草业学报 ›› 2024, Vol. 33 ›› Issue (7): 41-52.DOI: 10.11686/cyxb2023300
张成兰1(), 刘春增1(), 吕玉虎2, 李本银1, 张琳2, 丁丽2, 杜光辉2, 张香凝1, 郑春风1, 张济世1, 李敏3, 曹卫东4
收稿日期:
2023-08-29
修回日期:
2023-10-17
出版日期:
2024-07-20
发布日期:
2024-04-08
通讯作者:
刘春增
作者简介:
E-mail: liucz321@aliyun.com基金资助:
Cheng-lan ZHANG1(), Chun-zeng LIU1(), Yu-hu LYU2, Ben-yin LI1, Lin ZHANG2, Li DING2, Guang-hui DU2, Xiang-ning ZHANG1, Chun-feng ZHENG1, Ji-shi ZHANG1, Min LI3, Wei-dong CAO4
Received:
2023-08-29
Revised:
2023-10-17
Online:
2024-07-20
Published:
2024-04-08
Contact:
Chun-zeng LIU
摘要:
为明确不同年限紫云英配施减量化肥对土壤磷吸附解吸特征的动态影响。本研究依托于河南省信阳市长期定位试验,设不施肥(CK)、单施化肥(CF)、22500 kg·hm-2紫云英+80%化肥(G+80% CF)、22500 kg·hm-2紫云英+60%化肥(G+60% CF)、22500 kg·hm-2紫云英+40%化肥(G+40% CF)共5个处理,分析2011、2016、2020年土壤磷吸附解吸特征变化趋势及其与土壤理化性质之间的关系。结果表明:Langmuir等温吸附方程能较好地拟合土壤磷的吸附特征(R2为0.9804~0.9949,P<0.01)。随种植年限的增加,不同处理各参数变化并不相同。G+80% CF、G+60% CF、G+40% CF处理土壤磷最大吸附量(Qmax)随种植年限的增加呈降低趋势,磷吸附常数(K)和磷最大缓冲容量(MBC)随种植年限的增加呈增加趋势,其中2020年较2011年,Qmax分别降低了11.30%、12.95%、15.47%,K分别增加了20.73%、22.50%、27.27%,MBC分别增加了8.63%、6.43%、6.28%;CF处理与之相反,土壤磷的Qmax随年限的增加呈增加趋势,K和MBC随年限的增加呈降低趋势,与2011年相比,2020年土壤磷的Qmax增加了8.80%,K降低了12.20%,MBC降低了2.97%;各处理土壤磷吸附饱和度(DPS)随种植年限的增加无规律性变化。CK和CF处理土壤磷的平均解吸率随年限的增加呈降低趋势,G+80% CF和G+40% CF呈先降低后增加趋势,G+60% CF处理呈降低趋势。相同年份,紫云英配施减量化肥较CK降低了土壤磷的Qmax、增加了土壤磷的K、MBC、DPS及平均解吸率。相关性分析表明,Qmax与土壤阳离子交换量(CEC)呈极显著正相关,MBC与CEC呈极显著负相关,DPS与碱解氮(AN)、有效磷(AP)呈极显著正相关,解吸率(DR)与速效钾(AK)呈极显著负相关,与pH呈显著负相关。冗余分析结果表明,CEC、AP、AK是影响土壤磷吸附解吸特征的主要因素,贡献率分别为26.7%、18.5%、16.2%(P<0.05)。综上,土壤对磷的吸附解吸主要受土壤阳离子交换量、有效磷、速效钾的影响。长期紫云英配施减量化肥可降低土壤对磷的吸附,增加土壤对磷的解吸,长期单施化肥效果则相反。综合考虑土壤磷吸附解吸特性及土壤理化性质,以减量20%~40%化肥配施22500 kg·hm-2紫云英效果较好。本研究为豫南稻区合理施肥提供了理论依据。
张成兰, 刘春增, 吕玉虎, 李本银, 张琳, 丁丽, 杜光辉, 张香凝, 郑春风, 张济世, 李敏, 曹卫东. 不同年限紫云英配施减量化肥对土壤磷吸附解吸特征的影响[J]. 草业学报, 2024, 33(7): 41-52.
Cheng-lan ZHANG, Chun-zeng LIU, Yu-hu LYU, Ben-yin LI, Lin ZHANG, Li DING, Guang-hui DU, Xiang-ning ZHANG, Chun-feng ZHENG, Ji-shi ZHANG, Min LI, Wei-dong CAO. Effects of Chinese milk vetch combined with reduced chemical fertilizer on soil phosphorus adsorption and desorption characteristics in different years[J]. Acta Prataculturae Sinica, 2024, 33(7): 41-52.
