草业学报 ›› 2024, Vol. 33 ›› Issue (8): 122-132.DOI: 10.11686/cyxb2023369
• 研究论文 • 上一篇
张婷婷1(), 刘宇乐1, 陈红1, 许凌欣1, 陈祥伟2, 王恩姮2, 严俊鑫1()
收稿日期:
2023-10-09
修回日期:
2023-11-20
出版日期:
2024-08-20
发布日期:
2024-05-13
通讯作者:
严俊鑫
作者简介:
E-mail: yanjunxin@163.com基金资助:
Ting-ting ZHANG1(), Yu-le LIU1, Hong CHEN1, Ling-xin XU1, Xiang-wei CHEN2, En-heng WANG2, Jun-xin YAN1()
Received:
2023-10-09
Revised:
2023-11-20
Online:
2024-08-20
Published:
2024-05-13
Contact:
Jun-xin YAN
摘要:
为筛选出促进盐、碱及干旱胁迫下草木樨种子萌发和幼苗生长的最佳外源物质及其处理浓度,采用培养皿滤纸发芽法,研究不同浓度赤霉素(GA)和褪黑素(MT)浸种6 h对盐、碱及干旱胁迫下草木樨种子萌发及幼苗生长的影响。结果表明,盐胁迫下,200 mg·L-1的GA是促进种子萌发的最佳处理,50 μmol·L-1的MT是提高幼苗超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性的最佳处理。在碱胁迫下,200 μmol·L-1的MT则使幼苗胚轴长出现最大值。在干旱胁迫下,100 mg·L-1的GA使草木樨种子发芽率和胚根长出现最大值。隶属函数综合评价得出,缓解盐胁迫的最佳外源物质是GA,最佳处理浓度是200 mg·L-1,缓解碱和干旱胁迫的最佳外源物质是MT,最佳处理浓度分别是50和100 μmol·L-1。综上所述,MT和GA浸种能够在盐、碱及干旱胁迫下促进草木樨种子萌发和幼苗生长,研究结果可为提高草木樨对盐、碱及干旱胁迫的耐受能力提供参考。
张婷婷, 刘宇乐, 陈红, 许凌欣, 陈祥伟, 王恩姮, 严俊鑫. 不同外源物质对盐、碱及干旱胁迫下草木樨种子萌发、幼苗生长及生理的影响[J]. 草业学报, 2024, 33(8): 122-132.
Ting-ting ZHANG, Yu-le LIU, Hong CHEN, Ling-xin XU, Xiang-wei CHEN, En-heng WANG, Jun-xin YAN. Effects of different exogenous substances on the seed germination, seedling growth, and physiology of Melilotus suaveolens under salt, alkali, and drought stress[J]. Acta Prataculturae Sinica, 2024, 33(8): 122-132.
处理 Treatment | 胁迫处理 Stress treatment | 外源物质 Exogenous substance |
---|---|---|
CK | 蒸馏水Distilled water | 蒸馏水Distilled water |
S0 | 100 mmol·L-1NaCl | 蒸馏水Distilled water |
SM1 | 100 mmol·L-1NaCl | 50 μmol·L-1MT |
SM2 | 100 mmol·L-1NaCl | 100 μmol·L-1MT |
SM3 | 100 mmol·L-1NaCl | 200 μmol·L-1MT |
SG1 | 100 mmol·L-1NaCl | 50 mg·L-1GA |
SG2 | 100 mmol·L-1NaCl | 100 mg·L-1GA |
SG3 | 100 mmol·L-1NaCl | 200 mg·L-1GA |
A0 | pH 8.0碱溶液pH 8.0 alkali solution | 蒸馏水Distilled water |
AM1 | pH 8.0碱溶液pH 8.0 alkali solution | 50 μmol·L-1MT |
AM2 | pH 8.0碱溶液pH 8.0 alkali solution | 100 μmol·L-1MT |
AM3 | pH 8.0碱溶液pH 8.0 alkali solution | 200 μmol·L-1MT |
AG1 | pH 8.0碱溶液pH 8.0 alkali solution | 50 mg·L-1GA |
AG2 | pH 8.0碱溶液pH 8.0 alkali solution | 100 mg·L-1GA |
AG3 | pH 8.0碱溶液pH 8.0 alkali solution | 200 mg·L-1GA |
D0 | 10% PEG-6000 | 蒸馏水Distilled water |
DM1 | 10% PEG-6000 | 50 μmol·L-1MT |
DM2 | 10% PEG-6000 | 100 μmol·L-1MT |
DM3 | 10% PEG-6000 | 200 μmol·L-1MT |
DG1 | 10% PEG-6000 | 50 mg·L-1GA |
DG2 | 10% PEG-6000 | 100 mg·L-1GA |
DG3 | 10% PEG-6000 | 200 mg·L-1GA |
表1 试验处理设置
Table 1 Experimental processing settings
处理 Treatment | 胁迫处理 Stress treatment | 外源物质 Exogenous substance |
---|---|---|
CK | 蒸馏水Distilled water | 蒸馏水Distilled water |
S0 | 100 mmol·L-1NaCl | 蒸馏水Distilled water |
SM1 | 100 mmol·L-1NaCl | 50 μmol·L-1MT |
SM2 | 100 mmol·L-1NaCl | 100 μmol·L-1MT |
SM3 | 100 mmol·L-1NaCl | 200 μmol·L-1MT |
SG1 | 100 mmol·L-1NaCl | 50 mg·L-1GA |
SG2 | 100 mmol·L-1NaCl | 100 mg·L-1GA |
SG3 | 100 mmol·L-1NaCl | 200 mg·L-1GA |
A0 | pH 8.0碱溶液pH 8.0 alkali solution | 蒸馏水Distilled water |
AM1 | pH 8.0碱溶液pH 8.0 alkali solution | 50 μmol·L-1MT |
AM2 | pH 8.0碱溶液pH 8.0 alkali solution | 100 μmol·L-1MT |
