草业学报 ›› 2024, Vol. 33 ›› Issue (7): 25-40.DOI: 10.11686/cyxb2023310
李思媛1(), 孙宗玖1,2,3(), 于冰洁1, 周晨烨1, 周磊1, 郑丽1, 刘慧霞1, 冶华薇1
收稿日期:
2023-08-31
修回日期:
2023-11-09
出版日期:
2024-07-20
发布日期:
2024-04-08
通讯作者:
孙宗玖
作者简介:
E-mail: nmszj@21cn.com基金资助:
Si-yuan LI1(), Zong-jiu SUN1,2,3(), Bing-jie YU1, Chen-ye ZHOU1, Lei ZHOU1, Li ZHENG1, Hui-xia LIU1, Hua-wei YE1
Received:
2023-08-31
Revised:
2023-11-09
Online:
2024-07-20
Published:
2024-04-08
Contact:
Zong-jiu SUN
摘要:
明确土壤酶活性及其化学计量特征在封育恢复过程中的变化特征,对揭示土壤养分可利用性随着植被恢复的变化规律及阐明生态系统养分循环机制有重要意义。本研究通过对土壤碳氮磷、酶活性及其化学计量特征的测定,初步分析了封育6年的蒿类荒漠草地对封育措施响应的特征变化。结果表明:1)封育后蒿类荒漠草地0~20 cm土层土壤有机碳、全氮、全磷、C/P、N/P及土壤亮氨酸氨基肽酶、碱性磷酸酶,酶活性C/N均无显著变化,而4月各样地β-1,4-葡萄糖苷酶活性及7月玛纳斯样地β-1,4-N-乙酰氨基葡萄糖苷酶活性较对照呈增加趋势;2)封育显著增加了7月玛纳斯样地的C/N及4月各样地酶活性C/P,降低了7月玛纳斯样地酶活性N/P值,封育后4月各样地向量长度均显著增加,且各样地封育前后向量长度均大于45°,表明研究区土壤微生物主要受碳和磷的限制;3)冗余分析表明封育后土壤碳氮磷及其计量特征解释了土壤酶活性及化学计量特征、向量特征变异的56.03%,且结构方程模型显示封育后土壤有机碳极显著影响土壤酶活性及其化学计量特征,表明土壤有机碳可能是影响蒿类荒漠草地土壤酶活性及其化学计量特征的主要因子。
李思媛, 孙宗玖, 于冰洁, 周晨烨, 周磊, 郑丽, 刘慧霞, 冶华薇. 封育对伊犁绢蒿荒漠草地土壤碳氮磷、酶活性及其化学计量特征的影响[J]. 草业学报, 2024, 33(7): 25-40.
Si-yuan LI, Zong-jiu SUN, Bing-jie YU, Chen-ye ZHOU, Lei ZHOU, Li ZHENG, Hui-xia LIU, Hua-wei YE. Effect of grazing exclusion on soil carbon, nitrogen, and phosphorus contents and enzyme activity and stoichiometry in Seriphidium transiliense desertgrasslands[J]. Acta Prataculturae Sinica, 2024, 33(7): 25-40.
图1 封育对蒿类荒漠草地土壤有机碳含量的影响HTB: 呼图壁县; MNS: 玛纳斯县。不同大写字母表示同一样地封育与对照处理间差异显著(P<0.05),不同小写字母表示同一样地不同月份间差异显著(P<0.05),图中小图均为0~20 cm土层结果,下同。HTB: Hutubi County; MNS: Manasi County. Different capital letters indicate significant differences between grazing exclusion and control treatments at the same site (P<0.05), and different lowercase letters indicate significant differences between different months at the same site (P<0.05), the small plots in the figure are all 0-20 cm soil layer results, the same below.