年份Year | 处理 Treatments | Langmuir方程 Langmuir equation | R2 | 土壤磷最大吸附量 Maximum buffer capacity (Qmax, mg·kg-1) | 吸附亲和力常数 Adsorption constant (K) | 土壤磷最大缓冲容量Maximum buffer capacity of soil P (MBC, mg·kg-1) | 土壤磷吸附饱和度 Degree of phosphorus saturation (DPS, %) |
---|---|---|---|---|---|---|---|
2011 | CK | C/Q=0.0006C+0.0888 | 0.9907 | 1617.92a | 0.0076a | 11.27a | 0.2967b |
CF | C/Q=0.0007C+0.0848 | 0.9934 | 1477.21a | 0.0082a | 11.80a | 0.5321a | |
G+80% CF | C/Q=0.0007C+0.0812 | 0.9928 | 1432.88a | 0.0082a | 11.35a | 0.5318a | |
G+60% CF | C/Q=0.0007C+0.0857 | 0.9917 | 1482.96a | 0.0080a | 11.67a | 0.4071ab | |
G+40% CF | C/Q=0.0007C+0.0872 | 0.9927 | 1517.49a | 0.0077a | 11.46a | 0.4624ab | |
2016 | CK | C/Q=0.0007C+0.0841 | 0.9910 | 1443.15a | 0.0086a | 11.89a | 0.2831b |
CF | C/Q=0.0007C+0.0851 | 0.9949 | 1512.98a | 0.0081a | 11.75a | 0.4718a | |
G+80% CF | C/Q=0.0007C+0.0822 | 0.9911 | 1375.88a | 0.0090a | 12.16a | 0.4700a | |
G+60% CF | C/Q=0.0007C+0.0822 | 0.9915 | 1364.41a | 0.0091a | 12.16a | 0.5458a | |
G+40% CF | C/Q=0.0007C+0.0845 | 0.9912 | 1387.58a | 0.0086a | 11.83a | 0.4433a | |
2020 | CK | C/Q=0.0007C+0.0843 | 0.9884 | 1394.34ab | 0.0086a | 11.86a | 0.3470c |
CF | C/Q=0.0006C+0.0873 | 0.9941 | 1607.17a | 0.0072a | 11.45a | 0.5366ab | |
G+80% CF | C/Q=0.0008C+0.0811 | 0.9853 | 1271.01b | 0.0099a | 12.33a | 0.6366a | |
G+60% CF | C/Q=0.0008C+0.0805 | 0.9890 | 1290.88b | 0.0098a | 12.42a | 0.4456bc | |
G+40% CF | C/Q=0.0008C+0.0821 | 0.9804 | 1282.67b | 0.0098a | 12.18a | 0.5084b | |
P值P value | ** | * | NS | NS | * |
表1 不同施肥处理下土壤磷Langmuir拟合方程与吸附参数
Table 1 Langmuir fitting equation and adsorption parameters of soil phosphorus under different fertilization treatments
年份Year | 处理 Treatments | Langmuir方程 Langmuir equation | R2 | 土壤磷最大吸附量 Maximum buffer capacity (Qmax, mg·kg-1) | 吸附亲和力常数 Adsorption constant (K) | 土壤磷最大缓冲容量Maximum buffer capacity of soil P (MBC, mg·kg-1) | 土壤磷吸附饱和度 Degree of phosphorus saturation (DPS, %) |
---|---|---|---|---|---|---|---|
2011 | CK | C/Q=0.0006C+0.0888 | 0.9907 | 1617.92a | 0.0076a | 11.27a | 0.2967b |
CF | C/Q=0.0007C+0.0848 | 0.9934 | 1477.21a | 0.0082a | 11.80a | 0.5321a | |
G+80% CF | C/Q=0.0007C+0.0812 | 0.9928 | 1432.88a | 0.0082a | 11.35a | 0.5318a | |
G+60% CF | C/Q=0.0007C+0.0857 | 0.9917 | 1482.96a | 0.0080a | 11.67a | 0.4071ab | |
G+40% CF | C/Q=0.0007C+0.0872 | 0.9927 | 1517.49a | 0.0077a | 11.46a | 0.4624ab | |
2016 | CK | C/Q=0.0007C+0.0841 | 0.9910 | 1443.15a | 0.0086a | 11.89a | 0.2831b |
CF | C/Q=0.0007C+0.0851 | 0.9949 | 1512.98a | 0.0081a | 11.75a | 0.4718a | |
G+80% CF | C/Q=0.0007C+0.0822 | 0.9911 | 1375.88a | 0.0090a | 12.16a | 0.4700a | |
G+60% CF | C/Q=0.0007C+0.0822 | 0.9915 | 1364.41a | 0.0091a | 12.16a | 0.5458a | |
G+40% CF | C/Q=0.0007C+0.0845 | 0.9912 | 1387.58a | 0.0086a | 11.83a | 0.4433a | |
2020 | CK | C/Q=0.0007C+0.0843 | 0.9884 | 1394.34ab | 0.0086a | 11.86a | 0.3470c |