AM3 | pH 8.0碱溶液pH 8.0 alkali solution | 200 μmol·L-1MT |
AG1 | pH 8.0碱溶液pH 8.0 alkali solution | 50 mg·L-1GA |
AG2 | pH 8.0碱溶液pH 8.0 alkali solution | 100 mg·L-1GA |
AG3 | pH 8.0碱溶液pH 8.0 alkali solution | 200 mg·L-1GA |
D0 | 10% PEG-6000 | 蒸馏水Distilled water |
DM1 | 10% PEG-6000 | 50 μmol·L-1MT |
DM2 | 10% PEG-6000 | 100 μmol·L-1MT |
DM3 | 10% PEG-6000 | 200 μmol·L-1MT |
DG1 | 10% PEG-6000 | 50 mg·L-1GA |
DG2 | 10% PEG-6000 | 100 mg·L-1GA |
DG3 | 10% PEG-6000 | 200 mg·L-1GA |
处理 Treatment | 发芽率 Germination rate (%) | 发芽势 Germination potential (%) | 发芽指数 Germination index | 活力指数 Vitality index | 胚根长 Radicle length (mm) | 胚轴长 Hypocotyl length (mm) | 鲜重 Fresh weight (g·plant-1) |
---|---|---|---|---|---|---|---|
CK | 84.44±1.93b | 82.22±1.92abc | 40.46±3.99bc | 1356.86±130.34c | 33.54±0.58c | 34.83±0.62b | 0.16±0.01ab |
S0 | 76.67±3.34c | 70.00±3.33d | 33.07±2.01d | 782.47±77.13d | 23.63±1.09d | 27.97±2.69c | 0.12±0.01c |
SM1 | 91.11±1.92a | 86.67±3.34ab | 42.86±0.98bc | 1792.30±45.45b | 41.82±0.39ab | 34.21±1.37b | 0.15±0.01ab |
SM2 | 93.33±3.34a | 87.78±5.09ab | 44.97±2.66b | 1937.73±159.52b | 43.05±1.04ab | 36.77±5.39ab | 0.17±0.02a |
SM3 | 84.44±1.93b | 81.11±1.92bc | 42.77±3.65bc | 1896.60±139.17b | 44.38±1.32a | 40.19±1.89a | 0.15±0.01ab |
SG1 | 85.55±3.85b | 75.56±5.09cd | 39.44±3.96c | 1356.52±133.39c | 34.41±0.93c | 35.24±0.97b | 0.14±0.02bc |
SG2 | 92.22±5.09a | 87.78±3.85ab | 45.13±2.05b | 1825.67±47.94b | 40.53±2.57b | 38.59±1.61ab | 0.17±0.02a |
SG3 | 93.33±0.00a | 88.89±5.09a | 55.42±1.25a | 2374.63±179.43a | 42.89±3.80ab | 40.24±1.27a | 0.18±0.02a |
表2 不同浓度MT和GA对盐胁迫下草木樨种子萌发和幼苗生长的影响
Table 2 Effects of different concentrations of MT and GA on seed germination and the seedlings growth of M. suaveolens under salt stress
处理 Treatment | 发芽率 Germination rate (%) | 发芽势 Germination potential (%) | 发芽指数 Germination index | 活力指数 Vitality index | 胚根长 Radicle length (mm) | 胚轴长 Hypocotyl length (mm) | 鲜重 Fresh weight (g·plant-1) |
---|---|---|---|---|---|---|---|
CK | 84.44±1.93b | 82.22±1.92abc | 40.46±3.99bc | 1356.86±130.34c | 33.54±0.58c | 34.83±0.62b | 0.16±0.01ab |
S0 | 76.67±3.34c | 70.00±3.33d | 33.07±2.01d | 782.47±77.13d | 23.63±1.09d | 27.97±2.69c | 0.12±0.01c |
SM1 | 91.11±1.92a | 86.67±3.34ab | 42.86±0.98bc | 1792.30±45.45b | 41.82±0.39ab | 34.21±1.37b | 0.15±0.01ab |
SM2 | 93.33±3.34a | 87.78±5.09ab | 44.97±2.66b | 1937.73±159.52b | 43.05±1.04ab | 36.77±5.39ab | 0.17±0.02a |
SM3 | 84.44±1.93b | 81.11±1.92bc | 42.77±3.65bc | 1896.60±139.17b | 44.38±1.32a | 40.19±1.89a | 0.15±0.01ab |
SG1 | 85.55±3.85b | 75.56±5.09cd | 39.44±3.96c | 1356.52±133.39c | 34.41±0.93c | 35.24±0.97b | 0.14±0.02bc |
SG2 | 92.22±5.09a | 87.78±3.85ab | 45.13±2.05b | 1825.67±47.94b | 40.53±2.57b | 38.59±1.61ab | 0.17±0.02a |
SG3 | 93.33±0.00a | 88.89±5.09a | 55.42±1.25a | 2374.63±179.43a | 42.89±3.80ab | 40.24±1.27a | 0.18±0.02a |
图1 不同浓度GA和MT处理对盐胁迫下草木樨幼苗SOD、POD和CAT活性的影响不同小写字母表示差异显著(P<0.05),下同。The different letters mean significant differences at P<0.05, the same below.