Fig.1 Effect of grazing exclusion on soil organic carbon in sagebrush desert grassland
项目Items | C | N | P | C/N | C/P | N/P | βG | NAG | LAP | ALP | 酶C/N | 酶C/P | 酶N/P | VL | VA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | 1.000 | 0.024 | 0.102 | 0.662* | 0.844** | 0.000 | -0.092 | -0.202 | -0.506 | 0.248 | 0.022 | -0.237 | -0.337 | -0.281 | 0.340 |
N | -0.284 | 1.000 | 0.074 | -0.722** | -0.023 | 0.877** | 0.238 | -0.227 | -0.198 | 0.292 | 0.293 | 0.074 | -0.363 | -0.017 | 0.291 |
P | 0.280 | -0.675* | 1.000 | -0.071 | -0.447 | -0.413 | 0.157 | -0.095 | -0.326 | 0.192 | 0.191 | -0.003 | -0.265 | -0.077 | 0.163 |
C/N | 0.723** | -0.852** | 0.694* | 1.000 | 0.637* | -0.608* | -0.272 | 0.074 | -0.171 | -0.075 | -0.244 | -0.228 | 0.081 | -0.181 | -0.022 |
C/P | 0.940** | -0.064 | -0.062 | 0.513 | 1.000 | 0.219 | -0.156 | -0.132 | -0.270 | 0.118 | -0.074 | -0.200 | -0.158 | -0.201 | 0.216 |
N/P | -0.301 | 0.988** | -0.777** | -0.862** | -0.044 | 1.000 | 0.153 | -0.181 | -0.028 | 0.179 | 0.191 | 0.078 | -0.214 | 0.028 | 0.200 |
βG | 0.146 | 0.235 | -0.329 | -0.160 | 0.249 | 0.242 | 1.000 | -0.279 | -0.032 | 0.327 | 0.977** | 0.792** | -0.354 | 0.600* | 0.359 |
NAG | -0.309 | -0.187 | 0.532 | -0.021 | -0.523 | -0.280 | -0.265 | 1.000 | -0.252 | -0.314 | -0.453 | -0.073 | 0.537 | -0.016 | -0.593* |
LAP | -0.275 | -0.205 | 0.150 | -0.010 | -0.347 | -0.212 | -0.215 | 0.419 | 1.000 | -0.320 | -0.073 | 0.179 | 0.340 | 0.251 | -0.307 |
ALP | -0.084 | -0.048 | 0.086 | 0.079 | -0.102 | -0.033 | -0.109 | -0.450 | -0.516 | 1.000 | 0.407 | -0.313 | -0.956** | -0.556 | 0.925** |
酶C/N | 0.333 | 0.217 | -0.446 | -0.042 | 0.498 | 0.261 | 0.879** | -0.630* | -0.526 | 0.134 | 1.000 | 0.718** | -0.482 | 0.520 | 0.498 |
酶C/P | 0.225 | 0.121 | -0.273 | -0.080 | 0.311 | 0.126 | 0.744** | 0.066 | 0.173 | -0.725** | 0.542 | 1.000 | 0.262 | 0.961** | -0.232 |
酶N/P | -0.100 | -0.065 | 0.140 | -0.067 | -0.169 | -0.107 | -0.037 | 0.694* | 0.708** | -0.927** | -0.385 | 0.565 | 1.000 | 0.487 | -0.979** |
VL | 0.132 | 0.150 | -0.227 | -0.144 | 0.196 | 0.140 | 0.602* | 0.232 | 0.330 | -0.857** | 0.336 | 0.966** | 0.735** | 1.000 | -0.446 |
VA | 0.178 | 0.126 | -0.226 | 0.049 | 0.282 | 0.174 | 0.140 | -0.781** | -0.746** | 0.854** | 0.510 | -0.432 | -0.977** | -0.621* | 1.000 |
表1 土壤碳氮磷与酶活性及其化学计量特征的相关系数
Table 1 Correlation coefficient of soil carbon, nitrogen and phosphorus with enzyme activities and their stoichiometry