CF | C/Q=0.0006C+0.0873 | 0.9941 | 1607.17a | 0.0072a | 11.45a | 0.5366ab | |
G+80% CF | C/Q=0.0008C+0.0811 | 0.9853 | 1271.01b | 0.0099a | 12.33a | 0.6366a | |
G+60% CF | C/Q=0.0008C+0.0805 | 0.9890 | 1290.88b | 0.0098a | 12.42a | 0.4456bc | |
G+40% CF | C/Q=0.0008C+0.0821 | 0.9804 | 1282.67b | 0.0098a | 12.18a | 0.5084b | |
P值P value | ** | * | NS | NS | * |
年份 Year | 磷浓度 Concentration of P (mg·L-1) | CK | CF | G+80% CF | G+60% CF | G+40% CF | P值P value |
---|---|---|---|---|---|---|---|
2011 | 5 | 3.32ab | 4.09a | 2.54b | 2.77b | 2.31b | * |
10 | 3.54a | 3.20ab | 2.76bc | 2.56c | 2.70bc | * | |
20 | 5.52a | 5.59a | 5.92a | 5.14b | 5.72a | * | |
40 | 8.28b | 9.71ab | 9.46ab | 10.29a | 10.85a | * | |
60 | 9.81b | 11.36a | 11.84a | 10.88ab | 11.42a | * | |
80 | 11.98a | 10.91a | 11.97a | 11.39a | 11.61a | NS | |
100 | 11.27c | 11.63bc | 13.23a | 13.54a | 13.00ab | * | |
均值 Average | 7.67a | 8.07a | 8.25a | 8.08a | 8.23a | NS | |
2016 | 5 | 2.58ab | 2.83a | 1.98ab | 2.43ab | 1.74b | * |
10 | 1.93b | 3.20a | 1.80b | 2.54ab | 2.10b | * | |
20 | 4.48bc | 4.24c | 5.10a | 4.97ab | 4.98ab | * | |
40 | 8.05b | 6.97b | 9.53a | 10.13a | 9.75a | * | |
60 | 9.90b | 10.53b | 10.41b | 10.55b | 11.59a | * | |
80 | 11.41a | 10.91a | 10.76a | 11.04a | 11.27a | NS | |
100 | 11.03a | 11.14a | 11.93a | 12.07a | 11.83a | NS | |
均值Average | 7.05b | 7.12ab | 7.36ab | 7.68a | 7.61ab | * | |
2020 | 5 | 2.62ab | 2.83a | 1.88ab | 2.07ab | 1.64b | * |
10 | 1.80b | 2.48a | 2.50a | 2.63a | 2.00b | * | |
20 | 4.41bc | 4.17c | 5.29a | 4.79ab | 4.95ab | * | |
40 | 8.31a | 8.13a | 9.81a | 9.30a | 10.50a | NS | |
60 | 9.47a | 9.89a | 10.68a | 10.76a | 11.05a | NS | |
80 | 11.41ab | 10.37b | 11.78ab | 11.41ab | 12.00a | * | |
100 | 11.00ab | 10.63b | 11.64ab | 11.90ab | 12.13a | * | |
均值Average | 7.00ab | 6.93b | 7.65ab | 7.55ab | 7.75a | * |
表2 不同施肥处理土壤磷解吸率
Table 2 Desorption rate of soil phosphate under different fertilization treatments (%)
年份 Year | 磷浓度 Concentration of P (mg·L-1) | CK | CF | G+80% CF | G+60% CF | G+40% CF | P值P value |
---|---|---|---|---|---|---|---|
2011 | 5 | 3.32ab | 4.09a | 2.54b | 2.77b | 2.31b | * |
10 | 3.54a | 3.20ab | 2.76bc | 2.56c | 2.70bc | * | |
20 | 5.52a | 5.59a | 5.92a | 5.14b | 5.72a | * | |
40 | 8.28b | 9.71ab | 9.46ab | 10.29a | 10.85a | * | |
60 | 9.81b | 11.36a | 11.84a | 10.88ab | 11.42a | * | |
80 | 11.98a | 10.91a | 11.97a | 11.39a | 11.61a | NS | |
100 | 11.27c | 11.63bc | 13.23a | 13.54a | 13.00ab | * | |
均值 Average | 7.67a | 8.07a | 8.25a | 8.08a | 8.23a | NS | |
2016 | 5 | 2.58ab | 2.83a | 1.98ab | 2.43ab | 1.74b | * |
10 | 1.93b | 3.20a | 1.80b | 2.54ab | 2.10b | * | |
20 | 4.48bc | 4.24c | 5.10a | 4.97ab | 4.98ab | * | |
40 | 8.05b | 6.97b | 9.53a | 10.13a | 9.75a | * | |
60 | 9.90b | 10.53b | 10.41b | 10.55b | 11.59a | * | |
80 | 11.41a | 10.91a | 10.76a | 11.04a | 11.27a | NS | |