Fig.1 Effects of different concentrations of GA and MT on SOD, POD, and CAT activities in M. suaveolens seedlings under salt stress
处理 Treatment | 发芽率 Germination rate (%) | 发芽势 Germination potential (%) | 发芽指数 Germination index | 活力指数 Vitality index | 胚根长 Radicle length (mm) | 胚轴长 Hypocotyl length (mm) | 鲜重 Fresh weight (g·plant-1) |
---|---|---|---|---|---|---|---|
CK | 84.44±1.93b | 82.22±1.92a | 40.46±3.99c | 1356.86±130.34d | 33.54±0.58cd | 34.83±0.62a | 0.16±0.01cde |
A0 | 77.78±1.92c | 67.78±1.92b | 33.92±0.91d | 731.18±31.87e | 21.57±1.14f | 24.34±1.35c | 0.14±0.01f |
AM1 | 94.44±1.93a | 91.11±5.09a | 66.01±1.98a | 1911.30±99.61c | 28.95±1.01e | 30.11±2.13b | 0.18±0.02bc |
AM2 | 91.11±3.85a | 84.44±7.70a | 59.28±2.88b | 1999.42±10.32bc | 33.77±1.43cd | 32.92±1.21ab | 0.19±0.01b |
AM3 | 88.89±3.85ab | 82.22±8.39a | 56.76±2.61b | 2063.34±63.28b | 36.38±1.08ab | 35.18±0.42a | 0.21±0.01a |
AG1 | 92.22±5.09a | 88.89±1.92a | 66.24±1.59a | 2086.20±126.70b | 31.49±1.53d | 32.90±2.50ab | 0.15±0.01ef |
AG2 | 91.11±1.92a | 86.67±3.34a | 65.79±1.26a | 2350.59±25.87a | 35.74±0.87bc | 33.33±1.04a | 0.16±0.00de |
AG3 | 88.89±1.92ab | 85.56±5.09a | 64.56±2.65a | 2467.89±70.52a | 38.30±2.62a | 34.50±2.56a | 0.17±0.00cd |
表3 不同浓度MT和GA对碱胁迫下草木樨种子萌发和幼苗生长的影响
Table 3 Effects of different concentrations of MT and GA on seed germination and the seedlings growth of M. suaveolens under alkali stress
处理 Treatment | 发芽率 Germination rate (%) | 发芽势 Germination potential (%) | 发芽指数 Germination index | 活力指数 Vitality index | 胚根长 Radicle length (mm) | 胚轴长 Hypocotyl length (mm) | 鲜重 Fresh weight (g·plant-1) |
---|---|---|---|---|---|---|---|
CK | 84.44±1.93b | 82.22±1.92a | 40.46±3.99c | 1356.86±130.34d | 33.54±0.58cd | 34.83±0.62a | 0.16±0.01cde |
A0 | 77.78±1.92c | 67.78±1.92b | 33.92±0.91d | 731.18±31.87e | 21.57±1.14f | 24.34±1.35c | 0.14±0.01f |
AM1 | 94.44±1.93a | 91.11±5.09a | 66.01±1.98a | 1911.30±99.61c | 28.95±1.01e | 30.11±2.13b | 0.18±0.02bc |
AM2 | 91.11±3.85a | 84.44±7.70a | 59.28±2.88b | 1999.42±10.32bc | 33.77±1.43cd | 32.92±1.21ab | 0.19±0.01b |
AM3 | 88.89±3.85ab | 82.22±8.39a | 56.76±2.61b | 2063.34±63.28b | 36.38±1.08ab | 35.18±0.42a | 0.21±0.01a |
AG1 | 92.22±5.09a | 88.89±1.92a | 66.24±1.59a | 2086.20±126.70b | 31.49±1.53d | 32.90±2.50ab | 0.15±0.01ef |
AG2 | 91.11±1.92a | 86.67±3.34a | 65.79±1.26a | 2350.59±25.87a | 35.74±0.87bc | 33.33±1.04a | 0.16±0.00de |
AG3 | 88.89±1.92ab | 85.56±5.09a | 64.56±2.65a | 2467.89±70.52a | 38.30±2.62a | 34.50±2.56a | 0.17±0.00cd |
图2 不同浓度GA和MT处理对碱胁迫下草木樨幼苗SOD、POD和CAT活性的影响
Fig. 2 Effects of different concentrations of GA and MT on SOD, POD, and CAT activities of M. suaveolens seedlings under alkali stress
处理 Treatment | 发芽率 Germination rate (%) | 发芽势 Germination potential (%) | 发芽指数 Germination index | 活力指数 Vitality index | 胚根长 Radicle length (mm) | 胚轴长 Hypocotyl length (mm) | 鲜重 Fresh weight (g·plant-1) |
---|---|---|---|---|---|---|---|
CK | 84.44±1.93b | 82.22±1.92a | 40.46±3.99a | 1356.86±130.34a | 33.54±0.58cd | 34.83±0.62a | 0.16±0.01a |
D0 | 76.67±3.34c | 52.22±3.85d | 23.99±2.35d | 568.26±44.66e | 23.74±1.41e | 18.46±0.89f | 0.09±0.00e |
DM1 | 93.33±6.67a | 77.78±5.09ab | 33.00±1.66bc | 1269.35±50.39ab | 38.51±1.87ab | 21.97±0.82e | 0.12±0.01c |
DM2 | 92.22±3.85a | 75.56±5.09ab | 32.29±1.24bc | 1111.19±52.51cd | 34.41±1.02cd | 26.06±0.57c | 0.12±0.01c |
DM3 | 91.11±5.09ab | 61.11±5.09c | 30.11±1.59c | 1074.77±54.35d | 35.70±0.59bc | 27.48±0.35b | 0.15±0.00b |
DG1 | 94.44±1.93a | 65.56±1.93c | 35.16±0.41b | 1125.59±51.21bcd | 32.02±1.47d | 22.68±0.90e | 0.11±0.00d |