项目Items | C | N | P | C/N | C/P | N/P | βG | NAG | LAP | ALP | 酶C/N | 酶C/P | 酶N/P | VL | VA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | 1.000 | 0.024 | 0.102 | 0.662* | 0.844** | 0.000 | -0.092 | -0.202 | -0.506 | 0.248 | 0.022 | -0.237 | -0.337 | -0.281 | 0.340 |
N | -0.284 | 1.000 | 0.074 | -0.722** | -0.023 | 0.877** | 0.238 | -0.227 | -0.198 | 0.292 | 0.293 | 0.074 | -0.363 | -0.017 | 0.291 |
P | 0.280 | -0.675* | 1.000 | -0.071 | -0.447 | -0.413 | 0.157 | -0.095 | -0.326 | 0.192 | 0.191 | -0.003 | -0.265 | -0.077 | 0.163 |
C/N | 0.723** | -0.852** | 0.694* | 1.000 | 0.637* | -0.608* | -0.272 | 0.074 | -0.171 | -0.075 | -0.244 | -0.228 | 0.081 | -0.181 | -0.022 |
C/P | 0.940** | -0.064 | -0.062 | 0.513 | 1.000 | 0.219 | -0.156 | -0.132 | -0.270 | 0.118 | -0.074 | -0.200 | -0.158 | -0.201 | 0.216 |
N/P | -0.301 | 0.988** | -0.777** | -0.862** | -0.044 | 1.000 | 0.153 | -0.181 | -0.028 | 0.179 | 0.191 | 0.078 | -0.214 | 0.028 | 0.200 |
βG | 0.146 | 0.235 | -0.329 | -0.160 | 0.249 | 0.242 | 1.000 | -0.279 | -0.032 | 0.327 | 0.977** | 0.792** | -0.354 | 0.600* | 0.359 |
NAG | -0.309 | -0.187 | 0.532 | -0.021 | -0.523 | -0.280 | -0.265 | 1.000 | -0.252 | -0.314 | -0.453 | -0.073 | 0.537 | -0.016 | -0.593* |
LAP | -0.275 | -0.205 | 0.150 | -0.010 | -0.347 | -0.212 | -0.215 | 0.419 | 1.000 | -0.320 | -0.073 | 0.179 | 0.340 | 0.251 | -0.307 |
ALP | -0.084 | -0.048 | 0.086 | 0.079 | -0.102 | -0.033 | -0.109 | -0.450 | -0.516 | 1.000 | 0.407 | -0.313 | -0.956** | -0.556 | 0.925** |
酶C/N | 0.333 | 0.217 | -0.446 | -0.042 | 0.498 | 0.261 | 0.879** | -0.630* | -0.526 | 0.134 | 1.000 | 0.718** | -0.482 | 0.520 | 0.498 |
酶C/P | 0.225 | 0.121 | -0.273 | -0.080 | 0.311 | 0.126 | 0.744** | 0.066 | 0.173 | -0.725** | 0.542 | 1.000 | 0.262 | 0.961** | -0.232 |
酶N/P | -0.100 | -0.065 | 0.140 | -0.067 | -0.169 | -0.107 | -0.037 | 0.694* | 0.708** | -0.927** | -0.385 | 0.565 | 1.000 | 0.487 | -0.979** |
VL | 0.132 | 0.150 | -0.227 | -0.144 | 0.196 | 0.140 | 0.602* | 0.232 | 0.330 | -0.857** | 0.336 | 0.966** | 0.735** | 1.000 | -0.446 |
VA | 0.178 | 0.126 | -0.226 | 0.049 | 0.282 | 0.174 | 0.140 | -0.781** | -0.746** | 0.854** | 0.510 | -0.432 | -0.977** | -0.621* | 1.000 |
图11 蒿类荒漠草地土壤碳氮磷、酶活性及其化学计量特征的冗余分析及偏冗余分析a: 总体(0~20 cm土层) Total (0-20 cm soil layer); b: 封育Grazing exclusion; c: 对照The control. 下同The same below.
Fig.11 RDA and pRDA analysis of sagebrush desert grassland soil carbon, nitrogen, phosphorus, enzyme activities and their stoichiometry
图12 蒿类荒漠草地土壤碳氮磷、酶活性及其化学计量特征拟合的结构方程模型实线路径表示正效应,虚线路线表示负效应Solid line paths show positive effects and dashed line paths show negative effects, *P<0.05, **P<0.01, ***P<0.001.