100 | 11.03a | 11.14a | 11.93a | 12.07a | 11.83a | NS | |
均值Average | 7.05b | 7.12ab | 7.36ab | 7.68a | 7.61ab | * | |
2020 | 5 | 2.62ab | 2.83a | 1.88ab | 2.07ab | 1.64b | * |
10 | 1.80b | 2.48a | 2.50a | 2.63a | 2.00b | * | |
20 | 4.41bc | 4.17c | 5.29a | 4.79ab | 4.95ab | * | |
40 | 8.31a | 8.13a | 9.81a | 9.30a | 10.50a | NS | |
60 | 9.47a | 9.89a | 10.68a | 10.76a | 11.05a | NS | |
80 | 11.41ab | 10.37b | 11.78ab | 11.41ab | 12.00a | * | |
100 | 11.00ab | 10.63b | 11.64ab | 11.90ab | 12.13a | * | |
均值Average | 7.00ab | 6.93b | 7.65ab | 7.55ab | 7.75a | * |
处理 Treatments | 有机质 Organic matter (g·kg-1) | 碱解氮 Alkaline nitrogen (mg·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | pH | 阳离子交换量 Cation exchange capacity [cmol(+)·kg-1] |
---|---|---|---|---|---|---|
CK | 22.49±0.13b | 157.12±1.80b | 4.38±0.26c | 85.24±3.01ab | 6.59±0.10a | 19.28±0.26a |
CF | 23.59±0.64ab | 194.88±9.07a | 7.77±0.40a | 88.90±3.08a | 6.42±0.09ab | 19.42±0.24a |
G+80% CF | 24.14±0.46a | 204.41±3.86a | 7.25±0.46ab | 83.98±0.70ab | 6.07±0.07b | 19.03±0.22a |
G+60% CF | 24.86±0.29a | 195.04±9.76a | 6.39±0.54b | 83.73±1.66ab | 6.08±0.14b | 18.61±0.42a |
G+40% CF | 23.89±0.51ab | 189.88±3.72a | 6.50±0.20ab | 80.74±0.82b | 6.11±0.16b | 18.91±0.15a |
表3 不同施肥处理下土壤理化性状
Table 3 Soil physical and chemical properties under different fertilization treatments
处理 Treatments | 有机质 Organic matter (g·kg-1) | 碱解氮 Alkaline nitrogen (mg·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | pH | 阳离子交换量 Cation exchange capacity [cmol(+)·kg-1] |
---|---|---|---|---|---|---|
CK | 22.49±0.13b | 157.12±1.80b | 4.38±0.26c | 85.24±3.01ab | 6.59±0.10a | 19.28±0.26a |
CF | 23.59±0.64ab | 194.88±9.07a | 7.77±0.40a | 88.90±3.08a | 6.42±0.09ab | 19.42±0.24a |
G+80% CF | 24.14±0.46a | 204.41±3.86a | 7.25±0.46ab | 83.98±0.70ab | 6.07±0.07b | 19.03±0.22a |
G+60% CF | 24.86±0.29a | 195.04±9.76a | 6.39±0.54b | 83.73±1.66ab | 6.08±0.14b | 18.61±0.42a |
G+40% CF | 23.89±0.51ab | 189.88±3.72a | 6.50±0.20ab | 80.74±0.82b | 6.11±0.16b | 18.91±0.15a |
项目Item | SOM | AN | AP | AK | pH | CEC |
---|---|---|---|---|---|---|
Qmax | -0.338 | -0.225 | -0.027 | 0.173 | 0.240 | 0.649** |
K | 0.318 | 0.251 | -0.061 | -0.481 | -0.231 | -0.363 |
MBC | 0.289 | 0.162 | 0.021 | 0.022 | -0.158 | -0.665** |
DPS | 0.370 | 0.763** | 0.934** | 0.124 | -0.399 | -0.193 |
DR | 0.470 | 0.255 | 0.235 | -0.722** | -0.587* | 0.141 |
表4 土壤磷吸附解吸参数与土壤理化性状的相关性分析
Table 4 Correlation analysis of soil phosphorus adsorption and desorption parameters with soil physicochemical properties
项目Item | SOM | AN | AP | AK | pH | CEC |
---|---|---|---|---|---|---|
Qmax | -0.338 | -0.225 | -0.027 | 0.173 | 0.240 | 0.649** |
K | 0.318 | 0.251 | -0.061 | -0.481 | -0.231 | -0.363 |
MBC | 0.289 | 0.162 | 0.021 | 0.022 | -0.158 | -0.665** |
DPS | 0.370 | 0.763** | 0.934** | 0.124 | -0.399 | -0.193 |