DG2 | 95.56±5.09a | 74.44±1.93b | 33.47±1.41bc | 1235.85±116.64abc | 36.93±3.10abc | 22.90±0.69e | 0.11±0.01d |
DG3 | 87.78±1.92ab | 64.44±5.09c | 30.56±2.19c | 1233.08±82.19abc | 40.45±3.48a | 24.31±0.21d | 0.12±0.01c |
表4 不同浓度MT和GA对干旱胁迫下草木樨种子萌发和幼苗生长的影响
Table 4 Effects of different concentrations of MT and GA on seed germination and the seedlings growth of M. suaveolens under drought stress
处理 Treatment | 发芽率 Germination rate (%) | 发芽势 Germination potential (%) | 发芽指数 Germination index | 活力指数 Vitality index | 胚根长 Radicle length (mm) | 胚轴长 Hypocotyl length (mm) | 鲜重 Fresh weight (g·plant-1) |
---|---|---|---|---|---|---|---|
CK | 84.44±1.93b | 82.22±1.92a | 40.46±3.99a | 1356.86±130.34a | 33.54±0.58cd | 34.83±0.62a | 0.16±0.01a |
D0 | 76.67±3.34c | 52.22±3.85d | 23.99±2.35d | 568.26±44.66e | 23.74±1.41e | 18.46±0.89f | 0.09±0.00e |
DM1 | 93.33±6.67a | 77.78±5.09ab | 33.00±1.66bc | 1269.35±50.39ab | 38.51±1.87ab | 21.97±0.82e | 0.12±0.01c |
DM2 | 92.22±3.85a | 75.56±5.09ab | 32.29±1.24bc | 1111.19±52.51cd | 34.41±1.02cd | 26.06±0.57c | 0.12±0.01c |
DM3 | 91.11±5.09ab | 61.11±5.09c | 30.11±1.59c | 1074.77±54.35d | 35.70±0.59bc | 27.48±0.35b | 0.15±0.00b |
DG1 | 94.44±1.93a | 65.56±1.93c | 35.16±0.41b | 1125.59±51.21bcd | 32.02±1.47d | 22.68±0.90e | 0.11±0.00d |
DG2 | 95.56±5.09a | 74.44±1.93b | 33.47±1.41bc | 1235.85±116.64abc | 36.93±3.10abc | 22.90±0.69e | 0.11±0.01d |
DG3 | 87.78±1.92ab | 64.44±5.09c | 30.56±2.19c | 1233.08±82.19abc | 40.45±3.48a | 24.31±0.21d | 0.12±0.01c |
图3 不同浓度GA和MT处理对干旱胁迫下草木樨幼苗SOD、POD和CAT活性的影响
Fig.3 Effects of different concentrations of GA and MT on SOD, POD, and CAT activities of M. suaveolens seedlings under drought stress
胁迫 Stress | 处理 Treatment | 隶属函数值Membership function value | 排序Rank | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
发芽率 Germination rate | 发芽势 Germination potential | 发芽指数 Germination index | 活力指数 Vitality index | 胚根长Radicle length | 胚轴长 Hypocotyl length | 鲜重Fresh weight | 超氧化物歧化酶Superoxide dismutase | 过氧化 物酶 Peroxidase | 过氧化氢酶Catalase | 平均Mean | |||
盐 Salt | S0 | 0.14 | 0.13 | 0.09 | 0.04 | 0.03 | 0.16 | 0.16 | 0.02 | 0.03 | 0.08 | 0.09 | 7 |
SM1 | 0.76 | 0.75 | 0.47 | 0.59 | 0.79 | 0.53 | 0.50 | 0.96 | 0.95 | 0.87 | 0.72 | 2 | |
SM2 | 0.86 | 0.79 | 0.55 | 0.67 | 0.84 | 0.68 | 0.65 | 0.79 | 0.63 | 0.59 | 0.71 | 3 | |
SM3 | 0.48 | 0.54 | 0.46 | 0.65 | 0.90 | 0.89 | 0.48 | 0.67 | 0.65 | 0.49 | 0.62 | 5 | |
SG1 | 0.52 | 0.33 | 0.34 | 0.36 | 0.48 | 0.59 | 0.29 | 0.85 | 0.84 | 0.91 | 0.55 | 6 | |
SG2 | 0.81 | 0.79 | 0.56 | 0.61 | 0.74 | 0.79 | 0.66 | 0.82 | 0.42 | 0.78 | 0.70 | 4 | |
SG3 | 0.86 | 0.83 | 0.95 | 0.91 | 0.83 | 0.89 | 0.73 | 0.85 | 0.28 | 0.50 | 0.76 | 1 | |
碱 Alkali | A0 | 0.06 | 0.04 | 0.03 | 0.02 | 0.06 | 0.11 | 0.07 | 0.22 | 0.04 | 0.06 | 0.07 | 7 |
AM1 | 0.89 | 0.81 | 0.95 | 0.66 | 0.41 | 0.51 | 0.59 | 0.86 | 0.64 | 0.84 | 0.72 | 1 | |
AM2 | 0.72 | 0.59 | 0.76 | 0.71 | 0.64 | 0.70 | 0.69 | 0.27 | 0.86 | 0.87 | 0.68 | 5 | |
AM3 | 0.61 | 0.52 | 0.69 | 0.74 | 0.77 | 0.86 | 0.92 | 0.32 | 0.85 | 0.67 | 0.69 | 3 | |
AG1 | 0.78 | 0.74 | 0.96 | 0.75 | 0.54 | 0.70 | 0.23 | 0.75 | 0.95 | 0.69 | 0.71 | 2 | |
AG2 | 0.72 | 0.67 | 0.95 | 0.90 | 0.74 | 0.73 | 0.30 | 0.59 | 0.67 | 0.59 | 0.69 | 4 | |
AG3 | 0.61 | 0.63 | 0.91 | 0.96 | 0.86 | 0.81 | 0.46 | 0.01 | 0.52 | 0.54 | 0.63 | 6 | |
干旱 Drou-ght | D0 | 0.13 | 0.07 | 0.19 | 0.06 | 0.07 | 0.10 | 0.01 | 0.03 | 0.17 | 0.20 | 0.10 | 7 |
DM1 | 0.75 | 0.83 | 0.83 | 0.88 | 0.73 | 0.44 | 0.43 | 0.64 | 0.43 | 0.89 | 0.68 | 3 | |
DM2 | 0.71 | 0.77 | 0.78 | 0.69 | 0.55 | 0.83 | 0.54 | 0.76 | 0.86 | 0.77 | 0.73 | 1 | |