Fig.12 SEM fitted to connections among soil carbon, nitrogen, phosphorus, enzyme activities and their stoichiometry feature fitting in sagebrush desert grassland
1 | Liu S J, Xia X, Chen G M, et al. Study progress on functions and affecting factors of soil enzymes. Chinese Agricultural Science Bulletin, 2011, 27(21): 1-7. |
刘善江, 夏雪, 陈桂梅, 等. 土壤酶的研究进展. 中国农学通报, 2011, 27(21): 1-7. | |
2 | Nannipieri P, Trasar-Cepeda C, Dick R P. Soil enzyme activity: A brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biology and Fertility of Soils, 2018, 54(1): 11-19. |
3 | Peng X, Wang W. Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China. Soil Biology and Biochemistry, 2016, 98: 74-84. |
4 | Saiya-Cork K R, Sinsabaugh R L, Zak D R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry, 2002, 34(9): 1309-1315. |
5 | Zhang X X, Yang L M, Chen Z, et al. Patterns of ecoenzymatic stoichiometry on types of forest soils form different parent materials in subtropical areas. Acta Ecologica Sinica, 2018, 38(16): 5828-5836. |
张星星, 杨柳明, 陈忠, 等. 中亚热带不同母质和森林类型土壤生态酶化学计量特征. 生态学报, 2018, 38(16): 5828-5836. | |
6 | Lu Y M, Xu E L, Wu D M, et al. Effects of double addition or removal of litter on soil hydrolases activities and their stoichiometry in Castanopsis carlesii forest. Journal of Soil and Water Conservation, 2021, 35(4): 313-320. |
陆宇明, 许恩兰, 吴东梅, 等. 凋落物双倍添加和移除对米槠林土壤水解酶活性及其化学计量比的影响. 水土保持学报, 2021, 35(4): 313-320. | |
7 | Sinsabaugh R L, Lauber C L, Weintraub M N, et al. Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 2008, 11(11): 1252-1264. |
8 | Moorhead D L, Sinsabaugh R L, Hill B H, et al. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biology and Biochemistry, 2016, 93: 1-7. |
9 | Moorhead D L, Rinkes Z L, Sinsabaugh R L, et al. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: Informing enzyme-based decomposition models. Frontiers in Microbiology, 2013, 4: 223. |
10 | Zhu J Z, Jin G L, Sun Z J, et al. Study on degraded ecosystem of desert grassland in Seriphidium transiliense. Beijing: China Agriculture Press, 2013. |
朱进忠, 靳瑰丽, 孙宗玖, 等. 伊犁绢蒿荒漠草地退化生态系统研究. 北京: 中国农业出版社, 2013. | |
11 | Dong Y Q, An S Z, Sun Z J, et al. Effects of grazing exclusion times on soil organic carbon storage and microbial biomass carbon and nitrogen in degraded Seriphidium transiliense desert. Xinjiang Agricultural Sciences, 2017, 54(5): 961-968. |
董乙强, 安沙舟, 孙宗玖, 等. 禁牧年限对退化伊犁绢蒿荒漠土壤有机碳库和微生物碳, 氮的影响. 新疆农业科学, 2017, 54(5): 961-968. | |
12 | Chen T T, Sun S H, Wang Z L, et al. Progress on the influence of grazing exclusion on vegetation community characteristics. Agricultural Technology Service, 2020, 37(9): 42-43. |
陈亭亭, 孙士浩, 王正莉, 等. 围栏封育对植被群落特征影响的研究进展. 农技服务, 2020, 37(9): 42-43. | |
13 | Qin L P, Bai W L, Zheng T J. Research progress on the effect of fencing on grassland soil nutrient improvement. China Cattle Science, 2020, 46(6): 20-23. |