DR | 0.470 | 0.255 | 0.235 | -0.722** | -0.587* | 0.141 |
图3 土壤磷吸附解吸参数与土壤理化性状的冗余分析图中实线表示土壤磷吸附解吸特征参数,虚线表示土壤理化性质。The solid line in the figure represents the characteristic parameters of soil phosphorus adsorption and desorption, while the dashed line represents the physical and chemical properties of the soil.
Fig.3 Redundancy analysis of soil phosphorus adsorption and desorption parameters and soil physicochemical properties
1 | Ardón M, Montanari S, Morse J L, et al. Phosphorus export from a restored wetland and ecosystem in response to natural and experimental hydrologic fluctuations. Journal of Geophysical Research: Biogeosciences, 2010, 115(4): 31-43. |
2 | Zhou L, Su L Z, Wang S R, et al. Effect of intercropping on balancing effect of absorption and desorption characteristics of phosphorus in red soil. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1867-1878. |
周龙, 苏丽珍, 王思睿, 等. 间作对红壤磷素吸附解吸平衡效应的影响. 中国生态农业学报, 2021, 29(11): 1867-1878. | |
3 | Zhan X Y, Ren Y, Zhang S X, et al. Changes in olsen phosphorus concentration and its response to phosphorus balance in the main types of soil in China. Scientia Agricultura Sinica, 2015, 48(23): 4728-4737. |
展晓莹, 任意, 张淑香, 等. 中国主要土壤有效磷演变及其与磷平衡的响应关系. 中国农业科学, 2015, 48(23): 4728-4737. | |
4 | Wang Q, Zhan X Y, Zhang S X, et al. Phosphorus adsorption and desorption characteristics and its response to soil properties of black soil under long-term different fertilization. Scientia Agricultura Sinica, 2019, 52(21): 3866-3877. |
王琼, 展晓莹, 张淑香, 等. 长期不同施肥处理黑土磷的吸附-解吸特征及对土壤性质的响应. 中国农业科学, 2019, 52(21): 3866-3877. | |
5 | Yan X, Wang D J, Zhang H L, et al. Organic amendments affect phosphorus sorption characteristics in a paddy soil. Agriculture, Ecosystems and Environment, 2013, 175: 47-53. |
6 | Bai J H, Ye X F, Jia J, et al. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions. Chemosphere, 2017, 188: 677-688. |
7 | Liu Y L, Li Y, Zhang M, et al. Effects of long-term fertilization on phosphorus adsorption and desorption characters in yellow soil. Journal of Plant Nutrition and Fertilizers, 2021, 27(3): 450-459. |
刘彦伶, 李渝, 张萌, 等. 长期不同施肥对黄壤磷素吸附-解吸特性的影响. 植物营养与肥料学报, 2021, 27(3): 450-459. | |
8 | Yang X, Chen X, Yang X. Effect of organic matter on phosphorus adsorption and desorption in a black soil from Northeast China. Soil and Tillage Research, 2019, 187: 85-91. |
9 | Lin C, Wang F, Lin X J, et al. The effection of phosphorus adsorption and desorption of long-term fertilization on south yellow clayey soil. Fujian Journal of Agricultural Sciences, 2011, 26(6): 1034-1038. |
林诚, 王飞, 林新坚, 等. 长期施肥对南方黄泥田土壤磷吸附与解吸的影响. 福建农业学报, 2011, 26(6): 1034-1038. | |
10 | Gong Z P, Du T T, Yan C, et al. Effects of corn straw returning and phosphorus application rate on phosphorus adsorption and desorption characteristics of black soil. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(22): 161-169. |