DM3 | 0.67 | 0.33 | 0.62 | 0.65 | 0.61 | 0.97 | 0.95 | 0.94 | 0.72 | 0.40 | 0.69 | 2 | |
DG1 | 0.79 | 0.47 | 0.98 | 0.71 | 0.44 | 0.51 | 0.26 | 0.70 | 0.35 | 0.70 | 0.59 | 5 | |
DG2 | 0.83 | 0.73 | 0.86 | 0.84 | 0.66 | 0.53 | 0.36 | 0.53 | 0.29 | 0.66 | 0.63 | 4 | |
DG3 | 0.54 | 0.43 | 0.65 | 0.84 | 0.82 | 0.66 | 0.45 | 0.76 | 0.09 | 0.61 | 0.59 | 6 |
表5 MT和GA对盐、碱及干旱胁迫下草木樨种子萌发和幼苗生长的综合评价
Table 5 Comprehensive evaluation of MT and GA on seed germination and seedling growth of M. suaveolens under salt, alkali, and drought stress
胁迫 Stress | 处理 Treatment | 隶属函数值Membership function value | 排序Rank | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
发芽率 Germination rate | 发芽势 Germination potential | 发芽指数 Germination index | 活力指数 Vitality index | 胚根长Radicle length | 胚轴长 Hypocotyl length | 鲜重Fresh weight | 超氧化物歧化酶Superoxide dismutase | 过氧化 物酶 Peroxidase | 过氧化氢酶Catalase | 平均Mean | |||
盐 Salt | S0 | 0.14 | 0.13 | 0.09 | 0.04 | 0.03 | 0.16 | 0.16 | 0.02 | 0.03 | 0.08 | 0.09 | 7 |
SM1 | 0.76 | 0.75 | 0.47 | 0.59 | 0.79 | 0.53 | 0.50 | 0.96 | 0.95 | 0.87 | 0.72 | 2 | |
SM2 | 0.86 | 0.79 | 0.55 | 0.67 | 0.84 | 0.68 | 0.65 | 0.79 | 0.63 | 0.59 | 0.71 | 3 | |
SM3 | 0.48 | 0.54 | 0.46 | 0.65 | 0.90 | 0.89 | 0.48 | 0.67 | 0.65 | 0.49 | 0.62 | 5 | |
SG1 | 0.52 | 0.33 | 0.34 | 0.36 | 0.48 | 0.59 | 0.29 | 0.85 | 0.84 | 0.91 | 0.55 | 6 | |
SG2 | 0.81 | 0.79 | 0.56 | 0.61 | 0.74 | 0.79 | 0.66 | 0.82 | 0.42 | 0.78 | 0.70 | 4 | |
SG3 | 0.86 | 0.83 | 0.95 | 0.91 | 0.83 | 0.89 | 0.73 | 0.85 | 0.28 | 0.50 | 0.76 | 1 | |
碱 Alkali | A0 | 0.06 | 0.04 | 0.03 | 0.02 | 0.06 | 0.11 | 0.07 | 0.22 | 0.04 | 0.06 | 0.07 | 7 |
AM1 | 0.89 | 0.81 | 0.95 | 0.66 | 0.41 | 0.51 | 0.59 | 0.86 | 0.64 | 0.84 | 0.72 | 1 | |
AM2 | 0.72 | 0.59 | 0.76 | 0.71 | 0.64 | 0.70 | 0.69 | 0.27 | 0.86 | 0.87 | 0.68 | 5 | |
AM3 | 0.61 | 0.52 | 0.69 | 0.74 | 0.77 | 0.86 | 0.92 | 0.32 | 0.85 | 0.67 | 0.69 | 3 | |
AG1 | 0.78 | 0.74 | 0.96 | 0.75 | 0.54 | 0.70 | 0.23 | 0.75 | 0.95 | 0.69 | 0.71 | 2 | |
AG2 | 0.72 | 0.67 | 0.95 | 0.90 | 0.74 | 0.73 | 0.30 | 0.59 | 0.67 | 0.59 | 0.69 | 4 | |
AG3 | 0.61 | 0.63 | 0.91 | 0.96 | 0.86 | 0.81 | 0.46 | 0.01 | 0.52 | 0.54 | 0.63 | 6 | |
干旱 Drou-ght | D0 | 0.13 | 0.07 | 0.19 | 0.06 | 0.07 | 0.10 | 0.01 | 0.03 | 0.17 | 0.20 | 0.10 | 7 |
DM1 | 0.75 | 0.83 | 0.83 | 0.88 | 0.73 | 0.44 | 0.43 | 0.64 | 0.43 | 0.89 | 0.68 | 3 | |
DM2 | 0.71 | 0.77 | 0.78 | 0.69 | 0.55 | 0.83 | 0.54 | 0.76 | 0.86 | 0.77 | 0.73 | 1 | |
DM3 | 0.67 | 0.33 | 0.62 | 0.65 | 0.61 | 0.97 | 0.95 | 0.94 | 0.72 | 0.40 | 0.69 | 2 | |
DG1 | 0.79 | 0.47 | 0.98 | 0.71 | 0.44 | 0.51 | 0.26 | 0.70 | 0.35 | 0.70 | 0.59 | 5 | |
DG2 | 0.83 | 0.73 | 0.86 | 0.84 | 0.66 | 0.53 | 0.36 | 0.53 | 0.29 | 0.66 | 0.63 | 4 | |
DG3 | 0.54 | 0.43 | 0.65 | 0.84 | 0.82 | 0.66 | 0.45 | 0.76 | 0.09 | 0.61 | 0.59 | 6 |
1 | Zhang M J, Liu Y, Liu Y L, et al. Rotation of triticale and sweet sorghum improves saline-alkali soil and increases productivity in a saline soil. Communications in Soil Science and Plant Analysis, 2023, 54(7): 910-925. |
2 | Sahbeni G, Ngabire M, Musyimi K P, et al. Challenges and opportunities in remote sensing for soil salinization mapping and monitoring: A review. Remote Sensing, 2023, 15(10): 2540. |
3 | Sun H. Research on the improvement of saline alkali land and the construction technology of landscape greening. Seed Science & Technology, 2021, 39(2): 83-84. |
孙辉. 盐碱地改良及园林绿化施工技术研究. 种子科技, 2021, 39(2): 83-84. | |
4 | Sun Y Q, Wei J H. Physiological and biochemical responses of triticale seedlings under different salt alkali stresses. Rural Science and Technology, 2023, 14(5): 64-67. |
孙业奇, 魏进华. 不同盐碱胁迫下小黑麦幼苗的生理生化响应. 乡村科技, 2023, 14(5): 64-67. | |