秦丽萍, 白文丽, 郑廷杰. 围栏封育对草地土壤养分改良效果的研究进展. 中国牛业科学, 2020, 46(6): 20-23. | |
14 | Wang G Q, Du G M, Nie Y Y, et al. Progress on the influence of grazing exclusion on community characteristics in China. Heilongjiang Animal Science and Veterinary Medicine, 2017, 13(7): 75-77. |
王国庆, 杜广明, 聂莹莹, 等. 我国围栏封育对群落特征影响的研究进展. 黑龙江畜牧兽医, 2017, 13(7): 75-77. | |
15 | Li J B, Cao Q X, Tursunay R, et al. Effects of enclosure on soil physical and chemical quality and enzymatic activity in grassland of Yili valley in spring-autumn. Chinese Journal of Grassland, 2014, 36(1): 84-89. |
李军保, 曹庆喜, 吐尔逊娜依·热依木江, 等. 围封对伊犁河谷春秋草场土壤理化性质及酶活性的影响. 中国草地学报, 2014, 36(1): 84-89. | |
16 | Hewins D B, Fatemi F, Adams B, et al. Grazing, regional climate and soil biophysical impacts on microbial enzyme activity in grassland soil of western Canada. Pedobiologia, 2015, 58(5/6): 201-209. |
17 | Li G Q, Zhao P P, Shao W S, et al. Studies on the soil physical and chemical properties and enzyme activities of two fenced plant communities in desert steppe grassland. Acta Prataculturae Sinica, 2019, 28(7): 49-59. |
李国旗, 赵盼盼, 邵文山, 等. 围封条件下荒漠草原两种植物群落土壤理化性状与酶活性的研究. 草业学报, 2019, 28(7): 49-59. | |
18 | Zhu X P, Jia H T, Jiang P A, et al. Effects of fencing enclosure on soil enzyme activities of three kinds in pasture of middle Tianshan Mountain. Journal of Xinjiang Agricultural University, 2012, 35(5): 409-413. |
朱新萍, 贾宏涛, 蒋平安, 等. 封育对中天山三种类型草地土壤酶活性的影响. 新疆农业大学学报, 2012, 35(5): 409-413. | |
19 | Bao S D. Soil and agricultural chemistry analysis (Third Edition). Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. | |
20 | Marx M C, Wood M, Jarvis S C. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biology and Biochemistry, 2001, 33(12/13): 1633-1640. |
21 | Sinsabaugh R L, Hill B H, Follstad S J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 2009, 462(7274): 795-798. |
22 | Mi Q, Wang Y, Qin X J, et al. Response of soil enzyme stoichiometry to different enclosure durations in alpine meadow, Tibetan Plateau. Acta Agrestia Sinica, 2021, 29(1): 33-41. |
米琦, 王毅, 秦小静, 等. 青藏高原高寒草甸不同围栏年限土壤酶化学计量特征. 草地学报, 2021, 29(1): 33-41. | |
23 | Si G C, Yuan Y L, Wang J, et al. Effects of fencing on microbial communities and soil enzyme activities in Damxung alpine grassland. Pratacultural Science, 2015, 32(1): 1-10. |
斯贵才, 袁艳丽, 王建, 等. 围封对当雄县高寒草原土壤微生物和酶活性的影响. 草业科学, 2015, 32(1): 1-10. | |
24 | Feng D F, Bao W K. Shrub encroachment alters topsoil C∶N∶P stoichiometric ratios in a high-altitude forest cutover. Iforest-Biogeosciences and Forestry, 2018, 11(5): 594-599. |
25 | Wang M, Gong Y, Lafleur P, et al. Patterns and drivers of carbon, nitrogen and phosphorus stoichiometry in southern China’s grasslands. Science of the Total Environment, 2021, 785: 147201. |
