, Liu L, Yang J, et al. Physiological effects of cerium on seed germination and seeding of eggplant under chilling stress. Acta Horticulturae Sinica, 2005, 32(4): 710-712. |
钱琼秋, 刘莉, 杨静, 等. 铈对低温胁迫下茄子种子发芽及幼苗生理的影响. 园艺学报, 2005, 32(4): 710-712. | |
51 | Xu L M, Zhang Z B, Liang X L, et al. Advances in genetic engineering for drought tolerance in plants. Acta Prataculturae Sinica, 2014, 23(6): 293-303. |
徐立明, 张振葆, 梁晓玲, 等. 植物抗旱基因工程研究进展. 草业学报, 2014, 23(6): 293-303. |
[1] | 孔海明, 宋家兴, 杨静, 李倩, 杨培志, 曹玉曼. 紫花苜蓿CAMTA基因家族鉴定及其在非生物胁迫下的表达模式分析[J]. 草业学报, 2024, 33(5): 143-154. |
[2] | 何升然, 刘晓静, 赵雅姣, 汪雪, 王静. 紫花苜蓿/甜高粱间作对根际土壤特性及微生物群落特征的影响[J]. 草业学报, 2024, 33(5): 92-105. |
[3] | 刘昊, 李显炀, 何飞, 王雪, 李明娜, 龙瑞才, 康俊梅, 杨青川, 陈林. 紫花苜蓿SAUR基因家族的鉴定及其在非生物胁迫中的表达模式研究[J]. 草业学报, 2024, 33(4): 135-153. |
[4] | 李显炀, 刘昊, 何飞, 王雪, 李明娜, 龙瑞才, 康俊梅, 杨青川, 陈林. 全基因组水平紫花苜蓿WRKY转录因子家族鉴定与表达模式分析[J]. 草业学报, 2024, 33(4): 154-170. |
[5] | 李妍, 马富龙, 韩路, 王海珍. 美国‘WL’系列不同秋眠级苜蓿品种在南疆的生产性能与适应性评价[J]. 草业学报, 2024, 33(3): 139-149. |
[6] | 汪雪, 刘晓静, 王静, 吴勇, 童长春. 连续间作下的紫花苜蓿/燕麦根系与碳氮代谢特性研究[J]. 草业学报, 2024, 33(3): 85-96. |
[7] | 唐璎, 刘晓静, 赵雅姣, 董霖. 甘肃不同区域青贮紫花苜蓿乳酸菌群落特征及其驱动因子研究[J]. 草业学报, 2024, 33(2): 112-124. |
[8] | 白旭琴, 贾春云, 李文栓, 李亚敏, 刘长风, 韩秀云, 褚美函, 巩宗强, 李晓军. 叶面喷施硒肥对紫花苜蓿富硒降镉效果的影响[J]. 草业学报, 2024, 33(1): 50-60. |
[9] | 刘选帅, 孙延亮, 马春晖, 张前兵. 菌磷耦合下紫花苜蓿的干物质产量及磷素空间分布特征[J]. 草业学报, 2023, 32(9): 104-115. |
[10] | 徐蕊, 王峥, 王仪明, 苏连泰, 高鲤, 周鹏, 安渊. 紫花苜蓿对轮作水稻产量和蔗糖代谢的影响[J]. 草业学报, 2023, 32(8): 129-140. |
[11] | 王宝强, 马文静, 王贤, 朱晓林, 赵颖, 魏小红. 一氧化氮对干旱胁迫下紫花苜蓿幼苗次生代谢产物的影响[J]. 草业学报, 2023, 32(8): 141-151. |
[12] | 凌文卿, 张磊, 李珏, 冯启贤, 李妍, 周燚, 刘一佳, 阳伏林, 周晶. 布氏乳杆菌和不同糖类联用对紫花苜蓿青贮营养成分、发酵品质、瘤胃降解率及有氧稳定性的影响[J]. 草业学报, 2023, 32(7): 122-134. |
[13] | 王少鹏, 刘佳, 洪军, 林积圳, 张义, 史昆, 王赞. 紫花苜蓿MsPPR1基因的克隆及抗旱功能分析[J]. 草业学报, 2023, 32(7): 49-60. |
[14] | 马绍英, 陈桂平, 王娜, 马蕾, 连荣芳, 李胜, 张绪成. 豌豆土壤中潜在自毒物质的鉴定及自毒效应研究[J]. 草业学报, 2023, 32(6): 134-145. |
[15] | 张适阳, 刘凤民, 崔均涛, 何磊, 冯月燕, 张伟丽. 三种外源物质对低温胁迫下柱花草生理与荧光特性的影响[J]. 草业学报, 2023, 32(6): 85-99. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||