5 | La B, Hu J, Zhang X P. Research progress on the effect of drought on plant physiology and the response of molecular mechanism. Qinghai Prataculture, 2022, 31(4): 31-35. |
拉本, 胡娟, 张旭萍. 干旱胁迫对植物生理的影响以及分子机制的响应研究进展. 青海草业, 2022, 31(4): 31-35. | |
6 | Dai M L, Wang P, Sun J K, et al. Research progress of saline-alkali stress effect on seeds’ germination and its physiological and biochemical mechanism. Northern Horticulture, 2015(10): 176-179. |
代明龙, 王平, 孙吉康, 等. 盐碱胁迫对植物种子萌发的影响及生理生化机制研究进展. 北方园艺, 2015(10): 176-179. | |
7 | Ge F H, Wang N, Hu S, et al. Evaluation of germination response and the resistance of main plant species seedling to drought stress in the hill-gullied Loess Plateau region of northern Shaanxi. Pratacultural Science, 2018, 35(2): 348-356. |
葛芳红, 王宁, 胡澍, 等. 陕北黄土丘陵沟壑区主要植物种子对干旱胁迫的萌发响应及抗旱性评价. 草业科学, 2018, 35(2): 348-356. | |
8 | Yang J N, Wang Y R. Effects of drought stress simulated by PEG on seed germination of four desert plant species. Acta Prataculturae Sinica, 2012, 21(6): 23-29. |
杨景宁, 王彦荣. PEG模拟干旱胁迫对四种荒漠植物种子萌发的影响. 草业学报, 2012, 21(6): 23-29. | |
9 | Kang S M, Radhakrishan R, Khan A L, et al. Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiology and Biochemistry, 2014, 84: 115-124. |
10 | Sun S S. The molecular physiological mechanisms of melatonin regulating tomato adaptation to saline-alkali and drought stress. Tai’an: Shandong Agricultural University, 2019. |
孙莎莎. 褪黑素调控番茄适应盐碱和干旱胁迫的分子生理机制. 泰安: 山东农业大学, 2019. | |
11 | Chen Z F. Mitigative effect of exogenous hormones on growth of tall fescue under drought stress. Xianyang: Northwest A&F University, 2016. |
陈志飞. 外源植物激素对干旱胁迫下高羊茅生长的缓解效应研究. 咸阳: 西北农林科技大学, 2016. | |
12 | Shan X D, Zhang R, Maiwulidai·Kahar, et al. Effect of gibberellin soaking on seed germination of perennial ryegrass under polyethylene glycol simulated drought conditions. Pratacultural Science, 2019, 36(9): 2304-2311. |
单旭东, 张睿, 麦吾丽代·卡哈尔, 等. 赤霉素浸种对PEG模拟干旱条件下多年生黑麦草种子萌发的影响. 草业科学, 2019, 36(9): 2304-2311. | |
13 | Ren Y X, Guo Y P, Sun F, et al. Effects of soaking seeds with calcium and gibberellin on the germination of Medicago sativa seeds under drought stress. Heilongjiang Animal Science and Veterinary Medicine, 2016(7): 138-141. |
任永霞, 郭郁频, 孙芳, 等. 钙和赤霉素浸种对干旱胁迫下紫花苜蓿种子萌发的影响. 黑龙江畜牧兽医, 2016(7): 138-141. | |
14 | Liang J, Hu Z Y, Xie Z M, et al. Exogenous melatonin alleviates the physiological effects of drought stress in sweet sorghum seedlings. Acta Prataculturae Sinica, 2023, 32(7): 206-215. |
梁佳, 胡朝阳, 谢志明, 等. 外源褪黑素缓解甜高粱幼苗干旱胁迫的生理效应. 草业学报, 2023, 32(7): 206-215. | |
15 | Xiao Z Z. Effects of exogenous melatonin on seed germination and seedling physiological characteristics of Bromus inermis under drought stress. Urumqi: Xinjiang Agricultural University, 2022. |
肖珍珍. 干旱胁迫下外源褪黑素对无芒雀麦种子萌发及幼苗生理特性的影响. 乌鲁木齐: 新疆农业大学, 2022. | |
16 | Zuo Y T, Dong L, Ren X S, et al. Effect of exogenous melatonin on seed germination, seedling growth and antioxidant ability of triticale under saline-alkali stress. Journal of Triticeae Crops, 2022, 42(1): 90-99. |
左月桃, 董玲, 任晓松, 等. 外源褪黑素对盐碱胁迫下小黑麦种子萌发幼苗生长、抗氧化能力的影响. 麦类作物学报, 2022, 42(1): 90-99. | |
17 | Han A P, Qin B, Zhang T, et al. Research progress of melatonin in leguminous crops// Summary of papers at the 19th academic annual meeting of the Chinese Crop Society. Wuhan: The Crop Science Society of China, 2020. |
韩爱平, 秦彬, 张彤, 等. 褪黑素在豆科作物中的研究进展// 第十九届中国作物学会学术年会论文摘要集. 武汉: 中国作物学会, 2020. | |
18 | Sun H. Biological functional analysis of gibberellin synthesis gene MtGA3ox1 in Medicago truncatula. Beijing: Chinese Academy of Agricultural Sciences, 2019. |