26 | Asitaiken J L H T, Dong Y Q, Li J, et al. Effects of grazing exclusion on nutrition and stoichiometry characteristics of Artemisia desert vegetation and soil. Journal of Arid Land Resources and Environment, 2021, 35(11): 157-164. |
阿斯太肯·居力海提, 董乙强, 李靖, 等. 禁牧对不同气候区蒿类荒漠植被和土壤养分及化学计量特征的影响. 干旱区资源与环境, 2021, 35(11): 157-164. | |
27 | Nie T T, Dong Y Q, Yang H L, et al. Effects of enclosure on plant and soil stoichiometric characteristics in an Artemisia desert. Journal of Agricultural Science and Technology, 2023, 25(3): 178-187. |
聂婷婷, 董乙强, 杨合龙, 等. 围栏封育对蒿类荒漠植物-土壤碳氮磷化学计量特征的影响. 中国农业科技导报, 2023, 25(3): 178-187. | |
28 | Reeder J, Schuman G E. Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands. Environmental Pollution, 2002, 116(3): 457-463. |
29 | Sun J, Gao P, Li C, et al. Ecological stoichiometry characteristics of the leaf-litter-soil continuum of Quercus acutissima Carr. and Pinus densiflora Sieb. in Northern China. Environmental Earth Sciences, 2019, 78: 1-13. |
30 | Cleveland C C, Liptzin D. C∶N∶P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 2007, 85: 235-252. |
31 | Zeng Q, Liu Y, Fang Y, et al. Impact of vegetation restoration on plants and soil C∶N∶P stoichiometry on the Yunwu Mountain Reserve of China. Ecological Engineering, 2017, 109(PartA): 92-100. |
32 | Fan Y M, Wu H Q, Jin G L, et al. Effects of enclosure on stoichiometric characteristics of C, N, P in desert grassland ecosystem. Chinese Journal of Grassland, 2018, 40(3): 76-81. |
范燕敏, 武红旗, 靳瑰丽, 等. 封育对荒漠草地生态系统C、N、P化学计量特征的影响. 中国草地学报, 2018, 40(3): 76-81. | |
33 | Burns R G, Dick R P. Enzymes in the environment: Activity, ecology, and applications. Boca Raton: CRC Press, 2002. |
34 | Kaiser C, Koranda M, Kitzler B, et al. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytologist, 2010, 187(3): 843-858. |
35 | Boerner R E J, Brinkman J A, Smith A. Seasonal variations in enzyme activity and organic carbon in soil of a burned and unburned hardwood forest. Soil Biology and Biochemistry, 2005, 37(8): 1419-1426. |
36 | Li Y N, Li S Y, Sun Y, et al. Responses of soil enzyme activities and stoichiometry characteristics of desert steep to different stocking rates. Acta Agrestia Sinica, 2022, 30(8): 2019-2026. |
李雅男, 李邵宇, 孙宇, 等. 荒漠草原土壤酶活性及化学计量特征对不同载畜率的响应. 草地学报, 2022, 30(8): 2019-2026. | |
37 | Weintraub M N, Scott-Denton L E, Schmidt S K, et al. The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem. Oecologia, 2007, 154(2): 327-338. |
38 | Cui Y, Bing H, Fang L, et al. Extracellular enzyme stoichiometry reveals the carbon and phosphorus limitations of microbial metabolisms in the rhizosphere and bulk soils in alpine ecosystems. Plant and Soil, 2021, 458(1/2): 7-20. |
39 | Cui Y X, Fang L C, Deng L, et al. Patterns of soil microbial nutrient limitations and their roles in the variation of soil organic carbon across a precipitation gradient in an arid and semi-arid region. Science of the Total Environment, 2019, 658: 1440-1451. |