龚振平, 杜婷婷, 闫超, 等. 玉米秸秆还田及施磷量对黑土磷吸附与解吸特性的影响. 农业工程学报, 2019, 35(22): 161-169. | |
11 | Li X, Liu Y X, Liu Y R, et al. Interactive effects of combined inorganic and organic fertilizers on phosphorous adsorption, desorption and mobility. Journal of Nuclear Agricultural Sciences, 2013, 27(2): 253-259. |
李想, 刘艳霞, 刘益仁, 等. 有机无机肥配合对土壤磷素吸附、解吸和迁移特性的影响. 核农学报, 2013, 27(2): 253-259. | |
12 | Zhang C L, Liu C Z, Lyu Y H, et al. Effects of the combination of reduced chemical fertilizer and various amounts of Chinese milk vetch (Astragalus sinicus L.) on soil phosphorus forms and rice yield. Soil and Fertilizer Sciences in China, 2020(1): 100-106. |
张成兰, 刘春增, 吕玉虎, 等. 减量化肥配施不同量紫云英对土壤磷素形态及水稻产量的影响. 中国土壤与肥料, 2020(1): 100-106. | |
13 | Liu C L, Wang R, Li Y, et al. Changes in soil phosphorus contents induced by milk vetch green manure. Soil and Fertilizer Sciences in China, 2019(6): 44-48, 70. |
刘彩玲, 王瑞, 李昱, 等. 不等量翻压紫云英处理下黄泥田土壤磷组分的变化. 中国土壤与肥料, 2019(6): 44-48, 70. | |
14 | Lu R K. Analytical method of soil and agro-chemistry. Beijing: China Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. | |
15 | Zhang D, Wei Z M, Li S Q, et al. Effect of bio-organic fertilizers on phosphorus adsorption-desorption. Journal of Northeast Agricultural University, 2005(5): 31-35. |
张迪, 魏自民, 李淑芹, 等. 生物有机肥对土壤中磷的吸附和解吸特性的影响. 东北农业大学学报, 2005(5): 31-35. | |
16 | Zhao Q L, Wang K R, Xie X L. Effects of organic nutrient recycling on phosphorus adsorption-desorption characteristics in a reddish paddy rice system. Scientia Agricultura Sinica, 2009, 42(1): 355-362. |
赵庆雷, 王凯荣, 谢小立. 长期有机物循环对红壤稻田土壤磷吸附和解吸特性的影响. 中国农业科学, 2009, 42(1): 355-362. | |
17 | Xia H Y, Wang K R. Effects of soil organic matter on characteristics of phosphorus adsorption and desorption in calcareous yellow fluvo-aquic soil and lime concretion black soil. Journal of Plant Nutrition and Fertilizers, 2009, 15(6): 1303-1310. |
夏海勇, 王凯荣. 有机质含量对石灰性黄潮土和砂姜黑土磷吸附-解吸特性的影响. 植物营养与肥料学报, 2009, 15(6): 1303-1310. | |
18 | Zang Y H, Huang S M, Guo D D, et al. Phosphorus adsorption and desorption characteristics of different textural fluvo-aquic soils under long-term fertilization. Journal of Soils and Sediments, 2019, 19(3): 1306-1318. |
19 | Bhadha J H, Daroub S H, Lang T A. Effect of kinetic control, soil∶solution ratio, electrolyte cation, and others, on equilibrium phosphorus concentration. Geoderma, 2012, 173/174: 209-214. |
20 | Lai D Y F, Lam K C. Phosphorus sorption by sediments in a subtropical constructed wetland receiving storm water runoff. Ecological Engineering, 2009, 35(5): 735-743. |
21 | Wang Q, Chen Y H, Zhang N Y, et al. Phosphorus adsorption and desorption characteristics as affected by long-term phosphorus application in black soil. Journal of Plant Nutrition and Fertilizers, 2022, 28(9): 1569-1581. |
王琼, 陈延华, 张乃于, 等. 长期施磷黑土中磷的吸附-解吸特征及其影响因素. 植物营养与肥料学报, 2022, 28(9): 1569-1581. | |