孙浩. 蒺藜苜蓿赤霉素合成基因MtGA3ox1生物学功能解析. 北京: 中国农业科学院, 2019. | |
19 | Su W X, Xu L X, Jiang W T, et al. Effects of different exogenous substances on seed germination and seedling growth and physiology of Perilla frutescens under saline-alkali stress. Acta Agrestia Sinica, 2022, 30(9): 2415-2422. |
苏文欣, 许凌欣, 姜宛彤, 等. 不同外源物质对盐碱胁迫下紫苏种子萌发、幼苗生长及生理的影响. 草地学报, 2022, 30(9): 2415-2422. | |
20 | Wang F, Tan Y, Lv Y R, et al. Effects of salicylic acid and gibberellin pretreatment on seeds germination of Hyssopus officinalis under NaCl stress. Acta Agrestia Sinica, 2021, 29(12): 2862-2870. |
王菲, 谭怡, 吕亚茹, 等. 水杨酸和赤霉素预处理对NaCl胁迫下神香草种子萌发的影响. 草地学报, 2021, 29(12): 2862-2870. | |
21 | Lv Y R, Wang F, Zhang T T, et al. Effect of inoculation with AM fungi on Rosa rugosa ‘ZiZhi’ responses to Lymantria dispar stress. Journal of Northeast Forestry University, 2022, 50(12): 99-103. |
吕亚茹, 王菲, 张婷婷, 等. 接种AM真菌对紫枝玫瑰应答舞毒蛾胁迫的影响. 东北林业大学学报, 2022, 50(12): 99-103. | |
22 | Zhang X M, Liu Z H, Guo M, et al. Effects of biochar on seed germination and seedling growth of two plants. Journal of Northeast Forestry University, 2023, 51(4): 26-31, 49. |
章小勉, 刘梓毫, 郭猛, 等. 生物炭对两种植物种子萌发和幼苗生长的影响. 东北林业大学学报, 2023, 51(4): 26-31, 49. | |
23 | Liu H Y, Ren D, Xiang C Y. Effects of salicylic acid on seed germination and seedling growth of sweet clover under salt stress. Science and Technology of Tianjin Agriculture and Forestry, 2022(1): 18-20. |
刘泓言, 任德, 向春阳. 水杨酸对盐胁迫下草木樨种子萌发和幼苗生长的影响. 天津农林科技, 2022(1): 18-20. | |
24 | Wang Y N, Zhao S M, Cao B. Study on drought resistance of ten herbaceous plants under PEG-6000 simulated drought stress. Acta Agrestia Sinica, 2020, 28(4): 983-989. |
王亚楠, 赵思明, 曹兵. PEG-6000模拟干旱胁迫下10种草本植物萌发期抗旱性比较. 草地学报, 2020, 28(4): 983-989. | |
25 | Bai Y D. Effects of seed soaking with melatonin on seed germination and seedling growth under drought stress in cotton. Baoding: Hebei Agricultural University, 2021. |
白燕丹. 褪黑素浸种对干旱胁迫下棉花种子萌发和幼苗生长的影响. 保定: 河北农业大学, 2021. | |
26 | Wei X Y, Lin X Q, Liang L M, et al. Physiological mechanism of melatonin soaking on improving seed germination and seedling salt tolerance of pepper. Jiangsu Journal of Agricultural Sciences, 2022, 38(6): 1637-1647. |
魏茜雅, 林欣琪, 梁腊梅, 等. 褪黑素引发处理提高朝天椒种子萌发及幼苗耐盐性的生理机制. 江苏农业学报, 2022, 38(6): 1637-1647. | |
27 | Li L Y. Effects of exogenous melatonin on seed germination and seeding growth of alfalfa under salt stress. Urumqi: Xinjiang Agricultural University, 2022. |
黎力乙. 外源褪黑素对盐胁迫下苜蓿种子萌发和幼苗生长的影响. 乌鲁木齐: 新疆农业大学, 2022. | |
28 | Niu S F, Wang L J, Liu B R. Effects of gibberellin on the germination of Reaumuria soongorica seeds under salt stress. Acta Prataculturae Sinica, 2017, 26(6): 89-97. |
牛宋芳, 王利娟, 刘秉儒. 赤霉素对盐胁迫下红砂种子萌发的影响. 草业学报, 2017, 26(6): 89-97. | |
29 | Chen Z F, Song S H, Zhang X N, et al. Effects of gibberellin on seed germination and seedling growth of tall fescue under drought stress. Acta Prataculturae Sinica, 2016, 25(6): 51-61. |
陈志飞, 宋书红, 张晓娜, 等. 赤霉素对干旱胁迫下高羊茅萌发及幼苗生长的缓解效应. 草业学报, 2016, 25(6): 51-61. | |
30 | Dai T Y, Wang Q C, Zhang Y Y, et al. Effects of exogenous gibberellin on seed germination and seedling growth of tomato under salt stress. Seed, 2022, 41(3): 74-80. |
戴陶宇, 王前程, 张迎迎, 等. 外源赤霉素对盐胁迫下番茄种子萌发和幼苗生长的影响. 种子, 2022, 41(3): 74-80. | |
31 | Yang S Y, Chen X Y, Hui W K, et al. Progress in responses of antioxidant enzyme systems in plant to environmental stresses. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2016, 45(5): 481-489. |
杨舒贻, 陈晓阳, 惠文凯, 等. 逆境胁迫下植物抗氧化酶系统响应研究进展. 福建农林大学学报(自然科学版), 2016, 45(5): 481-489. | |