40 | Xu M P, Ren C J, Zhang W, et al. Responses mechanism of C∶N∶P stoichiometry of soil microbial biomass and soil enzymes to climate change. Chinese Journal of Applied Ecology, 2018, 29(7): 2445-2454. |
许淼平, 任成杰, 张伟, 等. 土壤微生物生物量碳氮磷与土壤酶化学计量对气候变化的响应机制. 应用生态学报, 2018, 29(7): 2445-2454. | |
41 | Xie M Y, Feng X X, Ma H F, et al. Characteristics of soil enzyme activities and stoichiometry and its influencing factors in Quercus aliena var. acuteserrata forests in the Qinling Mountains. Chinese Journal of Plant Ecology, 2020, 44(8): 885-894. |
解梦怡, 冯秀秀, 马寰菲, 等. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素. 植物生态学报, 2020, 44(8): 885-894. | |
42 | Liu Y, Liu J C, Song Y L, et al. Effects of seasonal changes on soil enzyme activities and their stoichiometric characteristics of subalpine forests in western Sichuan. Journal of Sichuan Agricultural University, 2023, 41(3): 456-463. |
刘谣, 刘金超, 宋钰珑, 等. 季节变化对川西亚高山森林土壤酶活性及化学计量特征的影响. 四川农业大学学报, 2023, 41(3): 456-463. | |
43 | Gu X N, He H S, Tao Y, et al. Soil microbial community structure, enzyme activities, and their influencing factors along different altitudes of Changbai Mountain. Acta Ecologica Sinica, 2017, 37(24): 8374-8384. |
谷晓楠, 贺红士, 陶岩, 等. 长白山土壤微生物群落结构及酶活性随海拔的分布特征与影响因子. 生态学报, 2017, 37(24): 8374-8384. |
[1] | 秦瑞敏, 程思佳, 马丽, 张中华, 魏晶晶, 苏洪烨, 史正晨, 常涛, 胡雪, 阿的哈则, 袁访, 李珊, 周华坤. 围封和施肥对高寒草甸群落特征和植被碳氮库的影响[J]. 草业学报, 2024, 33(4): 1-11. |
[2] | 黄琳曦, 陈倩, 张先言, 闫顺, 杨云, 辛培尧, 汪琼. 两种乔木凋落叶浸提液处理对地毯草土壤酶活性及其化学计量比的影响[J]. 草业学报, 2024, 33(4): 35-46. |
[3] | 张东, 侯晨, 马文明, 王长庭, 邓增卓玛, 张婷. 高寒草地不同灌丛化梯度下土壤酶活性研究[J]. 草业学报, 2023, 32(9): 79-92. |
[4] | 李林芝, 张德罡, 马源, 罗珠珠, 林栋, 海龙, 白兰鸽. 不同退化程度高寒草甸土壤团聚体养分及生态化学计量特征研究[J]. 草业学报, 2023, 32(8): 48-60. |
[5] | 马嵩科, 霍克, 张冬霞, 张静, 张俊豪, 柴雪茹, 王贺正. 玉米秸秆还田配施氮肥对豫西旱地小麦土壤酶活性和氮肥利用效率的影响[J]. 草业学报, 2023, 32(6): 120-133. |
[6] | 李思媛, 崔雨萱, 孙宗玖, 刘慧霞, 冶华薇. 封育对蒿类荒漠草地土壤有机碳及土壤微生物生物量生态化学计量特征的影响[J]. 草业学报, 2023, 32(6): 58-70. |
[7] | 王志婷, 刘廷玺, 童新, 段利民, 李东方, 刘小勇. 半干旱草甸草地不同处理下植被特征与土壤酶活性的变化[J]. 草业学报, 2023, 32(3): 41-55. |
[8] | 何光熊, 史正涛, 闫帮国, 杨淏舟, 孙毅, 王艳丹, 余建琳, 和润莲, 史亮涛, 方海东. 封育对干热河谷Savanna植物群落种间关联性的影响[J]. 草业学报, 2023, 32(2): 1-14. |
[9] | 许爱云, 张丽华, 王晓佳, 马冲, 李元景, 曹兵. 蒙古冰草非结构性碳水化合物及碳氮磷化学计量特征对氮添加的响应[J]. 草业学报, 2023, 32(2): 35-43. |
[10] | 牛伟玲, 陈辉, 侯慧新, 郭晨睿, 马娇林, 武建双. 10年禁牧未改变藏西北高寒荒漠植物水氮利用效率[J]. 草业学报, 2022, 31(8): 35-48. |
[11] | 马文明, 刘超文, 周青平, 邓增卓玛, 唐思洪, 迪力亚尔·莫合塔尔null, 侯晨. 高寒草地灌丛化对土壤团聚体生态化学计量学及酶活性的影响[J]. 草业学报, 2022, 31(1): 57-68. |
[12] | 刘帅楠, 李广, 吴江琪, 马维伟, 杨传杰, 张世康, 姚瑶, 陆燕花, 魏星星, 张娟. 黄土丘陵区不同土地类型下土壤养分特征—基于生态化学计量学[J]. 草业学报, 2021, 30(3): 200-207. |
[13] | 熊梅, 乔荠瑢, 杨阳, 张峰, 郑佳华, 吴建新, 赵萌莉. 不同载畜率下短花针茅和土壤生态化学计量特征研究[J]. 草业学报, 2021, 30(2): 212-219. |
[14] | 程分生, 尤龙辉, 余锦林, 徐惠昌, 游惠明, 聂森, 李建民, 叶功富. 冷季型绿肥对锥栗园土壤生化性质及微生物群落的影响[J]. 草业学报, 2021, 30(11): 62-75. |
[15] | 聂莹莹, 陈金强, 辛晓平, 徐丽君, 杨桂霞, 王旭. 呼伦贝尔草甸草原区主要植物种群生态位特征与物种多样性对封育年限响应[J]. 草业学报, 2021, 30(10): 15-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||