22 | Qian D, Fan H M, Zhou L L, et al. Effects of freeze-thaw cycles on phosphorus adsorption and desorption characteristic in brown earth. Journal of Soil and Water Conservation, 2012, 26(2): 279-283. |
钱多, 范昊明, 周丽丽, 等. 冻融作用对棕壤磷素吸附-解吸特性的影响. 水土保持学报, 2012, 26(2): 279-283. | |
23 | Li X. The synergistic effects and mechanisms of combined application of organic and inorganic phosphorous fertilizer. Nanjing: Nanjing Agricultural University, 2012. |
李想. 有机无机肥磷配施的协同效应与机理研究. 南京: 南京农业大学, 2012. | |
24 | Wang B, Liu H, Li Y H, et al. Phosphorus adsorption and desorption characteristics of gray desert soil under long-term fertilization. Acta Pedologica Sinica, 2013, 50(4): 726-733. |
王斌, 刘骅, 李耀辉, 等. 长期施肥条件下灰漠土磷的吸附与解吸特征. 土壤学报, 2013, 50(4): 726-733. | |
25 | Lyu Y Q, Zheng M J, Wu J S, et al. Effects of different nitrogen reduction fertilizer combined with milk vetch (Astragalus sinicus L.) on the loss of nitrogen and phosphorus in field water and rice growth. Journal of Soil and Water Conservation, 2022, 36(6): 148-155. |
吕永强, 郑铭洁, 吴家森, 等. 不同减量氮肥配施紫云英对田面水氮磷流失及水稻生长的影响. 水土保持学报, 2022, 36(6): 148-155. | |
26 | Qi R S, Dang T H, Yang S Q, et al. The impact on soil phosphorus adsorption characteristics and leaching change-point under long-term fertilization. Chinese Journal of Soil Science, 2012, 43(5): 1187-1194. |
戚瑞生, 党廷辉, 杨绍琼, 等. 长期定位施肥对土壤磷素吸持特性与淋失突变点影响的研究. 土壤通报, 2012, 43(5): 1187-1194. | |
27 | Chrysostome M, Nair V D, Harris W G, et al. Laboratory validation of soil phosphorus storage capacity predictions for use in risk assessment. Soil Science Society of America Journal, 2007, 71(5): 1564-1569. |
28 | Wang Y L, He Y Q, Wu H S, et al. Environmental risk analysis of accumulated phosphorus in red soil under long-term fertilization. Acta Pedologica Sinica, 2010, 47(5): 880-887. |
王艳玲, 何园球, 吴洪生, 等. 长期施肥下红壤磷素积累的环境风险分析. 土壤学报, 2010, 47(5): 880-887. | |
29 | Fu H M, Jia L M. Study progress of nitrogen and phosphate adsorption & desorption in soils. Chinese Agricultural Science Bulletin, 2009, 25(21): 198-203. |
付海曼, 贾黎明. 土壤对氮、磷吸附/解吸附特性研究进展. 中国农学通报, 2009, 25(21): 198-203. | |
30 | Wang X Y, Zhang L P, Zhang H S, et al. Phosphorus adsorption characteristics at the sediment-water interface and relationship with sediment properties in FUSHI reservoir, China. Environmental Earth Sciences, 2012, 67(1): 15-22. |
31 | Tang X X. Study on adsorption-desorption properties of soil phosphorus in cotton field under four consecutive years of phosphorus application. Urumqi: XinjiangAgricultural University, 2021. |
唐雪霞. 连续四年施磷条件下棉田土壤磷的吸附-解吸特征研究. 乌鲁木齐: 新疆农业大学, 2021. | |
32 | Siddique M T, Robinson J S. Phosphorus sorption and availability in soils amended with animal manures and sewage sludge. Journal of Environmental Quality, 2003, 32(3): 1114-1121. |