32 | Huang R, Duan M M, Wen K, et al. Effects of exogenous melatonin on seeding growth and physiological characteristics of soybean under copper stress. Journal of South China Agricultural University, 2023, 44(5): 780-786. |
黄荣, 段明明, 文珂, 等. 外源褪黑素对铜胁迫下大豆幼苗生长及生理特性的影响. 华南农业大学学报, 2023, 44(5): 780-786. | |
33 | Li H J. Effects of exogenous melatonin and silicon on the growth and physiological characteristics of celery (Apium graveolens) seedlings under salt stress. Journal of Henan Agricultural Sciences, 2020, 49(1): 96-102. |
李红杰. 外源褪黑素和硅对盐胁迫下芹菜幼苗生长及生理特性的影响. 河南农业科学, 2020, 49(1): 96-102. | |
34 | Chen M Y, Luo X M, He H C, et al. Alleviating effect of melatonin on salt and drought stress in cotton seedling stage. Journal of Shihezi University (Natural Science), 2023, 41(1): 44-50. |
陈明媛, 罗雪梅, 何皇成, 等. 褪黑素对棉花苗期盐与干旱胁迫的生理缓解效应研究. 石河子大学学报(自然科学版), 2023, 41(1): 44-50. | |
35 | Liu S C, Cao X M, Mu J X, et al. Effects of exogenous hormones on seed germination and seedling growth of tomato under salt stress. Seed, 2016, 35(12): 94-98. |
刘拴成, 曹兴明, 穆俊祥, 等. 外源激素对盐胁迫下番茄种子萌发及幼苗生长的影响. 种子, 2016, 35(12): 94-98. | |
36 | Zhu X H, Yang H H, Yu H, et al. Effects of GA3 on physiological metabolism and ion absorption of ‘Paulownia 1201’ seedlings under NaCl stress. Guihaia, 2023, 43(4): 688-698. |
朱秀红, 杨会焕, 于宏, 等. GA3对NaCl胁迫下‘泡桐1201’幼苗生理代谢及离子吸收的影响. 广西植物, 2023, 43(4): 688-698. | |
37 | Guo Y P, Ren Y X, Liu G H, et al. Effects of calcium (CaCl2), GA3 and complex liquid on the physiological characteristics of alfalfa seedlings under drought stress. Acta Prataculturae Sinica, 2015, 24(7): 89-96. |
郭郁频, 任永霞, 刘贵河, 等. 外源钙和赤霉素对干旱胁迫下苜蓿幼苗生理特性的影响. 草业学报, 2015, 24(7): 89-96. | |
38 | Li G J, Wang Q, Li X, et al. Effects of gibberellin and Vc soaking seeds on the seedling physiology of hemp seeds at the initial stage of germination under drought stress. Seed, 2018, 37(6): 67-71. |
李光菊, 王倩, 李璇, 等. 赤霉素和Vc浸种对干旱胁迫下大麻种子萌发初期幼苗生理的影响. 种子, 2018, 37(6): 67-71. | |
39 | Zong Z Q, Cao S T, Wu X Z, et al. Enhancing tobacco resistance to abiotic stress by exogenous substances: research progress. Chinese Agricultural Science Bulletin, 2023, 39(10): 9-16. |
宗兆齐, 曹守涛, 吴修哲, 等. 外源物质提高烟草抗非生物胁迫的研究进展. 中国农学通报, 2023, 39(10): 9-16. |
[1] | 阮坤非, 王天琪, 毕宁宁, 师劭彤, 李森, 刘忠华. 元宝枫凋落叶浸提液对3种中草药化感作用的研究[J]. 草业学报, 2024, 33(7): 151-159. |
[2] | 高金柱, 赵东豪, 高乐, 苏喜浩, 何学青. 硝酸铈与脱落酸处理对紫花苜蓿种子萌发和幼苗生理特性的影响[J]. 草业学报, 2024, 33(6): 175-186. |
[3] | 马绍英, 陈桂平, 王娜, 马蕾, 连荣芳, 李胜, 张绪成. 豌豆土壤中潜在自毒物质的鉴定及自毒效应研究[J]. 草业学报, 2023, 32(6): 134-145. |
[4] | 李超男, 王磊, 周继强, 赵长兴, 谢晓蓉, 刘金荣. 微塑料对紫花苜蓿生长及生理特性的影响[J]. 草业学报, 2023, 32(5): 138-146. |
[5] | 李艳鹏, 魏娜, 翟庆妍, 李杭, 张吉宇, 刘文献. 全基因组水平白花草木樨TCP基因家族的鉴定及在干旱胁迫下表达模式分析[J]. 草业学报, 2023, 32(4): 101-111. |
[6] | 张士敏, 赵娇阳, 朱慧森, 卫凯, 王永新. 硒对不同品种紫花苜蓿发芽阶段物质转化和形态建成的影响[J]. 草业学报, 2023, 32(4): 79-90. |
[7] | 李庭伦, 李一亨, 余慧, 江再莉, 唐立涛, 王长庭, 胡雷. 铅卤钙钛矿泄漏对垂穗披碱草幼苗生长的影响[J]. 草业学报, 2023, 32(12): 160-170. |
[8] | 曲文杰, 赵文智, 王磊, 屈建军, 杨新国. 两种旱生灌木种子萌发与幼苗复活对模拟干湿处理的响应[J]. 草业学报, 2023, 32(11): 179-187. |
[9] | 李想, 张梦, 刘春增, 朱益飞, 叶晓馨. 等离子体处理对紫云英种子萌发和生理特性的影响[J]. 草业学报, 2023, 32(10): 129-140. |
[10] | 陆姣云, 田宏, 张鹤山, 熊军波, 刘洋, 王振南. H2O2浸种对盐胁迫下紫花苜蓿种子萌发和幼苗生长的影响[J]. 草业学报, 2023, 32(10): 141-152. |
[11] | 陶奇波, 郄西虎, 张倩, 高宇轩, 张亚锜, 张瑞真, 陈晓菲, 牛天秀, 孙小同, 聂宇婷, 刘雅如, 胡珈齐, 钟尚志, 孙娟. 牧草种子活力评价方法研究进展[J]. 草业学报, 2023, 32(10): 200-225. |
[12] | 王升升, 段珍, 周培, 张吉宇. 白花草木樨结瘤缺失型突变体的结瘤表型及生物量分析[J]. 草业学报, 2023, 32(10): 247-256. |
[13] | 许浩宇, 赵颖, 阮倩, 朱晓林, 王宝强, 魏小红. 不同混合盐碱下藜麦幼苗的抗性研究[J]. 草业学报, 2023, 32(1): 122-130. |
[14] | 郭英姿, 贾文庆, 何松林, 王政. 花叶滇苦菜浸提液对3种花卉种子萌发和幼苗生长的化感作用[J]. 草业学报, 2022, 31(9): 96-106. |
[15] | 撖冬荣, 姚拓, 李海云, 黄书超, 杨琰珊, 高亚敏, 李昌宁, 张银翠. 微生物肥料与化肥减量配施对多年生黑麦草生长的影响[J]. 草业学报, 2022, 31(3): 136-143. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||