33 | Xia W J, Liang G Q, Zhou W, et al. Adsorption and desorption characteristics of soil phosphorus in calcareous fluvo-aquic soil under long-term fertilization. Journal of Plant Nutrition and Fertilizers, 2008, 14(3): 431-438. |
夏文建, 梁国庆, 周卫, 等. 长期施肥条件下石灰性潮土磷的吸附解吸特征. 植物营养与肥料学报, 2008, 14(3): 431-438. | |
34 | Zou H F. Phosphorus adsorption characteristics of cinnamon soil and growth of cucumber under different water and fertilizer conditions. Taiyuan: Shanxi University, 2019. |
邹慧芳. 褐土磷吸附特征及不同水肥条件下设施黄瓜的生长. 太原: 山西大学, 2019. | |
35 | He S, Yin F H, Xie H X. Forms of inorganic phosphorus and phosphate sorption characteristics of grey desert soil in Junggar Basin. Arid Land Geography, 2017, 40(5): 1061-1069. |
何帅, 尹飞虎, 谢海霞. 准噶尔盆地灰漠土无机磷形态及磷吸附特性研究. 干旱区地理, 2017, 40(5): 1061-1069. | |
36 | Zhao Z J, Jin R, Fang D, et al. Paddy cultivation significantly alters the forms and contents of Fe oxides in an Oxisol and increases phosphate mobility. Soil and Tillage Research, 2018, 184: 176-180. |
37 | Sun J N, Xu G, Shao H B, et al. Potential retention and release capacity of phosphorus in the newly formed wetland soils from the Yellow River Delta, China. CLEAN-Soil Air Water, 2012, 40(10): 1131-1136. |
38 | Song C L, Fan J B, He Y Q, et al. Phosphorus adsorption characteristics of red paddy soils derived from different parent materials and their influencing factors. Acta Pedologica Sinica, 2012, 49(3): 607-611. |
宋春丽, 樊剑波, 何园球, 等. 不同母质发育的红壤性水稻土磷素吸附特性及其影响因素的研究. 土壤学报, 2012, 49(3): 607-611. | |
39 | Wang J G. Soil chemistry of plant nutrition. Beijing: Beijing Agricultural University Press, 1995. |
王敬国. 植物营养的土壤化学. 北京: 北京农业大学出版社, 1995. |
[1] | 常单娜, 陈子英, 韩梅, 李正鹏, 严清彪, 吕帅磊, 周国朋, 孙小凤, 曹卫东. 毛叶苕子磷获取特征及根际特性的基因型差异[J]. 草业学报, 2024, 33(4): 122-134. |
[2] | 李秀芳, 魏文静, 蒲勇, 李廷轩, 叶代桦. 水蓼种植下猪粪处理土壤剖面磷组分与磷酸酶活性变化[J]. 草业学报, 2024, 33(3): 61-72. |
[3] | 杨瑞杰, 何淑勤, 周树峰, 杨晶月, 金钰宪, 郑子成. 杂交粱草生长期土壤抗冲性变化特征及其根系调控效应[J]. 草业学报, 2023, 32(7): 149-159. |
[4] | 孙玉, 杨永胜, 何琦, 王军邦, 张秀娟, 李慧婷, 徐兴良, 周华坤, 张宇恒. 三江源高寒草甸水源涵养功能及土壤理化性质对退化程度的响应[J]. 草业学报, 2023, 32(6): 16-29. |
[5] | 彭艳, 孙晶远, 马素洁, 王向涛, 魏学红, 孙磊. 藏北不同退化阶段高寒草甸植物群落特征与土壤养分特性[J]. 草业学报, 2022, 31(8): 49-60. |
[6] | 刘咏梅, 董幸枝, 龙永清, 朱志梅, 王雷, 盖星华, 赵樊, 李京忠. 退化高寒草甸狼毒群落分类特征及其环境影响因子[J]. 草业学报, 2022, 31(4): 1-11. |
[7] | 尹作天, 王玉辉, 周广胜, 马全会, 刘晓迪, 贾丙瑞, 蒋延玲. 荒漠草原石生针茅光合特性对渐进式土壤干旱过程的响应及敏感性分析[J]. 草业学报, 2022, 31(1): 81-94. |
[8] | 马英, 许志豪, 曾巧红, 孟建龙, 胡亚虎, 苏洁琼. 氮素添加对荒漠化草原草本植物养分化学计量特征的影响[J]. 草业学报, 2021, 30(6): 64-72. |
[9] | 刘慧霞, 董乙强, 崔雨萱, 刘星宏, 何盘星, 孙强, 孙宗玖. 新疆阿勒泰地区荒漠草地土壤有机碳特征及其环境影响因素分析[J]. 草业学报, 2021, 30(10): 41-52. |
[10] | 徐绮雯, 马淑敏, 朱波, 张小短, 邢毅, 段美春, 王龙昌. 生物炭与化肥配施对紫色土肥力与微生物特征及油菜产量品质的影响[J]. 草业学报, 2020, 29(5): 121-131. |
[11] | 雷玮倩, 胡玉福, 杨泽鹏, 何剑锋, 肖海华, 舒向阳, 阳帆, 李正青. 垦殖对川西北高寒草地土壤中不同磷组分含量的影响[J]. 草业学报, 2019, 28(5): 36-45. |
[12] | 谢放, 张亚军, 常黎明, 刘帅, 陈晨. 甘肃省宽叶羌活品质对比及其与土壤因子的相关性[J]. 草业学报, 2017, 26(9): 75-82. |
[13] | 王兴,宋乃平,杨新国,陈林,刘秉儒,曲文杰,杨明秀,肖绪培. 荒漠草原弃耕恢复草地土壤与植被的RDA分析[J]. 草业学报, 2014, 23(2): 90-97. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||